APRESENTAÇÃO
A temática de Modelagem Matemática e Computacional tem sido reconhecida como particularmente adequada ao desenvolvimento de pesquisas de caráter interdisciplinar. Permite a constituição de grupos heterogêneos, com pesquisadores oriundos de diversas áreas do conhecimento, promovendo o estudo integrado dos mais diversos problemas de modelagem. Como consequência, há a síntese de técnicas, a uniformização de vocabulário e a criação de conceitos mais abrangentes. Isto proporciona um alargamento das fronteiras do conhecimento, o que não era possível sem a constituição de tais grupos.
SOBRE O PPGMMC
https://studio.d-id.com/share?id=af0813e8a05daed3b8437113558e4177&utm_source=copy
O Programa de Pós-Graduação em Modelagem Matemática e Computacional (PPGMMC) caracteriza-se pelo desenvolvimento de pesquisas de caráter interdisciplinar.
Tal particularidade se manifesta ao se considerar que:
• os conceitos e técnicas de modelagem não se caracterizam pela sua universalidade, mas o que se observa é uma grande dispersão de técnicas, vocabulário não padronizado e diferenças conceituais importantes;
• a constituição de grupos não homogêneos com pesquisadores oriundos de diversas áreas do conhecimento para estudo integrado de problemas de modelagem vem possibilitando a transferência de técnicas, de vocabulário e de conceitos de uma área do conhecimento para as outras, gerando novos conhecimentos e implicando no surgimento dessa nova disciplina;
• a síntese de técnicas, a uniformização de vocabulário e a criação de conceitos mais abrangentes proporcionam um alargamento das fronteiras do conhecimento.
LINHAS DE PESQUISA
A. Sistemas Inteligentes
Essa linha de pesquisa busca compreender, a partir do estudo do comportamento humano e dos sistemas naturais, o que significa um “comportamento inteligente”, e como esse comportamento pode ser incorporado aos sistemas computacionais. Assim, busca apropriar e recontextualizar um corpo de conhecimentos e as melhores práticas de outras disciplinas e/ou áreas de pesquisa. Os métodos e técnicas, advindos da análise linguística, modelos e processos cognitivos, aprendizagem de máquinas, redes semânticas, métodos baseados em lógica difusa, redes neurais artificiais, processamento distribuído, sistemas dinâmicos compõem o referencial teórico dessa linha de pesquisa.
Atualmente, os principais temas de interesse da linha de pesquisa são: otimização multiobjetivo; engenharia de software; neurociência computacional; vida artificial; representação do conhecimento; otimização combinatória; inteligência computacional; redes neurais artificiais; sistemas nebulosos; controle de sistemas; computação evolutiva; otimização linear; análise probabilística de sistemas; sistemas multiagentes; redes complexas.
Docentes da Linha de Pesquisa:
B. Métodos Matemáticos Aplicados
Esta linha de pesquisa se caracteriza pela utilização de técnicas e métodos matemáticos e de simulação computacional em aplicações interdisciplinares para a modelagem de sistemas. Os modelos resultantes poderão ser lineares ou não-lineares, descritos por equações diferenciais ou algébricas, probabilísticos ou determinísticos, discretos ou contínuos, resultantes de métodos de simulação ou de modelagem de sistemas físicos, econômicos, industriais e biológicos.
Atualmente, os principais temas de interesse da linha de pesquisa são: modelos de sistemas dinâmicos físicos e biológicos; métodos de aproximação por princípios variacionais ou de discretização; métodos numéricos para equações diferenciais; métodos para álgebra computacional; simulação e métodos de Monte Carlo; análise probabilística de sistemas; processamento de sinais e imagens; sistemas web; mineração de dados; sistemas complexos; materiais granulares; física quântica; econofísica; sistemas distribuídos; robótica; visão computacional; física matemática; informação quântica.
Docentes da Linha de Pesquisa:
Para mais informações favor entrar em contato: https://bit.ly/42lIOJ2