

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

FRANCISCO ARISTIDES DOS SANTOS NETO

Parâmetros de fratura de pastas de cimento fabricado com nanotubos de carbono

Dissertação de Mestrado

Departamento de Engenharia Civil

Belo Horizonte, abril de 2018

PPGEC – Programa de Pós Graduação em Engenharia Civil

FRANCISCO ARISTIDES DOS SANTOS NETO

PARÂMETROS DE FRATURA DE PASTAS DE CIMENTO FABRICADO COM NANOTUBOS DE CARBONO

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil do CEFET-MG como requisito parcial para obtenção do título de Mestre em Engenharia Civil

Prof. Dr./Péter Ludvig Orientador Departamento de Engenharia Civil, CEFET-MG

marcio

Prof. Dr. José Márcio Fonseca Calixto Co-Orientador Departamento de Engenharia de Estruturas, UFMG

Prof. Dr. Roberto Braga Figueiredo

Prof. Dr. Roberto Braga Figueiredo Departamento de Engenharia Metalúrgica e Materiais, UFMG

Prof^a. Dr^a. Júnia Nunes de Paula

Phof^a. Dr^a. Júnia Nunes de Paula Departamento de Engenharia Civil, CEFET-MG

Belo Horizonte, 25 de Abril de 2018

Santos Neto, Francisco Aristides dos

S237p Parâmetros de fratura de pastas de cimento fabricado com nanotubos de carbono / Francisco Aristides dos Santos. – 2018. 134 f. : il., gráfs, tabs., fotos.

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia de Civil.

Orientador: Péter Ludvig.

Coorientador: José Márcio Fonseca Calixto.

Bibliografia: f. 102-105.

Dissertação (mestrado) – Centro Federal de Educação Tecnológica de Minas Gerais, Departamento de Engenharia Civil.

 Nanotubos de carbono – Teses. 2. Cimento – Teses. 3. Clínquer cimento Portland – Teses. 4. Resistência à flexão – Teses. 5. Fraturas – Fixação – Teses. 6. Mecânica da fratura – Teses. 7. Correlação de imagem digital – Teses. I. Ludvig, Péter. II. Calixto, José Márcio Fonseca. III. Centro Federal de Educação Tecnológica de Minas Gerais. Departamento de Engenharia Civil. IV. Título.

CDD 620.193

Elaboração da ficha catalográfica pela Biblioteca-Campus II / CEFET-MG

Dedico esse trabalho aos meus amados pais, Ana e Emerson, à minha querida irmã Ana Clara e à minha doce namorada Gabriela.

Agradecimentos

Nada nessa vida se conquista sozinho, é necessário reconhecer o valor das interações entre os humanos e, portanto, reconhecer a contribuição de cada pessoa que cruzou o seu caminho antes e durante alguma empreitada na vida. Algumas contribuições acabam marcando mais que outras, mas faça um teste, retire as que são consideradas menos marcantes e veja se as dificuldades não se acentuariam. Um mestrado acadêmico não se constrói somente nos ambientes escolares e profissionais, pois ele também é construído nos ambientes familiares, com os amigos, colegas, conhecidos, etc. São nesses ambientes que, na maioria das vezes, encontramos refúgio psicológico, espiritual e sentimental. Portanto, agradeço a todas as pessoas que contribuíram comigo, em algum momento, até aqui.

Em especial...

Agradeço a Deus, amigo inseparável que me deu todas as condições, apoio e suporte para concluir esse ciclo. Sempre carinhoso, bondoso e companheiro suporta as minhas dúvidas, aflições e nunca desiste de mim.

Aos meus amados e maravilhosos pais, Ana e Emerson, por me amarem e respeitarem como eu sou, entendendo as minhas qualidades e defeitos. Agradeço também por toda a minha caminhada cristã, escolar e educacional para chegar até aqui. Essa conquista é de vocês também.

À minha querida e exemplar irmã Ana Clara, por todo o carinho, apoio, amor, confiança e exemplos diários de determinação e perseverança.

À minha doce e bela namorada Gabriela, por sua empatia, cumplicidade, ternura, amor e perdão.

Ao meu orientador Prof. Péter Ludvig, peça fundamental na realização desse trabalho. Obrigado pela paciência, incentivo, apoio técnico, solicitude e disponibilidade. É extremamente confortante ter um orientador que confia em você e com quem você pode contar.

Ao meu coorientador Prof. Calixto, pela disponibilidade, apoio técnico e prazer em compartilhar os conhecimentos. Isso é fundamental em um docente e levarei como exemplo a sua humildade em ensinar.

Ao Tarcizo e Victor, por toda a disponibilidade, paciência, confiança, convivência, interesse e compartilhamentos de conhecimentos. Os dois contribuíram muito para a minha pesquisa e para o meu crescimento pessoal e profissional.

À minha família Santos, por todo amor, afeto e respeito. Não só comigo, mas também com aqueles que mais amo. Em especial gostaria de agradecer ao meu Padrinho, por estar sempre disponível e pelo suporte em informática que ele me concedeu.

À minha família Barros, em especial ao meu tio Zezé, por todo o amor, respeito, carinho e disponibilidade.

À minha madrasta Tata, ao meu sogro Silvano, à minha sogra Cristina e à minha cunhadinha Ana Clara, por todo o carinho, respeito, incentivo e confiança.

Agradeço às minhas afilhadas, Laura e Milenna, por todo amor espontâneo que me transmitem. Isso me dá uma energia muito boa para seguir em frente.

À minha amiga Matilde, pela oportunidade que me concedeu no âmbito profissional, por sempre acreditar no meu trabalho e no meu caráter, pelo carinho, afeto, incentivo e companheirismo.

Ao meu irmão de vida, Léo, por todos os conselhos, diálogos, incentivo e parceria de sempre.

Aos meus amigos, todos eles. É um orgulho e uma alegria para mim saber que esse parágrafo ficaria grande se eu fosse citar todos. Não faltarão oportunidades para agradecê-los. Obrigado por toda a convivência, ensinamentos e carinho. Vocês são demais.

Aos meus avôs e avós, Francisco, Irany, Fia e Cândido, que já se encontram no céu, por toda intercessão que com certeza ainda fazem por mim.

Ao CEFET e todas as pessoas, sem exceção, que compõe o seu dia a dia. Tenho enorme carinho e gratidão por essa instituição. Agradeço muito pela bolsa-auxílio também.

A todas as pessoas que trabalham no CTNano, fui muito bem recebido e tratado por todos. É muito importante para um pesquisador iniciante receber carinho e notar o

respeito das pessoas. Agradeço, de coração, a confiança em mim depositada para ter livre acesso à estrutura e convivência do local.

Ao Henrique, que se voluntariou em ajudar e foi determinante em um momento muito especial da pesquisa. Obrigado pela convivência, disponibilidade e troca de conhecimentos.

Aos meus colegas de mestrado, por me acolherem nas dúvidas, nas conversas, na convivência e por tornarem essa jornada especial.

Aos professores Eliene e Weber, obrigado por todas as contribuições durante a etapa de qualificação. À professora Eliene gostaria de deixar um agradecimento especial por sempre me receber bem em sua sala para conversar sobre os mais diversos assuntos.

Aos professores, Roberto Figueiredo e Júnia de Paula, que compuseram a banca avaliadora na defesa dessa dissertação, por todas as críticas construtivas e sugestões dadas.

Ao PPGEC e todos os seus colaboradores, sem exceção. Obrigado por todo o suporte, carinho e confiança. Espaços de convivência e circulação sadios favorecem o nosso desenvolvimento pessoal e acadêmico.

Ao grupo de estudo "NanoCEFET" por sempre estarem disponíveis em ajudar quando eu precisei. Vocês me ajudaram muito.

Ao meu novo amigo Ricardo (Bigode), por sempre valorizar as nossas conversas, muitas vezes nos intervalos entre as minhas atividades, e me mostrar que o prazer em adquirir conhecimento está muito além do que os olhos podem ver.

À Escola Municipal João do Patrocínio, em especial à Neide, Gema e Cristina, por me receberem tão bem e nunca colocarem nenhum empecilho para que eu realizasse a minha pesquisa.

Ao professor Sidney Nicodemos, por toda a solicitude, troca de ideias e ensinamentos.

À empresa Grace, por contribuir prontamente com os aditivos necessários para essa pesquisa quando eu pedi auxílio.

À empresa InterCement, por contribuir com o fornecimento do cimento necessário para a realização dessa pesquisa.

"Na natureza nada se cria, nada se perde, tudo se transforma".

Antoine Lavoisier

RESUMO

Os compósitos cimentícios se caracterizam pela baixa resistência à tração e capacidade de absorção de energia. Essas características são consideradas deficiências críticas que além de gerarem limitações ao projeto estrutural podem afetar a durabilidade das estruturas. Para superar essas deficiências o reforço através da aplicação de micro- ou macrofibras é comumente empregado. Contudo, os compósitos cimentícios apresentam falhas em escala nanométrica, na qual esse reforço tradicional não é eficiente. Devido às suas excelentes propriedades mecânicas, como a alta resistência à tração e capacidade de deformação, os nanotubos de carbono são ótimos candidatos para reforçar os materiais cimentícios. No presente trabalho, utilizou-se um clínquer nanoestruturado com nanotubos e nanofibras de carbono (NTC/NFC), sintetizado in situ e de maneira contínua, para preparar compósitos de pastas de cimento e investigar os comportamentos mecânicos de fratura dessas pastas avaliando os resultados de resistência à tração na flexão, a energia de fratura e a tenacidade à fratura. Além da pasta de cimento referência, foram fabricadas pastas de cimento com 0,10%, 0,20% e 0,30% de NTC/NFC em relação ao peso do cimento. O ensaio de flexão em três pontos e o método de Correlação Digital de Imagem (CDI) foram empregados simultaneamente durante o ensaio das pastas de cimento nanoestruturadas - aos 7, 28 e 120 dias de idade – para colher os dados para análise. Os testes estatísticos ANOVA e Tukey foram empregados para auxiliar na avaliação dos resultados, os quais mostraram, juntamente com os gráficos e tabelas, que a incorporação do clínquer nanoestruturado nas pastas de cimento proporcionou ganhos nas propriedades mecânicas de fratura avaliadas, especialmente aos 7 dias de idade das pastas. A análise dos resultados mostrou também, que nessa idade, as pastas de cimento com adição de 0,20% de NTC e 25x25x150 mm³ apresentaram ganhos médios em todas as propriedades mecânicas de fratura investigadas e as pastas com 0,30% de NTC/NFC e 40x40x160 mm³ apresentaram ganhos significativos em todas as propriedades mecânicas investigadas.

Palavras-chave: nanotubos de carbono, clínquer nanoestruturado, pasta de cimento, resistência à tração na flexão, energia de fratura, tenacidade à fratura, Correlação Digital de Imagem (CDI).

ABSTRACT

Cementitious composites are characterized by low tensile strength and energy absorption. These characteristics are considered critical deficiencies that, in addition to generating limitations to the structural design, may affect the durability of the structures. To overcome these deficiencies the reinforcement applying micro- or macrofibres in the cementitious matrix is commonly employed. However, cementitious composites exhibit failures at nanometric scale in which this traditional reinforcement is not efficient. Carbon nanotubes are excellent candidates to reinforce cementitious materials, inhibiting the initiation and propagation of these defects and improving the mechanical properties of cementitious composites. In this study, a nanostructured clinker with carbon nanotubes and nanofibers (CNT/CNF), synthesized in situ and continuously, was used to prepare cement paste composites and investigate the mechanical fracture behavior of these pastes evaluating the results of flexural tensile strength, fracture energy and fracture toughness. Besides the reference cement paste, nanostructured cement pastes with 0.10%, 0.20% and 0.30% of CNT/CNF by weight of cement were produced. The three-point flexural test and the Digital Image Correlation (DIC) method were used simultaneously during the tests of the nanostructured cement pastes - at 7, 28 and 120 days of age - to collect the data for analysis. The ANOVA and Tukey statistical tests, graphics and tables were used to support in the evaluation of the results, which showed that the incorporation of the nanostructured clinker in the cement pastes provided gains in the mechanical properties that were evaluated, especially at 7 days of age. The analysis of the results also showed that, at 7 days of age, cement pastes with 0.20% of CNT/CNF and 25x25x150 mm³ showed average gains in all fracture mechanical properties investigated and pastes with 0.30% CNT/CNF and 40x40x160 mm³ presented significant gains in all mechanical properties investigated.

Keywords: carbon nanotubes, nanostructured clinker, cement paste, flexural tensile strength, fracture energy, fracture toughness, Digital Image Correlation (CDI).

LISTA DE ILUSTRAÇÕES

Figura 2-1 – Esquema simplificado do processo de fabricação do cimento Portland (via seca)
Figura 2-2 – Representação esquemática das estruturas de alguns alótropos do carbono atualmente conhecidos: (a) diamante, (b) grafite, (c) nanotubos e (d) fulereno
Figura 2-3 – Representação esquemática da estrutura do: (a) NTCPS, (b) NTCPM e (c) do grafeno
Figura 2-4 – Os três NTC típicos que podem ser obtidos a partir do enrolamento da folha de grafeno em diferentes direções: <i>zigzag, armchair</i> e <i>chiral</i>
Figura 2-5 – Esquema do reator para a síntese de NTC em clínquer pelo processo de DQV
Figura 2-6 – Forno estacionário utilizado por Ludvig (2012)
Figura 2-7 – Esquema ilustrativo com as principais partes do reator para o processo de síntese contínua
Figura 2-8 – Imagens do clínquer com NTC obtidas pela microscopia eletrônica de varredura: (a) partícula de clínquer com NTC dispersos sobre a superfície e (b) partícula de clínquer com NTC dispersos uniformemente nas pontas
Figura 2-9 – Desenho esquemático de um ensaio de flexão em três pontos, no qual uma força F é aplicada no centro do corpo de prova prismático que está sobre dois apoios45
Figura 2-10 – Modos de deslocamento de trincas. Da esquerda para a direita: Modo I – de tração; Modo II – de deslizamento; Modo III – de rasgamento48
Figura 2-11 – Demonstração das situações de trincas que podem ser abordadas na equação de tenacidade à fratura. Na placa da esquerda considera-se a metade do comprimento da trinca interna e na placa da direita considera-se o comprimento total da trinca superficial
Figura 2-12 – Indicação da área abaixo da curva carga-deslocamento obtida no ensaio de flexão em três pontos

Figura 2-13 – Sistema típico de captura de imagens para utilização do método de CDI51
Figura 2-14 – Exemplos de padrão aleatório em nível de cinza para superfícies que serão analisadas pelo método de CDI51
Figura 2-15 – Ilustração da detecção de subconjuntos de pixels coincidentes para cálculo do deslocamento
Figura 3-1 – Clínquer nanoestruturado utilizado na pesquisa54
Figura 3-2 – Análise Termogravimétrica do clínquer nanoestruturado utilizado55
Figura 3-3 – Imagem de uma amostra do clínquer nanoestruturado, utilizado na pesquisa, obtida por MEV. Nessa imagem constata-se a partícula de clínquer recoberta com NTC de modo homogêneo
Figura 3-4 – Desenho esquemáticos dos dois tipos de corpos de prova prismáticos utilizados na pesquisa. As medidas estão em mm
Figura 3-3-5 – Câmara fechada com presença de vapor d'água para cura dos corpos de prova63
Figura 3-6 – À esquerda: aparato da câmera industrial de alta qualidade e corpo de prova a ser ensaiado; À direita: imagem que a câmera gera64
Figura 3-7 – Acima: aparato utilizado para adaptar a <i>webcam</i> ao monitor; Abaixo: aparato conectado ao monitor e imagem que a <i>webcam</i> gera64
Figura 3-8 – Caminho percorrido pela trinca nos corpos de prova com entalhe após o ensaio de flexão em três pontos. Os corpos de prova da foto foram ensaiados nessa pesquisa experimental
Figura 3-9 – Desenho esquemático dos corpos de prova com os entalhes. As medidas estão em mm
Figura 3-10 – Pintura aplicada ao corpo de prova para realização do padrão aleatório em nível de cinza. Primeiro, realizou-se a pintura branca. Depois, a pintura com tinta preta para criar o padrão aleatório em nível de cinza

Gráfico 4-1 – Resultados das energias de fratura de cada teor de adição de NTC/NFC dos corpos de prova de 40x40x160mm³ aos 7 dias de idade.......83

Gráfico 4-3 – Resultados das energias de fratura de cada teor de adição de NTC/NFC dos corpos de prova de 40x40x160mm³ aos 120 dias de idade......85

Gráfico 4-7 – Resultados para a tenacidade à fratura para cada teor de adição de NTC/NFC dos corpos de prova de 25x25x150mm³ aos 120 dias de idade......89

Gráfico 4-8 – Resultados das médias para a tenacidade à fratura dos corpos de prova de 25x25x150mm³ aos 7, 28 e 120 dias de idade......90

Gráfico 4-9 – Resultados para a tenacidade à fratura para cada teor de adição de NTC/NFC dos corpos de prova de 40x40x160mm³ aos 7 dias de idade......91

 Gráfico 4-11 – Resultados para a tenacidade à fratura para cada teor de adição de NTC/NFC dos corpos de prova de 40x40x160mm³ aos 120 dias de idade......93

Gráfico 4-12 – Resultados das médias para a tenacidade à fratura dos corpos de prova de 40x40x160mm³ aos 7, 28 e 120 dias de idade......94

LISTA DE TABELAS

Tabela 2-1 - Propriedades dos nanotubos de carbono
Tabela 2-2 – Ganhos de propriedades mecânicas, em relação às amostras de referência, dos compósitos obtidos a partir da mistura física dos nanotubos de carbono na matriz cimentícia
Tabela 2-3 – Ganhos de propriedades mecânicas, em relação às amostras dereferência, dos compósitos obtidos a partir da síntese <i>in situ</i> de nanotubos enanofibras de carbono sobre o clínquer de cimento Portland
Tabela 3-1 – Valores aproximados de óxidos na amostra do cimento utilizado54
Tabela 3-2 – Dosagens utilizadas na pesquisa59
Tabela 3-3 – Identificação dos corpos de prova60
Tabela 3-4 – Dados técnicos dos ensaios de flexão em três pontos
Tabela 4-1 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 25x25x150mm ³ aos 7 dias de idade de idade
Tabela 4-2 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 25x25x150mm ³ aos 28 dias de idade de idade
Tabela 4-3 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 25x25x150mm ³ aos 120 dias de idade de idade
Tabela 4-4 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 40x40x160mm ³ aos 7 dias de idade de idade
Tabela 4-5 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 40x40x160mm ³ aos 28 dias de idade de idade
Tabela 4-6 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 40x40x160mm ³ aos 120 dias de idade de idade
Tabela 4-7 – Resultados para as energias de fratura, em N/m, para os corpos de prova de 40x40x160mm ³ aos 7 dias de idade de idade83

Tabela 4-8 – Resultados para as energias de fratura, em N/m, para os corpos d	е
prova de 40x40x160mm ³ aos 28 dias de idade de idade8	4
Tabela 4-9 – Resultados para as energias de fratura, em N/m, para os corpos d	е
prova de 40x40x160mm ³ aos 120 dias de idade de idade8	5
Tabela 4-10 – Resultados para as tenacidades à fratura, em MPa.mm, para o	s
corpos de prova de 25x25x150mm ³ aos 7 dias de idade8	7
Tabela 4-11 – Resultados para as tenacidades à fratura, em MPa.mm, para o	S
corpos de prova de 25x25x150mm ³ aos 28 dias de idade8	8
Tabela 4-12 – Resultados para as tenacidades à fratura, em MPa.mm, para o	S
corpos de prova de 25x25x150mm ³ aos 120 dias de idade	9
Tabela 4-13 – Resultados para as tenacidades à fratura, em MPa.mm, para o	S
corpos de prova de 40x40x160mm ³ aos 7 dias de idade9	1
Tabela 4-14 – Resultados para as tenacidades à fratura, em MPa.mm, para o	S
corpos de prova de 40x40x160mm ³ aos 28 dias de idade9	2
Tabela 4-15 – Resultados para as tenacidades à fratura, em MPa.mm, para o	S
corpos de prova de 40x40x160mm ³ aos 120 dias de idade9	3

LISTA DE QUADROS

Quadro 3-1 – Quadro geral das formulações61
Quadro 3-2 – Procedimentos de moldagem da pastas de cimento nanoestruturadas.

SUMÁRIO

1	INT	RO	DUÇÃO	20
	1.1	СС	NTEXTUALIZAÇÃO	20
	1.2	JU	STIFICATIVA	21
	1.3	OB	JETIVOS	22
	1.3	.1	Objetivo geral	22
	1.3	.2	Objetivos específicos	22
	1.4	ES	TRUTURA DO TRABALHO	23
2	EST	UD	DOS PRECEDENTES	24
	2.1	CIN	MENTO PORTLAND	24
	2.1	.1	Composição	24
	2.1	.2	Fabricação	26
	2.2	NA	NOTUBOS DE CARBONO	27
	2.2	.1	Introdução	27
	2.2	.2	Definição	28
	2.2	.3	Propriedades	29
	2.2	.4	Síntese dos nanotubos de carbono	31
	2.2	.5	Aplicações	35
	2.3	СС	MPÓSITOS DE CIMENTO NANOESTRUTURADOS	36
	2.3	.1	Resistência à compressão	37
	2.3	.2	Resistência à tração na flexão	38
	2.3	.3	Energia de fratura	40
	2.4	СС	MPORTAMENTOS MECÂNICOS NA FRATURA	44

nror	2.4 prieda	.1 des	0 : me	ensa cânic	io c as de	de e fra	flexão atura	em	três	pontos	para	0	cálculo	das 44
prop	2.5	MÉ	ÉTOI		E CC	ORF	RELAC	ÃO D	IGITA		AGEM	(CD	1)	
3	MA	TEF		SEM	LÉTC	DC)S							53
-	3.1	MA	TEF	RIAIS										53
	3.1	.1	Со	mpos	icão	da	pasta							53
	3.1	.2	For	mula	ções	da	s pasta	s de o	ciment	to nanoe	strutur	adas	S	57
	3.1	.3	Мо	Idage	ns d	ası	oastas (de cir	nento	nanoest	ruturac	las .		
	3.2	EN	ISAI	OS D	EFL	EX	ÃO EM	TRÊ	S POI	NTOS				63
	32	 • 1	Asr	o e ctos	s aer	ais								63
	3.2	2	Pre	nara	rão c		cornos	de ni	ova					65
	3.2	23	Co	nfigur	acão		is ensai							67
	3.3	OB		NCÃO) F T	RA.		іто г						
	0.0 3 3	0D : 1	Δre	a trar	, L 1	real	de run	tura ((4 <i>t</i>)					 60
	3.3	2			mont	00	verticai		AU)					00
	3.3	2.2 2.3	Eor			rroe	nament	o.vorf	ical					70
	3.0	,.υ Γά		Ças u II ∩ F	10 Ca			ט יפוו ארשר	S ME		SDEI	=D \		71
	3.4	1		sistân	ncia à		or nici	flovã	(σf)				10174	72
	2.4	י.י ס	En	orgio	do fr	- 11 C	ro (C f)	псла)				
	2.4	·.∠		ergia		atu fra	ia (u j)	······						12
4	0.4							o.						75
4	REG		_ I AL			5UU	1330E	۵ « م (ر	- 6					74
	4.1	Ke:	SISTE	encia	a tra	çac	na fiex	(ao (a	5 7)					/4
	4.1	.1	Co	rpos o	ae pr	ova	1 de 25	(25x1	50mm	۱ ^۳				/5
	4.1	.2	Co	rpos c	de pr	ova	1 de 40	(40x1	60mm	າ°				79

4.2 En	nergia de fratura (<i>Gf</i>)	83
4.2.1	Corpos de prova de 25x25x150mm ³	83
4.2.2	Corpos de prova de 40x40x160mm ³	83
4.3 Te	enacidade à fratura (<i>KIC</i>)	87
4.3.1	Corpos de prova de 25x25x150mm ³	87
4.3.2	Corpos de prova de 40x40x160mm ³	91
4.4 Ab	oordagem geral	95
5 CONC	LUSÕES	97
6 SUGE	STÕES PARA TRABALHOS FUTUROS	100
REFERÊN	ICIAS	102
APÊNDIC	ES	106

1 INTRODUÇÃO

1.1 CONTEXTUALIZAÇÃO

O cimento Portland é o material de construção mais comum e utilizado no mundo. Essa utilização ocorre devido ao seu baixo custo, à sua trabalhabilidade em temperatura ambiente, à sua ampla disponibilidade e a adequada documentação existente sobre suas propriedades. No entanto, apesar dos materiais cimentícios apresentarem valores de resistência à compressão relativamente elevados, sua resistência à flexão e capacidade de deformação são baixas, caracterizando-os como um material frágil (WANG; HAN; LIU, 2013). Essas características são sérias deficiências que não só impõem restrições aos projetos estruturais, mas afetam a durabilidade em longo prazo das estruturas (KONSTA-GDOUTOS et al., 2010).

Usualmente, o reforço dos materiais cimentícios através do emprego de fibras é utilizado para superar essas deficiências. As fibras frequentemente utilizadas são as fibras orgânicas, celulósicas e as fibras inorgânicas. No entanto, as macrofibras e as microfibras apenas dificultam o desenvolvimento de microtrincas nos materiais cimentícios, mas não impedem a sua formação (HU et al., 2014). Segundo Konsta-Gdoutos et al. (2010), isso ocorre porque as matrizes cimentícias apresentam falhas em escalas nanométricas, na qual o reforço tradicional não é efetivo. Conforme Sun et al. (2015), a adição de nanotubos de carbono (NTC) e nanofibras de carbono (NFC) possibilitam a resolução desse problema, pois esses materiais apresentam ótimas propriedades mecânicas excepcionais e podem reforçar e modificar o comportamento dos materiais cimentícios na nanoescala. No entanto, uma questão chave na fabricação desses nanocompósitos é a dispersão homogênea dos NTC na matriz cimentícia, pois a má dispersão pode gerar a formação de defeitos na matriz e limitar o efeito positivo da adição.

Atualmente, a nanotecnologia ligada aos materiais cimentícios apresenta dois segmentos de pesquisa. Um lida com a medição e a caracterização da microescala e da nanoescala da estrutura desses materiais, buscando uma melhor compreensão de como essas estruturas afetam as propriedades macroscópicas e o desempenho dos materiais cimentícios. O outro engloba as técnicas de manipulação em escala nanométrica para desenvolver uma nova geração de compósitos cimentícios com desempenho mecânico e potencial de durabilidade superior, desenvolvendo uma

variedade de novas propriedades como, por exemplo, a alta ductilidade e o autocontrole de fissuras (SANCHEZ; SOBOLEV, 2010).

Han et al. (2015) destaca que durante a última década muitas pesquisas foram direcionadas para o desenvolvimento de compósitos cimentícios com NTC e muitas conquistas foram alcançadas, como, por exemplo, os ganhos em propriedades mecânicas e a possibilidade de se dispersar o material na matriz cimentícia com menor custo, de modo mais eficaz e em larga escala, através de um processo de crescimento *in situ* de nanotubos e nanofibras de carbono sobre partículas minerais da mistura do cimento.

O uso dos NTC em matrizes cimentícias ganhou o interesse da comunidade científica e direciona o reforço do nível macroscópico para o nível nanoscópico. Suas notáveis propriedades, como por exemplo, a alta resistência e comportamento elástico, podem inibir o crescimento e propagação das fissuras nas primeiras idades e proporcionar uma interface melhor entre a pasta de cimento e os agregados nos materiais cimentícios, oferecendo a possibilidade de desenvolver uma geração de compósitos cimentícios multifuncionais e de alto desempenho. (RAKI et al., 2010).

Nesse cenário, o presente trabalho irá abordar o comportamento mecânico de fratura de pastas de cimento produzidas com a incorporação de clínquer nanoestruturado, o qual foi obtido através do crescimento *in situ* de nanotubos e nanofibras de carbono sobre sua superfície.

1.2 JUSTIFICATIVA

A nanotecnologia se apresenta com uma área de pesquisa bastante ativa no mundo atual e pode ser usada para a criação de novos materiais, dispositivos e sistemas a níveis moleculares. Os fenômenos que estão associados às interações atômicas e moleculares dos materiais influenciam fortemente as suas propriedades macroscópicas e, recentemente, pesquisadores têm investigado a aplicação da nanotecnologia nos compósitos de cimento Portland (BALANGURU, 2005).

Os nanotubos de carbono apresentam vantagens distintas quando considerada a sua aplicabilidade como material de reforço para compósitos cimentícios de alto desempenho e resistência. Como exemplo, pode-se citar que os NTC apresentam propriedades físicas extraordinárias que podem melhorar o

comportamento mecânico geral do compósito no qual estão inseridos e que sua alta relação de aspecto pode proporcionar uma efetiva ação contra as nanofissuras, exigindo uma maior energia para a propagação das trincas na matriz. Os nanocompósitos podem auxiliar no desenvolvimento de infra-estruturas com excelentes desempenhos estruturais, alta durabilidade e capacidade multifuncional, melhorando a segurança, a manutenção e a confiabilidade das estruturas (HAN et al., 2015; KONSTA-GDOUTOS et al., 2010; MAKAR, BEAUDOIN, 2004).

De acordo com Han et al (2015), a dispersão dos nanomateriais nos compósitos cimentícios ainda é um problema crítico, sendo necessário encontrar um método mais simples, repetível em larga-escala e que consuma menos energia para distribuir os nanomateriais na matriz cimentícia. Todavia, a síntese contínua *in situ* de nanotubos e nanofibras de carbono sobre o clínquer de cimento Portland pode preencher essa lacuna.

Deste modo, considerando os limites de deformação das matrizes cimentícias e o potencial dos nanomateriais para solucionar essa insuficiência, justifica-se a investigação experimental do efeito da adição do clínquer nanoestruturado, sintetizado *in situ*, no comportamento mecânico de fratura de pastas de cimento.

1.3 OBJETIVOS

1.3.1 Objetivo geral

Investigar, experimentalmente, o efeito da incorporação do clínquer nanoestruturado com nanotubos e nanofibras de carbono, o qual foi obtido a partir da síntese contínua *in situ*, no comportamento mecânico de fratura de pastas de cimento.

1.3.2 Objetivos específicos

- Avaliar a influência de diferentes teores de adição de nanotubos e nanofibras de carbono nas seguintes propriedades mecânicas de fratura das pastas de cimento nanoestruturadas:
 - Resistência à tração na flexão;
 - Energia de fratura;
 - Tenacidade à fratura.

 Utilizar o método de Correlação Digital de Imagem durante a aplicação do ensaio de flexão em três pontos para obter os deslocamentos dos corpos de prova.

1.4 ESTRUTURA DO TRABALHO

Este trabalho foi estruturado em seis capítulos, além das referências e apêndices. No primeiro capítulo, introdutório, apresenta-se o contexto que justifica o trabalho e seus objetivos principais.

No segundo capítulo, apresentam-se os estudos que precedem a realização da pesquisa, com a fundamentação teórica que auxilia no entendimento do desenvolvimento do trabalho e o estado da arte que aborda os materiais e as propriedades mecânicas propostas.

No terceiro capítulo, apresenta-se a estrutura metodológica da pesquisa, explicitando os materiais e os métodos de ensaios e análises que foram utilizados.

No quarto capítulo, apresentam-se os resultados que foram obtidos nos ensaios e suas respectivas discussões.

No quinto capítulo, apresentam-se as conclusões obtidas ao final da investigação experimental.

No sexto capítulo, apresentam-se as sugestões para a continuidade dos estudos acerca do tema.

Nas referências se encontram todos os artigos, livros, normas e sites consultados para poder fundamentar e executar essa pesquisa.

Por fim, os Apêndices apresentam as tabelas e gráficos elaborados para obter os resultados e complementar as análises.

2 ESTUDOS PRECEDENTES

2.1 CIMENTO PORTLAND

O cimento Portland (CP) foi desenvolvido por um construtor inglês chamado Joseph Aspdin, o qual patenteou o produto desenvolvido em 1824. Nesse período da história era comum construir na Inglaterra utilizando uma pedra encontrada em uma ilha no sul do país que se chamava Portland. Devido à semelhança na cor e na dureza entre o produto desenvolvido por Joseph Aspdin e a pedra originária dessa ilha, ele registrou o produto com esse nome em sua patente (ABCP, 2002).

Pode-se definir o cimento Portland como um aglomerante hidráulico de pó fino. Isto é, ele não só endurece através de reações com a água, mas também forma um produto resistente a água depois de endurecido (MEHTA; MONTEIRO, 1994).

2.1.1 Composição

2.1.1.1 Constituintes

O cimento Portland é constituído fundamentalmente pela cal (CaO), sílica (SiO₂), alumina (Al₂O₃), óxido de ferro (Fe₂O₃), certa proporção de óxido de magnésio (MgO) e um pequeno teor de anidrido sulfúrico (SO₃), que é adicionado após a calcinação para retardar o tempo de pega do produto. Possui também como constituintes menores: as impurezas, o óxido de sódio (Na₂O), o óxido de potássio (K₂O), o óxido de titânio (TiO₂) e outras substâncias menos importantes. Os óxidos de potássio e sódio constituem os denominados álcalis do cimento. Quando finamente pulverizada e homogeneizada e, posteriormente, submetida à ação de altas temperaturas no forno produtor do cimento, a mistura das matérias-primas, que contêm em proporções convenientes esses constituintes, formam o clínquer (BAUER, 2008).

Segundo Mehta e Monteiro (1994), durante o processo de obtenção do clínquer, que ocorre dentro do forno produtor de cimento, ocorrem reações químicas, especialmente no estado sólido, que resultam na formação dos seguintes compostos:

- Silicato tricálcico (3CaO.SiO₂ = C₃S);
- Silicato dicálcico (2CaO.SiO₂ = C₂S);

- Aluminato tricálcico $(3CaO.Al_2O_3 = C_3A);$
- Ferro aluminato tetracálcico ($4CaO.Al_2O_3.Fe_2O_3 = C_4AFe$).

Para Bauer (2008), é muito importante conhecer as propriedades e as proporções desses compostos, visto que existe uma correlação entre estes e as propriedades finais do cimento e do concreto. Por exemplo, sucintamente, acerca da resistência, pode-se dizer que: o C_3S é o maior responsável pela resistência em todas as idades, principalmente até o final do primeiro mês de cura; o C_2S possui maior importância no processo de endurecimento em idades mais avançadas, sendo o maior responsável pelos ganhos de resistência após um ano ou mais; o C_3A contribui para a resistência também, especialmente no primeiro dia; e o C_4AFe não contribui significativamente para a resistência.

2.1.1.2 Matérias-primas

Segundo Bauer (2008), o cimento Portland é um produto obtido através da mistura do clínquer pulverizado e de sulfatos de cálcio em pequenas proporções. Eventualmente, pode receber a adição de certas substâncias que modificam suas propriedades ou facilitam a sua utilização.

O clínquer é um produto de natureza granulosa que tem como matériasprimas o calcário e a argila. O clínquer em pó tem a característica de desenvolver uma reação química na presença da água na qual ele, em um primeiro momento, se torna pastoso e, posteriormente, endurecido. Com isso, o clínquer é capaz de adquirir elevada resistência e durabilidade e, por conseqüência, é o principal componente na fabricação do cimento Portland. Junto ao clínquer, adiciona-se o sulfato de cálcio em todos os tipos de cimento também, tendo como função básica controlar o tempo de pega do clínquer moído quando misturado com água (ABCP, 2002).

As adições são matérias-primas que quando misturadas ao clínquer durante a moagem são capazes de melhorar algumas características do cimento. As adições geram um efeito positivo na preservação do meio ambiente devido ao aproveitamento de resíduos, o qual resulta em uma diminuição da extração de matéria-prima natural.

2.1.2 Fabricação

Atualmente o cimento Portland é produzido em instalações industriais de grande porte que estão localizadas próximas às jazidas que se encontram numa situação favorável para transportar o produto acabado aos centros consumidores. A fabricação do cimento pode ser compreendida em seis operações principais: extração da matéria-prima, britagem, moagem e mistura, queima, moagem do clinquer e expedição (BAUER, 2008).

Primeiramente, a rocha calcária é britada. Em seguida, é moída e misturada em proporções adequadas com a argila moída. A mistura formada é levada ao forno e aquecida a altas temperaturas, podendo alcançar até 1450°C. Esse intenso calor transforma a mistura em clínquer, que se apresenta sob a forma de pelotas. Ao sair do forno, o clínquer ainda incandescente é bruscamente resfriado para depois ser finamente pulverizado. Em seguida, o clínquer em pó recebe as adições próprias ao cimento que se deseja fabricar e essa mistura é levada ao moinho de cimento, para produzir o produto final (ABCP, 2002). A Figura 2-1 apresenta um esquema simplificado do processo de fabricação do cimento.

Figura 2-1 – Esquema simplificado do processo de fabricação do cimento Portland (via seca).

Fonte: <http://www.abcp.org.br/cms/basico-sobre-cimento/fabricacao/fabricacao/>. Acesso em: Janeiro de 2018.

2.2 NANOTUBOS DE CARBONO

2.2.1 Introdução

Até meados da década de 1980, acreditava-se que existiam apenas dois alótropos do carbono sólido puro, a grafite e o diamante, os quais apresentam átomos dispostos em redes por meio de ligações covalentes, porém com estruturas físicas e propriedades diferentes. No ano de 1985, um grupo de pesquisadores liderados por Richard Smalley e Robert Curl da *Rice University,* em Houston (EUA), e Harry Kroto da *University of Sussex*, na Inglaterra, sintetizaram um novo alótropo do carbono, o fulereno, molécula que se caracteriza por ser composta por átomos de carbono em um arranjo similar ao de uma bola de futebol, sendo o C₆₀ sua forma mais conhecida. Essa síntese estimulou o interesse do meio científico e as investigações acerca do novo alótropo evoluíram, de modo que foi constatado, posteriormente, que os átomos do carbono podem formar longos tubos cilíndricos também. Esses tubos foram originalmente chamados de *buckytubes*, mas agora são mais conhecidos como nanotubos de carbono (SIDDIQUE; MEHTA, 2014). A Figura 2-2 apresenta representações esquemáticas de algumas das formas alotrópicas do carbono atualmente conhecidas.

Figura 2-2 – Representação esquemática das estruturas de alguns alótropos do carbono atualmente conhecidos: (a) diamante, (b) grafite, (c) nanotubos e (d) fulereno..

Fonte: Meyyappan, 2004.

Os NTC possuem um papel importante como objetos de estudos submetidos a muitas revistas científicas em quase todos os campos de pesquisa e tecnologia. Inclusive, os créditos referentes à sua descoberta são motivo de investigação acerca do tema. Entretanto, não há dúvidas que o estudo publicado pelo japonês Sumio lijima na revista *Nature* em 1991, gerou um impacto indubitável na área da ciência e da tecnologia, fazendo com que os NTC ganhassem foco dentro dos temas de pesquisa da comunidade científica. Esse impacto resultou da combinação adequada de fatores muito favoráveis, tais como: uma publicação de alta qualidade, uma revista de alto impacto lida por todos os tipos de cientistas, um impulso recebido pela relação com um tema de sucesso em nível de pesquisa mundial e anteriormente publicado – no caso, os fulerenos – e um público de cientistas maduros e prontos para "surfar na onda nano" (MONTHIOUX, KUZNETSOV, 2006).

2.2.2 Definição

Os NTC são alótropos do carbono com uma nanoestrutura cilíndrica oca formada a partir do enrolamento de folhas de grafeno, geralmente possuindo um diâmetro nanométrico e um comprimento micrométrico. Em um primeiro momento, eles podem ser categorizados em dois grupos principais: os nanotubos de carbono de paredes simples (NTCPS) e os nanotubos de carbono de paredes múltiplas (NTCPM). Os NTCPS se apresentam como uma única folha de grafeno enrolada, enquanto que os NTCPM podem se constituir de vários NTCPS coaxiais, como está representado na Figura 2-3. Embora seja mais fácil produzir quantidades significativas de NTCPM do que NTCPS, suas estruturas são menos conhecidas devido à sua grande complexidade e variedade. Cada parede de um NTC é distinguida de acordo com a quiralidade da sua estrutura atômica, a qual define a direção de enrolamento da folha de grafeno para a formação dos NTC. Enrolando-se as folhas de grafeno em diferentes direções, três NTC típicos podem ser obtidos (Figura 2-4): o zigzag, o armchair e o chiral. Essas definições além de caracterizar uma parede de um NTC caracterizam um NTCPS como um todo, entretanto, não se pode dizer o mesmo de NTCPM, pois como esse tipo de NTC possui múltiplas paredes eles apresentam diferentes quiralidades em sua estrutura (HAN et al., 2015; IIJIMA, 1991; MEYYAPPAN, 2004; SIDDIQUE, MEHTA, 2014).

Figura 2-3 – Representação esquemática da estrutura do: (a) NTCPS, (b) NTCPM e (c) do grafeno.

Fonte: Zarbin e Oliveira, 2013.

Figura 2-4 – Os três NTC típicos que podem ser obtidos a partir do enrolamento da folha de grafeno em diferentes direções: *zigzag, armchair* e *chiral*.

Fonte: Meyyappan, 2004.

Na prática, as estruturas dos NTC não são perfeitas, pois elas apresentam defeitos topológicos e deformações. Os defeitos aparecem quando pentágonos ou heptágonos são encontrados na rede hexagonal da folha de grafeno substituindo um hexágono, ou podem ser resultantes da presença de impurezas. Os NTCPM são mais defeituosos do que os NTCPS e isso diminui as suas desejadas propriedades. Contudo, a adição controlada de diferentes materiais e partículas podem fazer com que esses defeitos resultem em importantes características para os NTC, como a funcionalização dos mesmos para melhorar a interação com a matriz cimentícia – devido à sua hidrofobia – e a melhora nas suas propriedades mecânicas e comportamento elétrico e térmico (LUDVIG, 2012; MEYYAPPAN, 2004).

2.2.3 Propriedades

O estudo dos materiais está relacionado à geração de conhecimento básico sobre a estrutura interna, propriedades e processamento de materiais. Também possui como objetivo, compreender a natureza dos mesmos, estabelecendo conceitos e teorias que permitam relacionar a sua estrutura com suas propriedades e comportamento (CARAM JÚNIOR, 2000). A compreensão dessas propriedades é fundamental para o entendimento de como o material pode ser aplicado, seja sozinho ou interagindo com outros materiais, buscando potencializar suas propriedades, quando matriz, ou as dos materiais com os quais interage, quando reforço. As propriedades atrativas dos NTC fazem com que eles sejam potenciais candidatos a serem utilizados numa ampla gama de aplicações, como, por exemplo, nos recipientes de hidrogênio, nos super condensadores, nos sensores moleculares e como materiais de reforço estrutural (WANG; HAN; LIU, 2013). De acordo com Han et al. (2015), os NTC possuem propriedades elétricas, térmicas e mecânicas notáveis, excelentes efeitos em escala nanométrica, baixa densidade e ótimas estabilidades química e térmica.

Em relação às propriedades mecânicas dos NTC, pode-se dizer que elas são bastante imperativas. A estrutura dos NTC é constituída da ligação sp² entre os carbonos e essa estrutura confere aos NTC ótima resistência à tração e módulo de elasticidade (SIDDIQUE; MEHTA, 2014; ZARBIN; OLIVEIRA, 2013). Segundo Siddique e Mehta (2014), os NTC são as fibras mais rígidas já conhecidas, possuindo um módulo de Young com valores na ordem do Terapascal (TPa) e um alongamento à falha entre 20% e 30%, que pode projetar uma resistência à tração com valores próximos a 100 Gigapascais (GPa). Por exemplo, após testar dezenove NCTPM, Yu et al. (2000) conseguiram obter resistências à tração entre 11-63 GPa e módulo de Young entre 270-950 GPa e Peng et al. (2008) ao investigar seis amostras de NTCPM obtiveram valores entre 35-110 GPa para resistências à tração e 590-1105 GPa para módulos de elasticidade. Para efeito de comparação, Siddique e Mehta (2014) citam que o aço de alta resistência possui módulo de Young por volta de 200 GPa e resistência à tração entre 1-2 GPa. Essa resistência está associada a uma rara propriedade de flexibilidade que concede aos NTC a capacidade de serem dobrados, tensionados e flexionados sob grandes tensões sem que haja destruição da sua estrutura (ZARBIN; OLIVEIRA, 2013).

Em seu trabalho de revisão sobre compósitos cimentícios multifuncionais estruturados com NTC, Han et al. (2015) investigaram algumas pesquisas e compilaram algumas propriedades representativas dos NTC, conforme pode ser observado na Tabela 2-1, a seguir.

	Nanotubos de carbono (NTC)						
Propriedade	NTCPM	NTCPS					
Módulo de Elasticidade (TPa)	0,3 – 1	1					
Resistência (GPa)	10 – 60	50 – 500					
Resistividade elétrica (Ωµcm)	5 – 50	Não fornecido					
Diâmetro (nm)	2 – 30	0,75 – 3					
Comprimento (µm)	0,1 – 50	1 – 50					
Área Superficial (m²/g)	> 400	Não fornecido					
Relação de Aspecto	~ 1000	Não fornecido					

Tabela 2-1 - Propriedades dos nanotubos de carbono

Fonte: Adaptado Han et al. (2015).

2.2.4 Síntese dos nanotubos de carbono

Atualmente, técnicas de síntese como o método de descarga por arco, ablação a laser e deposição química da fase vapor (DQV) têm sido empregadas para produzir NTC em quantidades consideráveis. Destes, o método DQV mostrouse como o mais promissor, devido a sua relação preço/unidade (SIDDIQUE; MEHTA, 2014).

Os NTC resultantes da síntese pelos métodos de descarga por arco e ablação a laser possuem a vantagem de ter uma qualidade estrutural melhor quando comparados com os que são produtos da técnica de deposição química da fase vapor. No entanto, as restrições operacionais desses dois métodos geram limitações para se produzir os NTC em grande escala. Por exemplo, são necessárias condições de vácuo para prevenir a formação de íons indesejados na alta temperatura utilizada na descarga por arco. Tais condições operacionais são difíceis e caras para se obter em escalas maiores que a escala laboratorial. Outro ponto a ser destacado é a substituição contínua do alvo e dos eletrodos de grafite devido aos diversos ciclos de produção, situação que impede a operação de forma contínua dos dois métodos. A produção de NTC utilizando-se dessas técnicas com certo teor de pureza torna necessária a realização de etapas de purificação do produto, visto que os NTC gerados contêm impurezas como fulerenos, carbono amorfo e partículas metálicas. Essas etapas de purificação podem causar defeitos nos NTC (OLIVEIRA, B. 2009). O método de deposição química da fase vapor demonstrou ser um método promissor para a produção em larga escala dos NTC. Com este método é possível sintetizar NTC com alta pureza utilizando uma técnica relativamente econômica. O método consiste na pirólise de hidrocarbonetos (precursor de carbono) sobre catalisadores de metal de transição apoiados num material estável a temperaturas entre 500-1000°C, conforme pode ser visto no esquema mostrado na Figura 2-5. Os NTC são gerados a partir da decomposição do hidrocarboneto. Normalmente, os hidrocarbonetos utilizados como fonte de carbono são o metano, acetileno, etileno e etanol, porém o monóxido de carbono ou hidrocarbonetos mais pesados podem ser uma alternativa. Os metais de transição mais utilizados são o cobalto, níquel, ferro ou uma combinação desses (LUDVIG, 2012; SIDDIQUE; MEHTA, 2014).

Figura 2-5 – Esquema do reator para a síntese de NTC em clínquer pelo processo de DQV.

Fonte: Souza et al. (2015).

Empregando o processo de deposição química da fase vapor, Ludvig (2012) investigou a aplicação do processo de síntese *in situ* de NTC/NFC utilizando como materiais de suporte o clínquer de cimento Portland e a sílica ativa. Além disso, como partículas catalisadoras utilizou o próprio teor de ferro contido nesses materiais ou adicionou resíduos da siderurgia, como a carepa de laminação de aço e o pó de aciaria. Como precursor de carbono utilizou o etileno ou o acetileno com auxílio de um gás de arraste (nitrogênio ou argônio). Todo o processo foi conduzido em um forno estacionário (Figura 2-6). A adição de resíduos siderúrgicos ao clínquer resultou no crescimento dos NTC/NFC com as melhores morfologias, enquanto que a utilização da sílica ativa como material de apoio resultou nas maiores quantidades produzidas. A síntese *in situ* dos NTC/NFC empregando o método DQV foi um sucesso, se afirmando como um processo menos complexo e mais barato do que as

sínteses de alta qualidade. Entre os seus resultados, destaca-se a obtenção do clínquer de cimento Porland nanoestruturado com NTC/NFC.

Figura 2-6 – Forno estacionário utilizado por Ludvig (2012).

Também baseado na técnica de deposição química da fase vapor, Souza, T. (2015) estudou um processo diferente de síntese de NTC diretamente sobre o clínquer, denominado síntese em sistema contínuo. Esse sistema se constitui num reator que possui: um silo para armazenar o insumo utilizado (clínquer mais catalisador), um forno elétrico, um tubo rotativo para conduzir os insumos durante o processo e um silo de armazenamento do produto final. A estrutura que compõe a produção ainda conta uma central que permite o controle dos gases precursores utilizados no processo, um sistema de exaustão dos gases após a síntese e um sistema de segurança que propicia uma atmosfera redutora e segura, conforme esquema ilustrativo apresentado na Figura 2-7 a seguir.

Figura 2-7 – Esquema ilustrativo com as principais partes do reator para o processo de síntese contínua.

Fonte: Souza, T. (2015).

Segundo Souza, T. (2015), na Figura 2-7, os itens numerados referem-se a:

- 1. Central de gases;
- Tubulação de condução dos gases até o ponto de alimentação do reator;
- 3. Silo para armazenar o clínquer e o catalisador;
- 4. Motor com controle de rotação e sistema parafuso condutor de pó;
- 5. Forno elétrico com controle de temperatura;
- 6. Tubo de quartzo para condução do clínquer;
- Silo para armazenamento e coleta do material produzido (clínquer nanoestruturado);
- 8. Motor com controle de rotação que gira o tubo de quartzo;
- 9. Sistema de exaustão dos gases após o processo.

Em sua investigação, Souza, T. (2015) utilizou como gases precursores o acetileno e o argônio, uma temperatura de síntese entre 600-750°C e o ferro como catalisador. O autor concluiu que os resultados da síntese contínua de NTC sobre o clínquer de cimento Portland apresentou potencial e viabilidade para que o produto final seja produzido em escala industrial. A Figura 2-8 a seguir apresenta o clínquer nanoestruturado com NTC obtido por Souza, T. (2015).

Figura 2-8 – Imagens do clínquer com NTC obtidas pela microscopia eletrônica de varredura: (a) partícula de clínquer com NTC dispersos sobre a superfície e (b) partícula de clínquer com NTC dispersos uniformemente nas pontas.

Fonte: Souza, T. (2015).
A diferença básica dos trabalhos desenvolvidos por Ludvig (2012) e Souza, T. (2015) está no reator utilizado. No primeiro, fez-se uso de um reator estático para acomodar o clínquer utilizado, resultando num processo manual de fabricação. No segundo fez-se uso de uma aparelhagem que permite uma alimentação automatizada do tubo rotativo, o qual conduz o material pela zona de síntese dentro do forno elétrico e depois para o silo de armazenamento. Ressalta-se, também, que dentro de um mesmo período de tempo a quantidade de clínquer nanoestruturado produzido pelo sistema contínuo é maior que a quantidade produzida pelo sistema com forno estacionário.

2.2.5 Aplicações

Atualmente, a busca pela literatura que aborda os nanotubos de carbono evidencia o potencial e a ampla variedade de aplicações do produto. Os NTC podem ser aplicados em diversas áreas, tais como o setor energético, a medicina, o meio ambiente, a eletrônica e as engenharias.

Em seu artigo, Zarbin e Oliveira (2013) levantaram algumas aplicações dos NTC em diversas áreas. Por exemplo, a utilização de NTCPM permite o aumento do da condutividade elétrica e da resistência mecânica em baterias de íons-lítio, muito utilizadas em notebooks e celulares, aumentando o ciclo de vida das mesmas. Os NTC podem ser utilizados na preparação de eletrodos transparentes condutores que serão empregados na produção de *touchscreens*, *LED*'s e células solares flexíveis. Também podem ser empregados nos filtros e membranas utilizados em processos de purificação e descontaminação de águas.

Conforme mencionado no item 2.2.3, os nanotubos de carbono possuem propriedades mecânicas notáveis e muito imperativas. Em relação a esse ótimo comportamento mecânico, Siddique e Mehta (2014) destacam que a mais importante aplicação dos NTC será na sua utilização para reforçar os materiais compósitos. Por exemplo, uma das maiores possibilidades de aplicação dos NTCPM se encontra na sua inserção em matrizes poliméricas, propiciando aumento de resistência mecânica e química, condutividade elétrica e propriedades térmicas (ZARBIN; OLIVEIRA, 2013).

Os NTC também possuem um ótimo potencial de aplicações em matrizes cimentícias, atuando como um nanoreforço. Alguns pesquisadores mostraram que os NTC podem preencher os vazios que ocorrem durante o processo de produção desses materiais, pois a sua inserção na fabricação do material cimentício pode inibir a propagação das trincas que são causadas pela entrada de água nesses vazios. Devido às suas excelentes propriedades intrínsecas e o seu potencial de combinação com outros materiais, a aplicação dos NTC pode melhorar as propriedades mecânicas, funcionais e a durabilidade dos compósitos cimentícios (HAN et al., 2015).

2.3 COMPÓSITOS DE CIMENTO NANOESTRUTURADOS

É importante ressaltar que os NTC se aglomeram com facilidade devido à sua alta energia superficial específica. Por isso, são necessários métodos efetivos para dispersar os NTC nas matrizes cimentícias, objetivando aproveitar ao máximo o efeito que os NTC podem gerar nessas matrizes. Para resolver esses desafios, alguns pesquisadores realizaram muitos estudos e obtiveram métodos eficazes, como a dispersão física (incluindo dispersão de alta velocidade e ultrassônica), a dispersão química (alterando a superfície dos NTC abordando modificações covalentes ou não-covalentes) e a combinação entre os dois métodos. Contudo, esses métodos possuem desvantagens como o alto consumo de energia e a diminuição da razão de aspecto dos NTC. Atualmente, uma abordagem para dispersar de maneira mais eficiente os NTC em matrizes de cimento é o crescimento *in situ* dos NTC em partículas de cimento ou de adições minerais (SUN et al., 2015), conforme exemplificado no item 2.2.4, através de uma síntese dos NTC sobre o clínquer de cimento Portland.

Devido às excelentes propriedades mecânicas dos NTC, algumas tentativas de incorporação desse material em matrizes cimentícias foram realizadas, objetivando avaliar as propriedades mecânicas dos compósitos cimentícios gerados. Nos subitens a seguir algumas propriedades mecânicas que já foram investigadas serão apresentadas. Cada propriedade será apresentada considerando-se dois tipos de dispersão dos nanomateriais nas matrizes cimentícias: os compósitos resultantes das misturas físicas e os resultantes das sínteses *in situ*.

2.3.1 Resistência à compressão

Uma das propriedades mecânicas avaliadas foi a resistência à compressão, que é a capacidade de um material ou estrutura de suportar carregamentos. Geralmente, a resistência à compressão é obtida experimentalmente aplicando-se um teste de compressão no qual um carregamento uniaxial é aplicado sobre o corpo de prova até a sua falha e a máxima resistência à compressão desse corpo de prova é o valor atingido quando ele falha completamente (SIDDIQUE; MEHTA, 2014).

2.3.1.1 Mistura física

Danoglidis et al. (2016) investigaram a resistência à compressão aos 28 dias de uma argamassa de referência e de quatro argamassas reforçadas com NTCPM. As incorporações de NTCPM em relação ao peso do cimento foram de 0,08%, 0,10%, 0,30% e 0,50%. Os pesquisadores observaram que houve um pequeno ganho de resistência à compressão – variando de 6,0% a 11,0% - em relação à argamassa de referência, no qual o maior ganho foi obtido através da incorporação de 0,50% de NTC à matriz cimentícia.

Hu et al. (2014) avaliaram a resistência a compressão de pastas de cimento nanoestruturadas com 0,10% e 0,05% de NTCPM em relação ao peso do cimento. Ao compararem os resultados obtidos aos 28 dias de idade entre a pasta de cimento de referência e as pastas de cimento nanoestruturadas verificaram que não ocorreram acréscimos significativos na resistência à compressão.

2.3.1.2 Síntese in situ

Ludvig (2012) analisou a resistência à compressão de argamassas produzidas utilizando o clínquer nanoestruturado com NTC/NFC em um teor de 0,30% em relação ao peso do cimento. O autor realizou os ensaios de compressão aos 28 dias de idade e os corpos de prova eram cúbicos (40 x 40 x 40 mm³). Segundo o pesquisador, as argamassas nanoestruturadas apresentaram um ganho de 43,0% na resistência à compressão em relação às argamassas de referência.

Paula (2014) investigou a resistência à compressão de pastas de cimento Classe G nanoestruturadas aos 7 e aos 28 dias de idade, utilizando corpos de prova cilíndricos de 25,4 mm de diâmetro e 50,8 mm de altura. A pesquisadora produziu pastas de cimento com 0,10% e 0,30% de NTC inteiros e picotados, além das pastas de cimento referência. Aos 7 dias de idade as pastas com 0,10% de NTC inteiros alcançaram o melhor resultado, registrando ganho de 8%. Aos 28 dias de idade as pastas com 0,10% de NTC picotados registraram o maior ganho, sendo este de 23%.

Souza, T. (2015) investigou a resistência à compressão de pastas de cimento nanoestruturadas com teores de 0,10% e 0,30% de NTC em relação ao peso do cimento. As amostras foram cilíndricas e possuíam 26 mm de diâmetro e 51 mm de altura. Os ensaios realizados aos 28 dias de idade mostraram que as pastas de cimento apresentaram ganhos de 13,7% (para 0,1% de NTC) e 12,5% (para 0,3% de NTC).

2.3.2 Resistência à tração na flexão

De acordo com Siddique e Mehta (2014), a resistência à tração na flexão é um parâmetro mecânico para materiais frágeis e se define como a capacidade do material de resistir às deformações quando submetido a carregamentos. Quando um objeto formado por um material é curvado, ele experimenta uma série de tensões em toda a sua profundidade. A maioria dos materiais submetidos a esse tipo de situação falha por tensões de tração antes de falharem por tensões de compressão. Comumente utiliza-se a denominação de resistência à flexão também, a qual representa o valor máximo de tensão de tração que pode ser mantido antes do material falhar.

2.3.2.1 Mistura física

Danoglidis et al. (2016) utilizaram o teste de flexão em três pontos para avaliar a resistência à tração na flexão de amostras de argamassas nanoestruturadas com NTCPM. Os ensaios foram realizados em cinco tipos de amostras diferentes, das quais quatro amostras foram reforçadas, variando-se a quantidade de NTCPM em 0,08%, 0,10%, 0,30% e 0,50% em relação ao peso do cimento, e uma amostra de referência foi produzida sem reforço. As argamassas nanoestruturadas apresentaram uma resistência à flexão maior do que a argamassa de referência em todas as três idades consideradas (3, 7 e 28 dias). Aos 28 dias, os maiores ganhos de resistência à flexão ocorreram com os menores acréscimos de NTCPM, sendo 73,0% para a amostra com 0,08% e 87,0% para a amostra com 0,10%.

Konsta-Gdoutos et al. (2010) investigaram a resistência à flexão de pastas de cimento reforçadas com dois NTCPM diferentes, os curtos e os longos, em diversos teores de adição em relação ao peso do cimento. Os corpos de prova prismáticos e entalhados foram submetidos ao ensaio de flexão em três pontos nas idades de 3, 7 e 28 dias. Para os NTCPM longos, utilizaram uma pasta de cimento referência, e três teores de adição em relação ao peso do cimento: 0,025%, 0,048% e 0,080%. Para os curtos, utilizaram a pasta de cimento referência e três teores de adição também: 0,048%, 0,080% e 0,100%. Em todos os casos, as amostras reforçadas apresentaram um comportamento mecânico melhor que a pasta de cimento referência, sendo que as pastas com 0,080% de NTCPM curtos e as pastas com 0,025% e 0,048% de NTCPM longos apresentaram os melhores comportamentos mecânicos aos 28 dias de idade.

2.3.2.2 Síntese in situ

Ludvig (2012) investigou a resistência à tração na flexão de argamassas de cimento nanoestruturado com NTC/NFC em um teor 0,30% em relação ao peso do cimento. As formulações utilizadas se diferenciavam em relação aos aditivos utilizados, objetivando analisar a influência dos mesmos nas argamassas. Os corpos de provas possuíam 25x25x150 mm³ como dimensões e foram ensaiados aos 7 e 28 dias de idade no teste de flexão em três pontos. As argamassas com os melhores resultados possuíam o lignosulfonato como aditivo e apresentaram ganhos de 15% na resistência à tração aos 28 dias de idade.

Apesar de Paula (2014) e Souza, T. (2015) terem avaliado a resistência à tração de pastas de cimento nanoestruturadas com NTC a partir do ensaio de tração por compressão diametral, suas investigações foram incluídas nesse item porque as pastas foram fabricadas com clínquer nanoestruturado a partir da síntese *in situ* e, portanto, fornecem informação de relevância acerca da influência dos NTC na resistência à tração das pastas de cimento.

Paula (2014) investigou pastas de cimento produzidas com clínquer nanoestruturado e cimento de Classe G utilizando teores de adição de 0,10% e

0,30% de dois tipos de NTC, os inteiros e os picotados. Aplicando o ensaio de tração por compressão diametral aos 7 e aos 28 dias de idade, a pesquisadora verificou que todas as pastas de cimento nanoestruturadas apresentaram ganhos de resistência à tração em relação à pasta de cimento referência. Aos 7 dias de idade o maior ganho foi de 31% para a pasta cimento contendo 0,10% de NTC picotados e aos 28 dias o maior ganho foi de 65% para a pasta de cimento contendo 0,10% de NTC picotados e NTC inteiros.

Souza, T. (2015) utilizou teores de 0,10% e 0,30% de NTC em relação ao peso do cimento e uma pasta de refêrencia. Utilizando o ensaio de compressão diametral das amostras cilíndricas com idades de 7 e 28 dias, o pesquisador verificou ganhos de 25,9% (para 0,10% de NTC) e 10,7% (para 0,30% de NTC) na resistência à tração.

2.3.3 Energia de fratura

Segundo Zhao et al. (2008), a energia de fratura é um parâmetro de fratura fundamental que representa a resistência à fissuração dos materiais cimentícios e que, geralmente, é considerada uma propriedade do material nas análises de mecânica da fratura do concreto. No entanto, Zhao et al. (2008) também destaca que há controvérsias do quanto (ou não) a energia de fratura é dependente do tamanho do corpo de prova.

2.3.3.1 Mistura física

Hu et al. (2014) investigaram a energia de fratura de pastas de cimento contendo 0,05% e 0,10% de NTCPM, em relação ao peso do cimento. Utilizando corpos de prova de 40 x 40 x 160 mm³ com entalhe, os pesquisadores concluíram que os corpos de prova tiveram, respectivamente, 21% e 26% de ganhos de energia de fratura aos 28 dias de idade em comparação à pasta referência.

Danoglidis et al. (2016), investigaram a energia de fratura de argamassas nanoestruturadas produzidas em corpos de prova de 20 x 20 x 80 mm³. Utilizando teores de adição de NTCPM de 0,08%, 0,10%, 0,30% e 0,50%, em relação ao peso do cimento, os pesquisadores observaram ganhos de 80%, 83%, 70% e 56% em relação à pasta referência, respectivamente.

Wang et al. (2013) investigaram a energia de fratura de corpos de prova de pastas de cimento nanoestruturadas com medidas de 40x40x160 mm³. As adições de NTCPM utilizadas pelos autores da investigação foram de 0,05%, 0,08%, 0,10%, 0,12% e 0,15% em relação ao peso do cimento. Aos 28 dias de idade, os pesquisadores constataram ganhos de 4,8%, 501%, 347%, 191% e 34%, em relação à pasta referência, respectivamente.

2.3.3.2 Síntese in situ

Em sua pesquisa experimental, Ludvig et al. (2015) investigaram a energia de fratura de pastas de cimento contendo 0,10% de nanotubos e nanofibras de carbono em relação ao peso do cimento. Após o ensaio de flexão em três pontos nos corpos de prova de 40x40x40mm³, os pesquisadores constataram que as pastas nanoestruturadas tiveram um ganho de 34% em relação às pastas sem adição de nanomateriais.

A Tabela 2-2 e a Tabela 2-3 apresentam, de maneira sucinta, as informações supracitadas e outras extraídas das mesmas fontes durante a leitura do estado da arte. A primeira tabela diz respeito aos trabalhos envolvendo os compósitos cimentícios gerados a partir da mistura física e a segunda tabela os compósitos gerados a partir da síntese *in situ*.

Pesquisadores	Teores de	Diâmetro dos NTC	Compriment N o dos NTC Cir	Material I Cimentício c Ensaiado pi	Idade dos corpos de prova (dias)	Ganhos obtidos (%) em relação às amostras de referência			
	NTC (%)	(nm)	(μm)			Resistência à Tração	Energia de Fratura	Tenacidade à Fratura	Resistência à Compressão
Danoglidis et al. (2016)	0,08 - 0,50	20 – 45	≥10	Argamassa	28 dias	46 – 73%	56 – 83%	-	6 – 11%
Hu et al. (2014)	0,05 e 0,10	10 – 20	20 – 30	Pasta	28 dias	-	21 e 26%	6 e 9%	Sem ganho
Konsta-Gdoutos et al. (2010)	0,048 – 0,10	20 – 40	10 – 30	Pasta	7 dias	19 – 35%	-	-	-
Konsta-Gdoutos et al. (2010)	0,048 – 0,10	20 – 40	10 – 30	Pasta	28 dias	17 – 37%	-	-	-
Konsta-Gdoutos et al. (2010)	0,048 – 0,10	20 – 40	10 – 100	Pasta	7 dias	8 – 24%	-	-	-
Konsta-Gdoutos et al. (2010)	0,048 – 0,10	20 – 40	10 – 100	Pasta	28 dias	9 – 25%	-	-	-
Wang et al. (2013)	0,05 – 0,15	20 – 40	5 – 15	Pasta	28 dias	-	4 – 501%	-	-

Tabela 2-2 – Ganhos de propriedades mecânicas, em relação às amostras de referência, dos compósitos obtidos a partir da mistura física dos nanotubos de carbono na matriz cimentícia.

Fonte: Elaborado pelo autor, 2018, através das informações extraídas dos trabalhos lidos e citados neste item.

Pesquisadores	Teores de	Diâmetro dos NTC	Compriment o dos NTC	Material Cimentício	Ganhos obtidos (%) em relação às amo Idade dos referência		mostras de		
	NTC (%)	(nm)	(µm)	Ensaiado	prova (dias)	Resistência à Tração	Energia de Fratura	Tenacidade à Fratura	Resistência à Compressão
Ludvig (2012)	0,30	80 – 120	~10	Argamassa	28 dias	15%	-	-	43%
Ludvig et al. (2015)	0,10	Não fornecido	Não fornecido	Pasta	28 dias	-	34%	6%	-
Paula (2014)	0,10	50 - 80	Não fornecido	Pasta	7 dias	28 e 31%*	-	-	2 e 8%
Paula (2014)	0,10	50 – 80	Não fornecido	Pasta	28 dias	56 e 65%*	-	-	16 e 23%
Paula (2014)	0,30	50 – 80	Não fornecido	Pasta	7 dias	17 e 21%*	-	-	-
Paula (2014)	0,30	50 – 80	Não fornecido	Pasta	28 dias	45 e 55%*	-	-	16 e 20%
Souza, T. (2015)	0,10	21 – 45	Não fornecido	Pasta	7 dias	25,9%*	-	-	13,7%
Souza, T. (2015)	0,30	21 – 45	Não fornecido	Pasta	28 dias	10,7%*	-	-	12,5%

Tabela 2-3 – Ganhos de propriedades mecânicas, em relação às amostras de referência, dos compósitos obtidos a partir da síntese *in situ* de nanotubos e nanofibras de carbono sobre o clínquer de cimento Portland.

Fonte: Elaborado pelo autor, 2018, através das informações extraídas dos trabalhos lidos e citados neste item.

Nota: *ensaio de compressão diametral.

2.4 COMPORTAMENTOS MECÂNICOS NA FRATURA

A fratura simples pode ser definida como a separação de um corpo em duas ou mais partes em resposta à aplicação de uma tensão de natureza estática, isto é, que é constante ou que possui uma variação lenta ao longo do tempo. A tensão aplicada pode ser proveniente da tração, compressão, cisalhamento ou torção. Para os materiais de engenharia, são possíveis dois tipos de fratura, a dúctil e a frágil, as quais envolvem a formação e a propagação de trincas. Na fratura dúctil existirá uma evidência de deformação plástica generalizada na superfície da fratura, com trincas estáveis e uma fratura não catastrófica. No caso das fraturas frágeis, não há nenhuma deformação apreciável e as trincas se propagam rapidamente (CALLISTER, 2008). A fratura frágil é uma característica dos materiais cerâmicos e limitam a sua aplicabilidade devido à fratura catastrófica que pode ocorrer, a qual é resultante da sua baixa capacidade de absorção de energia.

De acordo com Callister (2008), as resistências às fraturas que são medidas para a maioria dos materiais considerados frágeis são expressivamente menores do que as resistências teóricas calculadas com base nas energias de ligações atômicas. Para o autor, essa discrepância entre os valores é explicada em fundão dos defeitos ou trincas microscópicas que sempre existem em condições normais na superfície e no interior do corpo dos materiais, os quais representam um fator negativo para a resistência à fratura, pois propiciam o aumento ou concentração de uma tensão aplicada nas suas extremidades.

A análise da falha de materiais estruturais com defeitos preexistentes é denominada mecânica da fratura. Essa área de estudo permite a quantificação das relações entre as propriedades dos materiais, o nível de tensão, a presença de defeitos geradores de trinca e os mecanismos de propagação de trincas (CALLISTER, 2008; SHACKELFORD, 2010).

2.4.1 O ensaio de flexão em três pontos para o cálculo das propriedades mecânicas de fratura

Geralmente, o comportamento tensão-deformação dos materiais frágeis não é avaliado a partir de um ensaio de tração cuja carga é aplicada de modo axial ao longo do eixo maior do corpo de prova. Dessa forma, é empregado um ensaio de flexão transversal, no qual o corpo de prova na forma de prisma ou cilindro é flexionado até a fratura, utilizando um método de carregamento de três ou quatro pontos (CALLISTER, 2008). Na Figura 2-9 apresenta-se um desenho esquemático do ensaio de flexão em três pontos. Nesse ensaio, a superfície superior do corpo de prova está submetida a um estado de compressão, enquanto a superfície inferior está submetida a um estado de tração. Como os limites de resistência à tração dos materiais cerâmicos são muito inferiores aos limites de resistência à compressão e o ponto de fratura está localizado na face do corpo de prova que está submetida à tração, o ensaio de flexão se caracteriza como um substituto razoável para o ensaio de tração comum (CALLISTER, 2008; SHACKELFORD, 2010).

Figura 2-9 – Desenho esquemático de um ensaio de flexão em três pontos, no qual uma força F é aplicada no centro do corpo de prova prismático que está sobre dois apoios.

Fonte: Adaptado Callister (2008).

As propriedades mecânicas discutidas para os metais são igualmente importantes para as cerâmicas que são utilizadas em aplicações estruturais. Assim sendo, a partir da realização do ensaio de flexão em três pontos, pode-se avaliar, entre outras propriedades, a resistência à flexão, a tenacidade à fratura e a energia de fratura.

2.4.1.1 Resistência à flexão

De acordo com Callister (2008) e Shackelford (2010), ao empregar o ensaio de flexão em três pontos sobre um corpo de prova, a tensão no momento de fratura é chamada de resistência à flexão, módulo de ruptura, resistência à fratura, ou resistência à tração na flexão. Essa tensão se caracteriza como um parâmetro mecânico importante para os materiais cerâmicos frágeis e pode ser calculada aplicando a seguinte expressão:

$$\sigma = \frac{Mc}{I} \tag{2.1}$$

Onde:

 σ = tensão;

M = momento fletor máximo;

c = distância do centro do corpo de prova até as fibras mais externas;

I = momento de inércia da seção transversal.

Entretanto, considerando o caso específico de um prisma, o qual possui seção transversal retangular, sendo submetido ao ensaio de flexão em três pontos, a resistência à flexão é igual a:

$$\sigma_f = \frac{3P_{max}L}{2bh^2} \tag{2.2}^1$$

Onde:

 σ_f = resistência à flexão;

P = força máxima no momento da fratura;

L = vão útil no ensaio;

b = base da seção transversal;

h = altura da seção transversal.

Contudo, ressalta-se que, se o ensaio de flexão em três pontos é aplicado a um corpo de prova em forma de prisma no qual um entalhe foi realizado no meio do seu vão útil, a expressão 2.2 acima é alterada no denominador, ficando da seguinte forma:

$$\sigma_f = \frac{3P_{m\acute{a}x}L}{2b(h-a)^2} \tag{2.3}^2$$

Onde:

P = força máxima no momento da fratura;

L = vão útil no ensaio;

b = base da seção transversal;

h = altura da seção transversal;

¹ Callister (2008) e Shackelford (2010).

² Danoglidis et al. (2016).

a = altura do entalhe.

2.4.1.2 Tenacidade à fratura

Segundo Shackelford (2010), a tenacidade à fratura é o parâmetro mais utilizado pela mecânica da fratura e representa um fator de concentração de tensões que possui um valor crítico no qual uma trinca presente no material pode produzir uma falha catastrófica quando este material é submetido a um carregamento uniaxial. Para Callister (2008), a tenacidade à fratura é uma propriedade mecânica que mede a resistência de um material a uma fratura frágil quando uma trinca está presente.

A tenacidade à fratura é representada pelo símbolo K_{IC} . O índice subscrito *I*, isto é, o numero romano um, indica que, neste caso, a tenacidade à fratura se aplica ao modo I de deslocamento de trincas, conforme ilustrado na Figura 2-10. Este modo de fratura pode ser obtido para corpos de prova prismáticos quando se aplica o ensaio de flexão em três pontos para essas amostras. Já o índice subscrito *C* representa o conceito de crítico. Geralmente, a expressão abaixo é a utilizada para calcular a tenacidade à fratura. Ressalta-se que a tenacidade à fratura não possui uma unidade muito usual, sendo frequentemente, utilizada a unidade de $MPa\sqrt{m}$. (CALLISTER, 2008; SHACKELFORD, 2010).

$$K_{IC} = Y \sigma_f \sqrt{\pi a} \tag{2.4}^3$$

Onde:

Y = fator geométrico adimensional que depende tanto do tamanho quanto da geometria da trinca e da amostra;

 $\sigma_{\rm f}$ = tensão aplicada no momento da fratura;

a = comprimento de uma trinca superficial ou a metade do comprimento de uma trinca interna (Figura 2-11).

⁴⁷

³ Callister (2008) e Shackelford (2010).

Figura 2-10 – Modos de deslocamento de trincas. Da esquerda para a direita: Modo I – de tração; Modo II – de deslizamento; Modo III – de rasgamento.

Fonte: <http://slideplayer.com.br/slide/3275507/>. Acesso em: Janeiro de 2018.

Figura 2-11 – Demonstração das situações de trincas que podem ser abordadas na equação de tenacidade à fratura. Na placa da esquerda considera-se a metade do comprimento da trinca interna e na placa da direita considera-se o comprimento total da trinca superficial.

Fonte: <http://sites.poli.usp.br/d/pmr2202/arquivos/aulas/PMR2202-AULA%20E2.PDF>. Acesso em Janeiro de 2018.

Callister (2008) e Shackelford (2010) destacam a importância em se conhecer os valores de tenacidade à fratura dos materiais definindo-a como uma propriedade fundamental no estudo da mecânica da fratura dos materiais. Por exemplo, supondo-se que o valor do fator geométrico adimensional tenha sido calculado, a tenacidade à fratura, a tensão imposta ao material e o tamanho do defeito são as três variáveis que devem ser consideradas em relação à possibilidade de fratura de um componente estrutural. Portanto, ao se restringir, por exemplo, a tenacidade à fratura e magnitude do defeito, pode-se calcular a tensão crítica no projeto. Como segunda possibilidade, pode-se restringir a tenacidade à fratura e o nível de tensão e, então, o tamanho máximo admissível para um defeito no componente estrutural pode ser calculado.

2.4.1.3 Energia de Fratura

Para Danoglidis et al. (2016), a energia de fratura representa a quantidade de energia requerida pelos materiais cimentícios para que eles falhem. De acordo com RILEM 50-FMC (1985), a energia de fratura do concreto pode ser calculada através da obtenção da área abaixo da curva carga-deslocamento Figura 2-12 que é obtida no ensaio de flexão em três pontos e da aplicação da seguinte equação:

$$G_f = \frac{W_0 + mg\delta_0}{b(h-a)} \tag{2.5}^4$$

Onde:

 G_f = Energia de fratura;

 W_0 = área abaixo da curva carga-deslocamento;

 $m = m_1 + m_2$, onde m₁ é massa do corpo de prova entre os suportes e m₂ é a massa da parte do dispositivo de carregamento que não está conectado à máquina e que segue o corpo de prova durante a falha;

g = aceleração da gravidade;

 δ_0 = deslocamento no ponto final de falha do corpo de prova;

b = base da seção transversal;

h = altura da seção transversal;

a = altura do entalhe.

Figura 2-12 – Indicação da área abaixo da curva carga-deslocamento obtida no ensaio de flexão em três pontos.

Fonte: RILEM 50-FMC (1985).

⁴ RILEM 50-FMC (1985)

2.5 MÉTODO DE CORRELAÇÃO DIGITAL DE IMAGEM (CDI)

A utilização do método de Correlação Digital de Imagem (CDI) para determinar a superfície de deformação de amostras ensaiadas começou a partir dos anos 80, sendo desenvolvida por um grupo de pesquisa da Universidade da Carolina do Sul, nos Estados Unidos. Desde então, a técnica tem sido aperfeiçoada por muitos pesquisadores que buscam melhorar a resolução e a precisão do método (PAN et al, 2009; YONEYAMA; MURASAWA, 2009).

Pode-se definir o sistema de CDI como uma técnica de medição de deformações baseada em um processamento de imagens digitais e computação numérica. Essa medição ocorre ao se comparar as imagens digitais da superfície da amostra no estado não-deformado com as do estado deformado (PAN et al, 2008; PAN et al, 2009; YONEYAMA; MURASAWA, 2009).

De acordo com Pan et al. (2009) e Yoneyama e Murasawa (2009), a implementação do método de CDI compreende três etapas em sequência: (a) preparação das amostras e do experimento; (b) captura e gravação das imagens da superfície plana da amostra durante o ensaio; e (c) processamento das imagens capturadas usando um *software* para obter as informações de deslocamento e deformações desejadas.

A Figura 2-13 apresenta uma ilustração esquemática de uma típica configuração experimental usando um dispositivo de imagem ótica para aplicação do método de CDI. As imagens da superfície plana do objeto em observação são capturadas pela câmera durante o ensaio. Em seguida, as imagens são adicionadas ao *software* responsável pela correlação das imagens para detectar os deslocamentos ocasionados na superfície após os carregamentos. Essa detecção ocorre através da busca por pontos coincidentes que, possivelmente, trocaram de posição de uma imagem para a outra. Como é praticamente impossível procurar pontos coincidentes usando um único pixel, define-se uma área com múltiplos pixels para executar esse processo de busca. Esses pequenos subconjuntos de pixels são distinguidos de uma imagem para a outra através da aplicação de um padrão aleatório em nível de cinza na superfície em análise, conforme pode ser visto na Figura 2-14. Uma vez que a localização desse subconjunto na imagem deformada é

encontrada, seu deslocamento é determinado pelo *software*, conforme ilustra a Figura 2-15 (PAN et al., 2009; YONEYAMA; MURASAWA, 2009).

Figura 2-13 – Sistema típico de captura de imagens para utilização do método de CDI.

Figura 2-14 – Exemplos de padrão aleatório em nível de cinza para superfícies que serão analisadas pelo método de CDI.

Fonte: Fotografia produzida pelo autor (2018).

Fonte: Pan et al. (2009).

Figura 2-15 – Ilustração da detecção de subconjuntos de pixels coincidentes para cálculo do deslocamento.

Fonte: Yoneyama e Murasawa (2009).

Nota: À esquerda (imagem antes da deformação): subconjunto de pixels selecionado. À direita (imagem depois da deformação): subconjunto de pixels selecionado na imagem anterior encontrado em outra posição na superfície e indicação do vetor deslocamento.

3 MATERIAIS E MÉTODOS

Este estudo consiste numa pesquisa de natureza aplicada, com abordagem quantitativa e objetivo explicativo, no qual se adota procedimentos técnicos bibliográficos e experimentais para o desenvolvimento do trabalho (SILVA; MENEZES, 2005; KAUARK et al., 2010).

A metodologia de trabalho pode ser dividida em quatro etapas principais. A primeira etapa abrange a definição dos materiais que serão utilizados, as formulações e os procedimentos para a produção das pastas de cimento que serão fabricadas. A segunda etapa compreende a realização do ensaio de flexão em três pontos. A terceira etapa envolve a obtenção e o tratamento dos dados para calcular as propriedades mecânicas de fratura e a última etapa abrange o cálculo dessas propriedades. Essas etapas estão descritas detalhadamente nos itens a seguir.

3.1 MATERIAIS

O objeto de estudo dessa pesquisa experimental são pastas de cimento Portland produzidas com nanotubos e nanofibras de carbono. Os materiais que compõem as pastas nanoestruturadas estão descritos abaixo.

3.1.1 Composição da pasta

3.1.1.1 Cimento Portland CPV-ARI

O cimento Portland CPV-ARI (CPV) é regulamentado pela norma brasileira NBR 5733 (1991), a qual apresenta que o teor de clínquer mais sulfatos de cálcio varia de 100-95% do total de massa do cimento produzido. Observa-se que nesse tipo de cimento não há adição de materiais pozolânicos ou escória, por exemplo. Portanto, trata-se de um cimento Portland mais puro, isto é, composto por clínquer em quase toda a sua totalidade.

O CPV utilizado nessa investigação experimental foi fornecido pela empresa InterCement® (unidade de Pedro Leopoldo-MG), a qual forneceu a porcentagem de óxidos presentes na amostra do material, conforme Tabela 3-1.

Óxidos	Quantidade (%)
SiO ₂	19,9
AI_2O_3	4,78
Fe_2O_3	2,72
CaO Livre	63,0
MgO	3,09
SO_3	3,2
K ₂ O	0,77
Na ₂ O	0,08
Fonte:	nterCement®

Tabela 3-1 – Valores aproximados de óxidos na amostra do cimento utilizado.

3.1.1.2 Clínquer nanoestruturado

O clínquer nanoestruturado foi produzido e fornecido pelo CTNano®, que se trata de um centro de tecnologia integrado à Universidade Federal de Minas Gerais (UFMG) que se destaca pela excelência em pesquisas aplicadas na área de materiais.

O processo de produção utilizado pelo laboratório para a obtenção do clínquer nanoestruturado foi a síntese *in situ* continua, no qual o crescimento dos NTC/NFC acontece diretamente sobre o clínquer de cimento Portland, conforme apresentado no item 2.2.4 por meio do trabalho de Souza, T. (2015). A Figura 3-1 apresenta o clínquer nanoestruturado utilizado na pesquisa.

Figura 3-1 – Clínquer nanoestruturado utilizado na pesquisa.

Fonte: Fotografia realizada pelo autor (2018).

Para realizar a adição do clínquer nanoestruturado no cimento Portland foi necessário conhecer o rendimento de NTC/NFC no produto. Essa informação foi obtida através da análise termogravimétrica (Figura 3-2) e da ficha de especificação técnica fornecida pelo CTNano®. O rendimento de nanomateriais no clínquer nanoestruturado utilizado foi de 24%. No entanto, como o rendimento específico dos NTC/NFC é de aproximadamente 80%, cerca de 19±2% correspondiam aos NTC/NFC e 5±2% às outras estruturas de carbono.

Nessa investigação foi adotado o valor de 18% para o rendimento de NTC/NFC no clínquer nanoestruturado, isto é, em 100 g de clínquer nanoestruturado 76 g são de clínquer puro, 18 g são de NTC/NFC e 6 g de outras estruturas de carbono.

Os NTC/NFC crescidos sobre o clínquer de cimento Portland possuem diâmetros que estão entre 18 e 35 nm, sendo que a média é de 25 nm. A microscopia eletrônica de varredura (MEV) fornecida pelo CTNano® evidencia a homogeneidade na dispersão dos NTC/NFC sobre a partícula de clínquer, recobrindo toda a superfície das partículas, conforme a Figura 3-3 abaixo.

Figura 3-2 – Análise Termogravimétrica do clínquer nanoestruturado utilizado.

Fonte: CTNano®

Figura 3-3 – Imagem de uma amostra do clínquer nanoestruturado, utilizado na pesquisa, obtida por MEV. Nessa imagem constata-se a partícula de clínquer recoberta com NTC de modo homogêneo.

Fonte: CTNano®

3.1.1.3 Aditivos

Para a fabricação das pastas de cimento nanoestruturadas foram utilizados três tipos de aditivos comerciais produzidos e fornecidos pela Grace®, os quais estão descritos abaixo de acordo com os manuais da empresa. Esses aditivos e seus teores de adição foram escolhidos seguindo-se as orientações do grupo de pesquisa do CEFET-MG, pois este grupo já trabalhara com os mesmos aditivos em pastas de cimento nanoestruturadas e obtivera bons resultados quanto à reologia das pastas e à dispersão dos nanomateriais de carbono na mesma.

- TEC-MULT 829 SPX: aditivo plastificante polifuncional que propicia uma dispersão de alta eficácia e uma prolongada manutenção do abatimento do composto cimentício mesmo às altas temperaturas;
- ADVA CAST 525: aditivo superplastificante que permite a redução da quantidade de água das misturas com altíssima eficiência;
- DENSIL 10: aditivo desincorporador de ar que possui um excelente poder de redução do teor de ar incorporado ao composto cimentício.

3.1.1.4 Água

A água utilizada durante a pesquisa foi a fornecida diretamente pela empresa responsável pela concessão em Belo Horizonte/MG, local no qual o trabalho foi realizado.

3.1.2 Formulações das pastas de cimento nanoestruturadas

Para elaborar as formulações foram considerados alguns aspectos, tais como os teores de adição de NTC/NFC e aditivos nas pastas de cimento, o fator água/cimento, os tipos de corpos de prova, a idade dos corpos de prova para ensaio e a quantidade de corpos de prova por idade que foram ensaiados. Esses aspectos estão explicados nos itens a seguir.

3.1.2.1 Dosagem das pastas de cimento

A dosagem determina a proporção de massa entre os materiais necessários para fabricar as pastas de cimento. As pastas de cimento utilizadas nesse trabalho experimental foram fabricadas com CPV, aditivos, clínquer nanoestruturado e água, conforme apresentado no item 3.1.1. Como o CPV é o principal composto da pasta cimentícia, os outros materiais foram adicionados em relação ao seu peso, como pode ser visto na Tabela 3-2 abaixo. Foi determinado que apenas a proporção de adição de NTC/NFC seria variável, isto é, as proporções de aditivos e água em relação ao peso do cimento seriam as mesmas. Todos os materiais foram pesados em uma balança eletrônica com resolução de 0,01 g.

Foram utilizados três teores de adição de NTC/NFC nas pastas de cimento e foram produzidas pastas de cimento referência, isto é, sem a adição de NTC/NFC. Os teores de adição de NTC/NFC nas pastas de cimento foram de 0,10%, 0,20% e 0,30% em relação ao peso do cimento.

Conforme explicado no item 3.1.1.2, os NTC/NFC constituem o clínquer nanoestruturado em um rendimento de 18%, sendo ainda 6% de outras estruturas de carbono e 76% de clínquer puro. Esse clínquer puro teve sua massa considerada no cálculo do cimento utilizado para fabricar as pastas, devido à composição do CPV abordada no item 3.1.1.1.

Para elucidar esse contexto, considere uma situação hipotética na qual uma batelada para fabricar pastas de cimento com adição de 0,1% de NTC/NFC deve conter 1000g de cimento no total. Portanto, é necessário adicionar 1g de NTC/NFC aos 1000g de cimento. Sabendo-se que o rendimento dos NTC/NFC no clínquer nanoestruturado é de 18%, chega-se a conclusão que são necessários 5,55g de clínquer nanoestruturado. Portanto, de acordo com os rendimentos acima mencionados, desses 5,55g de clínquer nanoestruturado, 1g corresponde aos NTC/NFC, 0,33g a outras estruturas de carbono e 4,22g ao clínquer puro. Por fim, considere esses 4,22g de clínquer puro como parte da massa de cimento a ser utilizada na batelada e adicione o restante para completar os 1000g iniciais desejados. Isto é, dos 1000g de cimento no total, 995,78g são provenientes do CPV fornecido pela InterCement® e 4,22g do clínquer nanoestruturado.

Conforme supracitado nesse item, os teores de adição dos aditivos utilizados para fabricar as pastas de cimento foram os mesmos para todas as moldagens. Em cada batelada realizada foram adicionados, em relação ao peso do cimento, 0,40% do TEC-MULT 829 SPX, 0,60% do ADVA CAST 525 e 0,10% do DENSIL 10.

Também inalterável entre as moldagens, o fator água/cimento de 0,3 foi utilizado para a fabricação das pastas de CP-NTC/NFC. Assim como os teores de aditivos, a relação água/cimento de 0,3 foi utilizada pelo grupo de pesquisa do CEFET-MG em outros trabalhos, nos quais se notou que os comportamentos reológicos das pastas foram satisfatórios para se realizar as moldagens das mesmas.

	Teor Fator		Teores de aditivos			
	NTC/NFC	água/cimento	TEC-MULT 829 SPX	ADVA CAST 525	DENSIL 10	
Dosagem 00	0,00%	0,3	0,40%	0,60%	0,10%	
Dosagem 01	0,10%	0,3	0,40%	0,60%	0,10%	
Dosagem 02	0,20%	0,3	0,40%	0,60%	0,10%	
Dosagem 03	0,30%	0,3	0,40%	0,60%	0,10%	
		Easter Elabored				

Tabela 3-2 – Dosagens utilizadas na pesquisa.

Fonte: Elaborado pelo autor (2018).

Nota: Todos os teores são em relação ao peso do cimento.

3.1.2.2 Corpos de prova

Nessa investigação foram moldados dois tipos de corpos de prova prismáticos que se diferenciam tanto nas medidas da seção transversal quanto nas suas medidas longitudinais. Alguns corpos de prova possuíam dimensões de 40x40x160mm³ e os outros 25x25x150mm², conforme pode ser visto no desenho esquemático apresentado na Figura 3-4.

Fonte: Elaborado pelo autor (2018).

Os corpos de prova foram ensaiados aos 7, 28 e 120 dias de idade, sendo sete corpos de prova para cada idade. Ou seja, para cada dosagem são produzidos 42 corpos de prova, sendo 21 corpos de prova de 40x40x160mm³ e 21 corpos de

prova de 25x25x150mm³. Como a pesquisa possui quatro tipos de dosagens foram produzidos 168 corpos de prova para os ensaios.

3.1.2.3 Quadro geral das formulações

Dada as informações dos itens anteriores pôde-se elaborar um quadro geral das formulações. Contudo, primeiramente foi necessário definir uma identificação para os corpos de prova, a fim de evitar confusão no seu armazenamento e ensaio. A identificação levou em consideração quatro aspectos, que foram a ordem, as dimensões da seção transversal, a idade e a dosagem dos corpos de prova, conforme a Tabela 3-3 abaixo.

Fabela 3-3 –	Identificação	dos	corpos	de	prova.
--------------	---------------	-----	--------	----	--------

	Ordem	Seção transversal	Idade	Dosagem
CP	1, 2, 3, 4, 5, 6, ou 7	25 ou 40	7, 28 ou 120	00, 01, 02 ou 03

Fonte: Elaborado pelo autor (2018).

Para exemplificar, o CP2.25.7.02 foi o segundo corpo de prova de seção transversal 25x25mm² que foi ensaiado aos 7 dias de idade e fabricado segundo a dosagem 02. Após a definição de como os corpos de prova seriam identificados foi elaborado o Quadro 3-1 com as formulações a serem moldadas.

Tipo de forma	ldade	Dosagem	Quantidade de corpos de prova	Identificação
		00	7	CPX.25.7.00
	as	01	7	CPX.25.7.01
	7 di	02	7	CPX.25.7.02
		03	7	CPX.25.7.03
lm3		00	7	CPX.25.28.00
50m	lias	01	7	CPX.25.28.01
25×1	28 c	02	7	CPX.25.28.02
25x		03	7	CPX.25.28.03
	-	00	7	CPX.25.120.00
	120 dias	01	7	CPX.25.120.01
		02	7	CPX.25.120.02
		03	7	CPX.25.120.03
	7 dias	00	7	CPX.40.7.00
		01	7	CPX.40.7.01
		02	7	CPX.40.7.02
		03	7	CPX.40.7.03
lm ³	-	00	7	CPX.40.28.00
60m	lias	01	7	CPX.40.28.01
40x1	28 c	02	7	CPX.40.28.02
40x		03	7	CPX.40.28.03
	-	00	7	CPX.40.120.00
	dias	01	7	CPX.40.120.01
	120	02	7	CPX.40.120.02
		03	7	CPX.40.120.03

Quadro 3-1 – Quadro geral das formulações.

Fonte: Elaborado pelo autor (2018).

Nota: A letra "X" na coluna de identificação varia de acordo com a ordem dos corpos de prova.

3.1.3 Moldagens das pastas de cimento nanoestruturadas

As moldagens das pastas de cimento nanoestruturadas utilizadas nessa pesquisa aconteceram no laboratório do CTNano®.

Os corpos de prova foram moldados em formas de aço untadas com óleo para auxiliar na desmoldagem. O preparo das pastas de cimento nanoestruturadas ocorreu em uma argamassadeira padrão seguindo-se os procedimentos de moldagem descritos no Quadro 3-2. Após o preparo das pastas de cimento nanoestruturadas as fôrmas de aço foram preenchidas e levadas para vibração durante 25 segundos. Após a vibração elas foram colocadas em uma câmara fechada, que contém vapor de água, durante 24 horas (Figura 3-3-5). Dado esse tempo de cura na câmara fechada, foram realizadas as desmoldagens, a identificação dos corpos de prova e a colocação dos mesmos para uma cura submersa em água saturada com cal e à temperatura ambiente até o dia do ensaio.

Ação	Velocidade de agitação	Tempo de agitação
Pesar e separar todos os materiais que serão utilizados	-	-
Adicionar 70% da água necessária + todo o TEC- MULT 829 SPX	Baixa	30 segundos
Adicionar todo o clínquer nanoestruturado	Baixa	60 segundos
Adicionar metade da quantidade necessária do cimento	Baixa	30 segundos
Adicionar 30% da água da água necessária + todo o ADVA CAST 525 + todo o DENSIL 10	Baixa	30 segundos
Adicionar o restante da quantidade do cimento	Baixa e Alta	15 segundos e 30 segundos

Quadro 3-2 - Procedime	ntos de moldagem	da pastas de	cimento nanoestrutu	iradas.

Fonte: Elaborado pelo autor (2018).

Nota: Após adicionar o cimento e agitar a pasta, desligar a argamassadeira e raspar as beiradas da cuba fazendo com que toda a pasta fique no fundo para a próxima etapa.

Figura 3-3-5 – Câmara fechada com presença de vapor d'água para cura dos corpos de prova.

Fonte: Fotografia realizada pelo autor (2018).

3.2 ENSAIOS DE FLEXÃO EM TRÊS PONTOS

3.2.1 Aspectos gerais

Os ensaios de flexão em três pontos foram realizados no laboratório de ensaios do CTNano® utilizando-se uma adaptação da norma ASTM C293-10 e o método de Correlação Digital de Imagem (CDI) através do guia desenvolvido por Souza, V. (2017) para utilização do método nesse local.

O laboratório possui um *software* denominado *Grab Manager*® que é capaz de operar, simultaneamente, duas câmeras conectadas ao computador. Dessa forma, conseguiu-se obter imagens dos corpos de prova sob carregamento vertical e as imagens do indicador digital do *software Tesc*® da máquina universal de ensaios mecânicos utilizada durante todo o ensaio, isto é, desde o início do carregamento até a ruptura da peça. Essas capturas de imagens se dão através da utilização de uma câmera industrial de alta qualidade para capturar as imagens dos corpos de prova e uma *webcam* padrão para capturar as imagens do indicador digital na tela do computador que opera a máquina universal de ensaios mecânicos. Dessa forma, pode-se concluir que para cada estágio (foto) do corpo de prova ensaiado há o registro da força que ele estava sendo submetido. A Figura 3-6 e a Figura 3-7 apresentam os aparatos utilizados para realizar a captura dessas imagens e as imagens obtidas pelas duas câmeras utilizadas durante o ensaio.

Figura 3-6 – À esquerda: aparato da câmera industrial de alta qualidade e corpo de prova a ser ensaiado; À direita: imagem que a câmera gera.

Fonte: Fotografias produzidas pelo autor (2018).

Figura 3-7 – Acima: aparato utilizado para adaptar a *webcam* ao monitor; Abaixo: aparato conectado ao monitor e imagem que a *webcam* gera.

Fonte: Souza, V. (2017).

Como explicado no item 502.5, com o método de CDI é possível medir os deslocamentos de uma superfície plana a partir da correlação de imagens digitais obtidas durante um ensaio. Nessa pesquisa o método foi utilizado para medir o deslocamento vertical do corpo de prova no mesmo sentido da aplicação do carregamento utilizando-se as fotos obtidas pela câmara industrial de alta qualidade. Portanto, para cada estágio dos corpos de prova teve-se a força a qual ele estava submetido e o deslocamento vertical causado por essa força.

Como abordado no item 3.1.2.3 os ensaios de flexão em três pontos foram realizados quando os corpos de prova estavam com 7, 28 e 120 dias de idade e os procedimentos e definições de ensaios adotados foram os mesmos para todas as amostras em todas as idades. Os ensaios foram realizados em uma máquina universal de ensaios mecânicos da marca EMIC®, modelo DL-10000.

3.2.2 Preparação dos corpos de prova

A preparação dos corpos de prova objetivou atender as condições de estudo da mecânica da fratura e de aplicação do método de CDI. Dado o dia de execução dos ensaios de flexão em três pontos, os corpos de prova eram retirados do tanque de cura e preparados logo em seguida.

Primeiramente, realizou-se o entalhe nos corpos de prova. O entalhe serve para gerar uma falha preliminar na peça para estudar as suas propriedades mecânicas sob condição de fratura e para direcionar a trinca que ocorrerá durante o carregamento, conforme apresenta a Figura 3-8. O entalhe foi realizado utilizando-se uma lâmina de serra manual da marca Starret®. A altura dos entalhes variou de acordo com a altura dos dois tipos de corpos de prova utilizados. Para os corpos de prova de seção transversal de 40x40mm² a altura do entalhe foi de 1/4 (um quarto) da sua altura e para os de seção transversal de 25x25mm² a altura do entalhe foi de 1/5 (um quinto) da sua altura. A Figura 3-9 apresenta o desenho esquemático dos corpos de prova considerando-se os entalhes.

Figura 3-8 – Caminho percorrido pela trinca nos corpos de prova com entalhe após o ensaio de flexão em três pontos. Os corpos de prova da foto foram ensaiados nessa pesquisa experimental.

Fonte: Fotografia produzida pelo autor (2018).

Figura 3-9 – Desenho esquemático dos corpos de prova com os entalhes. As medidas estão em mm.

Fonte: Elaborado pelo autor (2018).

Após a realização dos entalhes, os corpos de prova foram pintados para se criar o padrão aleatório em nível de cinza abordado no item 2.5. Para realizar a pintura foram utilizadas duas tintas foscas em spray, sendo uma branca e a outra preta. No primeiro momento utilizou-se a tinta branca para preencher toda a face que foi analisada, depois a tinta preta foi aplicada de modo a criar o padrão aleatório desejado, como apresentado na Figura 3-10.

Figura 3-10 – Pintura aplicada ao corpo de prova para realização do padrão aleatório em nível de cinza. Primeiro, realizou-se a pintura branca. Depois, a pintura com tinta preta para criar o padrão aleatório em nível de cinza.

Fonte: Souza, V. (2017).

Após estarem com o entalhe e a pintura realizados, os corpos de prova tiveram as suas dimensões medidas com o auxílio de um paquímetro digital com resolução de 0,01 mm. As quatro faces maiores dos corpos de prova (duas bases e duas alturas) foram medidas em três pontos, sendo dois pontos nas extremidades e um ponto central. As medições ocorreram na direção transversal dos corpos de prova. Também foram medidas as alturas dos entalhes nas duas faces que ele ultrapassa. A Figura 3-11 ilustra os pontos de medição das alturas nas duas faces maiores, sendo esses pontos os mesmos considerados para se medir as bases das outras duas faces maiores.

Figura 3-11 - Pontos de medição nas faces maiores dos corpos de prova. Nesse desenho considerase uma das faces maiores que representa a altura do corpo de prova, mas os pontos de medição da seção transversal foram iguais em todas as quatro faces maiores.

Fonte: Produzido pelo autor (2018).

3.2.3 Configuração dos ensaios

Dada a montagem da aparelhagem e a preparação dos corpos de prova, os *softwares* necessários à execução dos ensaios foram configurados. Algumas configurações são comuns para os dois tipos de corpos de prova utilizados, no entanto, outras configurações são específicas.

Os ensaios dos dois tipos de corpos de prova foram realizados na mesma máquina universal de ensaios mecânicos. Porém, a célula de carga para os ensaios dos corpos de prova de seção transversal de 40x40mm² possuía capacidade de 20 kN e a célula de carga para os de seção transversal de 25x25mm² tinha 500 N.

Os vãos úteis utilizados no ensaio de cada peça foram diferentes também, sendo eles 150 mm para o de seção transversal 40x40mm² e 140 mm para o de 25x25mm².

A velocidade de ensaio de 0,25mm/min e o intervalo de 250 ms para captura das imagens (isto é, quatro fotos por segundo) foram iguais para os dois tipos de corpo de prova.

Antes de iniciar o carregamento do corpo de prova até a sua ruptura, realizouse um procedimento de pré-carga sobre a peça que iria ser ensaiada. Esse procedimento objetivou iniciar o processo de contato entre os apoios/corpo de prova e o cutelo/corpo de prova, objetivando diminuir as variações nas leituras dos deslocamentos e das forças no início do ensaio, visto que após a pré-carga existiria uma aderência melhor entre os elementos supracitados. Para a pré-carga definiu-se um valor padrão de força para os dois tipos de corpos de prova que, após ser alcançado, fez com que a máquina interrompesse o carregamento e mantivesse esse valor durante um tempo determinado. Para os corpos de prova de seção transversal de 40x40mm² foi aplicada uma pré-carga de 30N e para os de seção transversal de 25x25mm² uma pré-carga de 15N. Ambas durante 5 minutos. Após esse tempo, o cutelo foi descarregado, o indicador de valor da força foi zerado e iniciou-se tipicamente o ensaio. Isto é, os corpos de prova foram submetidos ao carregamento vertical até a sua ruptura.

A Tabela 3-4 apresenta os dados técnicos descritos acima.

Corpo de prova	Célula de carga	Vão útil	Velocidade de ensaio	Intervalo de captura	Força na pré-carga	Tempo de pré-carga
40x40x160 mm ³	20 kN	150 mm	0,25 mm/min	250 ms	30 N	5 minutos
25x25x150 mm³	500 N	140 mm	0,25 mm/min	250 ms	15 N	5 minutos

Tabela 3-4 – Dados técnicos dos ensaios de flexão em três pontos.

Fonte: Elaborado pelo autor (2018)

3.3 OBTENÇÃO E TRATAMENTO DOS DADOS

A obtenção e tratamento dos dados foram realizados para calcular três propriedades mecânicas de fratura dos corpos de prova ensaiados: a resistência à

tração na flexão, a energia de fratura e a tenacidade à fratura. Os dados foram obtidos através de medições *in loco* e do método de CDI.

3.3.1 Área transversal de ruptura (A_t)

Nessa pesquisa experimental realizou-se uma estimativa da área da seção transversal após o rompimento dos corpos de prova. Cada corpo de prova teve a sua área de ruptura medida e, portanto, um valor específico de área.

Para calcular as áreas transversais de ruptura, os corpos de prova foram medidos logo após a finalização dos seus respectivos ensaios. Utilizando-se um paquímetro digital foram medidas, de maneira aproximada, suas duas alturas (H1 e H2), suas duas bases (B1 e B2) e uma de suas diagonais (D), conforme demonstrado na Figura 3-12.

Figura 3-12 – Área transversal de ruptura: H1 e H2 são as alturas, B1 e B2 são as bases e D é a diagonal.

Fonte: Produzido pelo autor (2018)

Após a medição calculou-se a área transversal de ruptura através da aplicação da fórmula do Teorema de Heron, na qual a área de um triângulo ABC qualquer pode ser calculada apenas conhecendo-se as medidas dos seus lados (OLIVEIRA, C. 2014).

$$S_{ABC} = \sqrt{p(p-a)(p-b)(p-c)}$$
(3.1)⁵

⁵ Oliveira, C. (2014).

Onde:

 S_{ABC} = área de um triângulo ABC qualquer (mm^2);

p = semiperímetro do triângulo ABC = $\frac{a+b+c}{2}$ (mm);

a, b e c = medidas dos lados do triângulo ABC (mm).

Considerando-se que a diagonal escolhida no momento da medição da área transversal de ruptura divide essa área em dois triângulos, a área transversal de ruptura é igual à soma das áreas dos dois triângulos, sendo um formado pelos lados H1, B1 e D e o outro formado pelos lados H2, B2 e D.

Ressalta-se que após o ensaio de flexão em três pontos os corpos de prova são divididos em duas partes, porém, calculou-se a área transversal de ruptura considerando-se apenas uma delas.

3.3.2 Deslocamentos verticais

O método de CDI foi utilizado para se obter os deslocamentos verticais dos corpos de prova ensaiados. Após a finalização do ensaio e da captura das imagens da face plana que seria analisada, as imagens foram importadas para o *software GOM Correlate*®, que é capaz de executar a correlação digital das imagens.

Como o *GOM Correlate*® mede os deslocamentos verticais utilizando-se valores reais, é necessário definir uma medida padrão para o programa reconhecer e calcular as distâncias desejadas. Nessa pesquisa utilizou-se uma régua com escala de 1:100, na qual foi demarcada uma reta de 10mm e esse valor foi informado para o programa. Dessa forma, o programa passa a conhecer o que é considerado uma distância de 10mm "no real" e pode processar os cálculos das distâncias e deformações desejadas. Essa régua pode ser visualizada na Figura 3-6.

Após a configuração da escala, foram definidos dois pontos para serem criados dois deflectômetros virtuais, um a esquerda do entalhe e outro a direita do entalhe. Ambos próximos à face mais tracionada durante o ensaio, conforme Figura 3-13. Observa-se que nessa figura há um transdutor de distância que foi criado para se obter um ponto de referência para a colocação dos deflectômetros. Dessa forma, todos os deflectômetros criados nos corpos de prova foram localizados na ponta dos transdutores de distância.
Figura 3-13 – Deflectômetros 1 e 2 criados próximos a face mais tracionada do corpo de prova durante o ensaio de flexão em três pontos, sendo um do lado esquerdo do entalhe e outro do lado direito.

Fonte: Produzido pelo autor (2018).

Posteriormente à definição dos dois deflectômetros, realizou-se a leitura de cada deslocamento vertical em cada um dos estágios (fotos) do corpo de prova durante o ensaio. Foi decidido que as leituras seriam feitas desde início do carregamento até a iminência de ruptura do corpo de prova, ou seja, desde a primeira imagem até a imagem anterior à imagem de ruptura da peça. Por exemplo, se foi verificado que no estágio 213 o corpo de prova rompeu, a leitura dos deslocamentos verticais ocorreu do estágio 1 ao estágio 212.

Como foram escolhidos dois deflectômetros, tiveram-se, então, dois valores de deslocamento vertical para cada imagem. Com isso, optou-se por exportar os dados das leituras de cada corpo de prova para o *Microsoft Excel*® e realizou-se a média dos dois valores. Esse valor médio foi o utilizado posteriormente na pesquisa.

3.3.3 Forças do carregamento vertical

Conforme abordado no item 3.2.1, o programa *Grab Manager*® realiza a captura das imagens das duas câmeras utilizadas para a aplicação do método de CDI juntamente ao ensaio de flexão em três pontos. Essas imagens já foram apresentadas na Figura 3-6 e na Figura 3-7.

Além disso, o programa também possui a capacidade de converter uma imagem em texto. Isto é, se na foto do indicador digital o campo "Força (kN)" apresenta um valor de "0.050" o programa captura esse valor na imagem e fornece um arquivo de texto contendo o mesmo numeral. Sendo assim, para cada corpo de prova ensaiado, obteve-se a anotação da leitura das forças de cada estágio através do *Grab Manager*®.

3.4 CÁLCULO DAS PROPRIEDADES MECÂNICAS DE FRATURA

Após a obtenção dos dados necessários, realizou-se o cálculo das propriedades mecânicas de fratura que foram investigadas. Todas as propriedades foram calculadas a partir do ensaio de flexão em três pontos abordado no item 3.2.

3.4.1 Resistência à tração na flexão (σ_f)

A resistência à tração na flexão de cada corpo de prova foi calculada aplicando-se uma adaptação à equação 2.3 abordada no item 2.4.1.1. Essa adaptação consistiu em incluir a área transversal de ruptura de cada corpo de prova (item 3.3.1) na equação, como apresentado abaixo.

$$\sigma_f = \frac{3.P_{m\acute{a}x}.L}{2.A_t.h_m} \tag{3.2}^6$$

Onde:

 σ_f = resistência à tração na flexão (*MPa*);

 $P_{m \acute{a} x}$ = força registrada no momento da fratura(N);

L = vão útil do corpo de prova no ensaio (mm);

 A_t = Área transversal de ruptura de cada corpo de prova (mm^2);

 h_m = média das alturas H1 e H2 da seção transversal de ruptura (mm).

3.4.2 Energia de fratura (G_f)

Para calcular a energia de fratura foram utilizados os dados obtidos nos itens 3.3.2 e 3.3.3 para construir os gráficos de força (kN) versus deslocamento vertical (mm) dos corpos de prova, os quais serão apresentados no capítulo referente aos resultados.

⁶ Adaptação de Callister (2008) e Shackelford (2010).

Em seguida, aplicou-se a seguinte equação para calcular a energia de fratura nesta investigação.

$$G_f = \frac{W}{A_t} \tag{3.3}^7$$

Onde:

 G_f = energia de fratura ($J/m^2 ou N/m$);

W = Trabalho representado pela área abaixo do gráfico Força x Deslocamento Vertical (J);

 A_t = Área transversal de ruptura (m^2);

3.4.3 Tenacidade à fratura (K_{IC})

A tenacidade à fratura dos corpos de prova foi calculada aplicando-se as seguintes equações:

$$K_{IC} = \frac{P_{m\acute{a}x} \cdot L}{b \cdot h^{\frac{3}{2}}} f(\frac{a}{h})$$
(3.4)⁸

$$f\left(\frac{a}{h}\right) = 2.9\left(\frac{a}{h}\right)^{1/2} - 4.6\left(\frac{a}{h}\right)^{3/2} + 21.8\left(\frac{a}{h}\right)^{5/2} - 37.6\left(\frac{a}{h}\right)^{7/2} + 38.7\left(\frac{a}{h}\right)^{9/2}$$
(3.5)⁹

Onde:

 K_{IC} = tenacidade à fratura ($MPa\sqrt{mm}$);

 $P_{m \pm x}$ = força registrada no momento da fratura durante o ensaio de flexão em três pontos (*N*);

L = vão útil do corpo de prova no ensaio (mm);

b = média das medidas das duas bases do corpo de prova no ponto de medição central (ponto 2 da Figura 3-11) (mm);

h = média das medidas das duas alturas do corpo de prova no ponto de medição central (ponto 2 da Figura 3-11) (mm);

 a_m = média das medidas das duas aberturas do entalhe no corpo de prova (mm);

 $f(\frac{a}{b})$ = fator geométrico adimensional.

⁷ Adaptação de Hu et al. (2014).

⁸ Hu et al. (2014).

⁹ Hu et al. (2014).

4 RESULTADOS E DISCUSSÕES

Dada a realização dos ensaios de flexão em três pontos juntamente com a aplicação do método de correlação digital de imagem, foi possível obter as forças do carregamento vertical (Apêndice A) e os deslocamentos verticais e a área transversal de ruptura dos corpos de prova ensaiados (Apêndice B), conforme abordado no item 3.3. Utilizando as forças do carregamento vertical e os deslocamentos verticais obtidos, foram gerados, utilizando o software *Origin*®, os gráficos com as curvas de força-deslocamento de cada um dos corpos de prova (Apêndice C). De posse dos dados supracitados as propriedades mecânicas de fratura desejadas foram calculadas.

As médias e os desvios-padrão foram calculados utilizando-se cinco corpos de prova. Para eliminar os corpos de prova dentro das séries de sete ou seis amostras, utilizou-se como critério o desvio de cada valor em relação à média da série de corpos de prova. Os mais distantes foram eliminados.

Os resultados de cada propriedade mecânica de fratura são apresentados em tabelas e gráficos e, para auxiliar na análise desses resultados, dois métodos estatísticos foram aplicados, o procedimento ANOVA¹⁰ e o Teste de Tukey¹¹. Os Apêndices D e E apresentam os valores obtidos nos ensaios dos corpos de prova e as análises estatísticas, respectivamente.

4.1 RESISTÊNCIA À TRAÇÃO NA FLEXÃO (σ_f)

A resistência à tração na flexão foi calculada de acordo com o item 3.4.1 e os resultados obtidos e suas respectivas discussões estão descritos abaixo.

¹⁰ A análise de Variância (ANOVA) é um procedimento estatístico realizado para verificar se há diferença entre a distribuição de uma variável entre três ou mais grupos, através da aceitação ou da rejeição da hipótese nula, na qual não existe diferença entre as médias de cada grupo.

¹¹ O ANOVA evidencia que a distribuição de pelo menos um dos grupos é diferente dos demais, no entanto, o procedimento não indica quais grupos possuem diferenças significativas. O Teste de Tukey é um teste de comparações múltiplas capaz de identificar esses grupos.

4.1.1 Corpos de prova de 25x25x150mm³

• Resistência à tração na flexão aos 7 dias de idade

Tabela 4-1 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 25x25x150mm³ aos 7 dias de idade de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	2,34	2,65	3,40	3,06
Desvio Padrão	0,22	0,17	0,15	0,44
Coeficiente de Variação	9,25%	6,36%	4,40%	14,24%
Alteração em relação à pasta referência	-	+13,25%	+45,30%	+30,77%

Fonte: Elaborado pelo autor (2018).

Gráfico 4-1 – Resultados da resistência à tração na flexão para cada teor de adição de NTC/NFC dos corpos de prova de 25x25x150mm³ aos 7 dias de idade.

Fonte: Elaborado pelo autor (2018).

Aos 7 dias de idade todas as pastas de cimento nanoestruturadas apresentaram ganhos médios de resistência à tração na flexão em relação à pasta de cimento referência, sendo que os melhores resultados ocorreram ao se adicionar 0,20% e 0,30% de NTC/NFC, alcançando ganhos médios de 45,30% e 30,77%, respectivamente. O teste ANOVA indicou que houve uma diferença estatística entre as pastas de cimento e o teste de Tukey identificou os pares de pastas 0,00%-0,20% e 0,10%-0,20% como sendo os pares de grupos significativamente diferentes. Portanto, a influência da adição de 0,20% de NTC/NFC no aumento da resistência à tração na flexão das pastas de cimento foi confirmada estatisticamente.

Resistência à tração na flexão aos 28 dias de idade

Tabela 4-2 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 25x25x150mm³ aos 28 dias de idade de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	3,28	4,10	3,98	3,90
Desvio Padrão	0,29	0,07	0,13	0,14
Coeficiente de Variação	8,69%	1,63%	3,39%	3,47%
Alteração em relação à pasta referência	-	+25,00%	+21,34%	+18,90%

Fonte: Elaborado pelo autor (2018).

Fonte: Elaborado pelo autor (2018).

Aos 28 dias de idade todas pastas de cimento nanoestruturadas continuaram a apresentar ganhos médios de resistência à tração na flexão em relação às pastas de cimento referência, indicando que NTC/NFC estão atuando positivamente nas pastas de cimento. As pastas de cimento com 0,10% e 0,20% apresentaram os melhores ganhos médios, sendo eles 25,00% e 21,34% respectivamente. Ressaltase que apesar dos grupos terem apresentado ganhos médios de resistência à flexão muito interessantes e valores baixos de coeficiente de variação, a aplicação do procedimento ANOVA demonstrou que os resultados das pastas nanoestruturadas não foram significativamente diferentes da pasta de cimento referência.

Resistência à tração na flexão aos 120 dias de idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	3,76	-	3,91	3,84
Desvio Padrão	0,19	-	0,13	0,18
Coeficiente de Variação	5,15%	-	3,39%	4,69%
Alteração em relação à pasta referência	-	-	+3,99%	+2,13%

Tabela 4-3 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 25x25x150mm³ aos 120 dias de idade de idade.

Fonte: Elaborado pelo autor (2018).

Nota: Os corpos de prova com 0,10% de NTC/NFC foram eliminados, pois seus resultados

apresentaram uma irregularidade que impossibilita análises seguras.

Gráfico 4-3 – Resultados da resistência à tração na flexão para cada teor de adição de NTC/NFC dos corpos de prova de 25x25x150mm³ aos 120 dias de idade.

Fonte: Elaborado pelo autor (2018).

Aos 120 dias de idade as pastas de cimento nanoestruturadas apresentaram ganhos médios de resistência à flexão ínfimos em relação à pasta de cimento referência, sendo eles de 3,99% para as pastas com 0,20% de NTC/NFC e 2,13% para as pastas com 0,30% de NTC/NFC. Essa avaliação foi corroborada pelo procedimento ANOVA que não identificou nenhuma média estatisticamente diferente entre os grupos de teor de adição de NTC/NFC. O resultado das pastas nanoestruturadas com 0,10% de NTC/NFC foram eliminados porque apresentaram uma irregularidade que impossibilitou análises seguras.

• Evolução da resistência à tração na flexão nas três idades

A partir do gráfico de evolução e dos gráficos anteriores, pode-se verificar que aos 7 dias de idade todas as pastas de cimento nanoestruturadas apresentaram ganhos médios de resistência à tração na flexão em comparação à pasta de cimento referência, sendo que o maior ganho ocorreu quando se adicionou 0,20% de NTC/NFC. Os ganhos aos 7 dias de idade representaram os maiores ganhos entre as três idades ensaiadas, sugerindo que os NTC/NFC possam ter acelerado a formação dos produtos de hidratação do cimento. Aos 28 dias, a evolução ocorreu conforme o esperado e os valores de resistência à flexão foram maiores do que os apresentados aos 7 dias de idade. Verifica-se, também, aos 28 dias, que todas as pastas de cimento nanoestruturadas apresentaram ganhos médios de resistência à flexão maiores do que a pasta referência, contudo, os resultados não apresentaram um teor de adição de NTC/NFC que se destacasse nessa idade. Aos 120 dias de idade era esperado que os valores de resistência à flexão se mantivessem ou continuassem aumentando um pouco, comportamento esse que pode ser verificado na reta que representa a pasta sem adição de NTC/NFC. No entanto, graficamente, as retas que representam as pastas nanoestruturadas não tiveram o mesmo comportamento e apresentaram um leve declínio que, avaliando os desvios-padrão dos grupos, está dentro de um intervalo no qual se pode considerar que não houve alteração relevante de 28 dias para 120 dias.

Fonte: Elaborado pelo autor (2018).

4.1.2 Corpos de prova de 40x40x160mm³

• Resistência à tração na flexão aos 7 dias de idade

Tabela 4-4 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 40x40x160mm³ aos 7 dias de idade de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	2,07	3,31	2,81	3,68
Desvio Padrão	0,39	0,41	0,25	0,40
Coeficiente de Variação	19,09%	12,32%	9,06%	10,74%
Alteração em relação à pasta referência	-	+59,90%	+35,75%	+77,78%

Fonte: Elaborado pelo autor (2018).

Gráfico 4-5 – Resultados da resistência à tração na flexão para cada teor de adição de NTC/NFC dos corpos de prova de 40x40x160mm³ aos 7 dias de idade.

Fonte: Elaborado pelo autor (2018).

Aos 7 dias de idade todas as pastas de cimento nanoestruturadas apresentaram ganhos médios de resistência à tração na flexão em relação à pasta de cimento referência. Ao se adicionar 0,30% e 0,10% de NTC/NFC os melhores resultados foram obtidos, sendo eles 77,78% e 59,90%, respectivamente. O teste ANOVA demonstrou que houve uma diferença significativa entre os grupos e o teste Tukey apresentou os pares 0,00%-0,10%, 0,00%-0,20% e 0,00%-0,30% como sendo os pares estatisticamente diferentes, ressaltando que os NTC/NFC estão atuando positivamente nas pastas de cimento.

Resistência à tração na flexão aos 28 dias de idade

Tabela 4-5 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 40x40x160mm³ aos 28 dias de idade de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	4,30	4,00	4,57	4,14
Desvio Padrão	0,39	0,30	0,42	0,21
Coeficiente de Variação	8,95%	7,55%	9,20%	5,03%
Alteração em relação à pasta referência	-	-6,98%	+6,27%	-3,72%

Fonte: Elaborado pelo autor (2018).

Fonte: Elaborado pelo autor (2018).

Aos 28 dias de idade apenas as pastas de cimento com adição de 0,20% de NTC/NFC em sua matriz cimentícia apresentaram ganhos médios de resistência à flexão em relação à pasta de cimento referência, o qual foi pequeno e igual a 6,27%. O teste ANOVA foi realizado e não mostrou nenhuma diferença significativa entre as médias de resistência à tração na flexão dos grupos, evidenciando que os NTC/NFC, nesse caso, não atuaram negativa ou positivamente nas pastas de cimento de forma significativa.

Resistência à tração na flexão aos 120 dias de idade

Tabela 4-6 – Resultados para as resistências à tração na flexão, em MPa, para os corpos de prova de 40x40x160mm³ aos 120 dias de idade de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	5,65	4,43	5,03	5,16
Desvio Padrão	0,44	0,37	0,37	0,29
Coeficiente de Variação	7,71%	8,36%	7,39%	5,70%
Alteração em relação à pasta referência	-	-21,59%	-10,97%	-8,67%

Fonte: Elaborado pelo autor (2018).

Fonte: Elaborado pelo autor (2018).

Aos 120 dias de idade nenhuma pasta com adição de NTC/NFC apresentou ganho de resistência à flexão em relação à pasta de cimento referência. O procedimento ANOVA foi realizado e demonstrou que havia uma diferença significativa entre os grupos. Em seguida, através do teste Tukey, verificou-se que o par 0,00%-0,10% era estatisticamente diferente, indicando que, nesse caso, a concentração de 0,10% de NTC/NFC atuou significativamente negativo nas pastas de cimento.

• Evolução da resistência à tração na flexão nas três idades

Observando o gráfico de evolução e os gráficos anteriores pode-se verificar que aos 7 dias todas as pastas de cimento com adição de NTC/NFC apresentaram ganhos médios de resistência à flexão em relação à pasta de cimento referência, sendo o melhor resultado obtido pela pasta de cimento nanoestruturada com 0,30% de NTC/NFC. Ressalta-se que, somente nessa idade, foram constatados ganhos significativos na resistência à flexão das pastas nanoestruturadas, sugerindo, mais uma vez, que os NTC/NFC possam ter atuado na aceleração da formação de produtos de hidratação no cimento. Aos 28 dias de idade as resistências à flexão continuaram a crescer, o que era esperado, no entanto, somente as pastas de cimento com 0,20% de NTC/NFC apresentaram um ganho médio em relação a pasta de cimento referência. Aos 120 dias de idade, os valores médios das resistências à mantiveram o crescimento, porém todas flexão as pastas de cimento nanoestruturadas apresentaram valores médios de resistência à flexão menores que a pasta de cimento referência.

Fonte: Elaborado pelo autor (2018).

4.2 ENERGIA DE FRATURA (G_f)

A energia de fratura foi calculada de acordo com o item 3.4.2 e os resultados obtidos e suas respectivas discussões estão descritos abaixo.

4.2.1 Corpos de prova de 25x25x150mm³

Os resultados da energia da fratura para esses corpos de prova não serão apresentados nessa pesquisa, pois os comportamentos das curvas foram muitos irregulares, podendo ser considerados umas anomalias que impossibilitam análises seguras acerca da propriedade.

4.2.2 Corpos de prova de 40x40x160mm³

• Energia de fratura aos 7 dias de idade

Tabela 4-7 – Resultados para as energias de fratura, em N/m, para os corpos de prova de 40x40x160mm³ aos 7 dias de idade de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	7,14	10,38	9,03	15,25
Desvio Padrão	3,07	4,24	2,32	0,48
Coeficiente de Variação	43,02%	40,88%	25,68%	3,15%
Alteração em relação à pasta referência	-	+45,38%	+26,47%	+113,59%

Fonte: Elaborado pelo autor (2018).

Gráfico 4-1 – Resultados das energias de fratura de cada teor de adição de NTC/NFC dos corpos de prova de 40x40x160mm³ aos 7 dias de idade.

Fonte: Elaborado pelo autor (2018).

Aos 7 dias de idade todas as pastas de cimento nanoestruturadas apresentaram ganhos médios de energia de fratura em relação à pasta de cimento referência. As pastas de cimento nanoestruturadas contendo 0,10% e 0,30% apresentaram os melhores resultados, alcançando ganhos médios de 45,38% e 113,59%. Ao realizar os testes ANOVA e de Tukey foi constatado que o par de pastas 0,00%-0,30% apresenta uma diferença significativa.

• Energia de fratura aos 28 dias de idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	18,39	18,50	17,99	13,12
Desvio Padrão	2,33	2,94	3,57	2,75
Coeficiente de Variação	12,67%	15,89%	19,83%	20,96%
Alteração em relação à pasta referência	-	+0,60%	-2,18%	-28,66%

Tabela 4-8 – Resultados para as energias de fratura, em N/m, para os corpos de prova de 40x40x160mm³ aos 28 dias de idade de idade.

Fonte: Elaborado pelo autor (2018).

Fonte: Elaborado pelo autor (2018).

Aos 28 dias de idade pode-se inferir que nenhuma pasta de cimento nanoestruturada apresentou ganho médio em relação à pasta de cimento referência, pelo contrário, a pasta de cimento com adição de 0,30% apresentou uma perda de

28,66% de energia de fratura. No entanto, o teste estatístico ANOVA não constatou nenhuma diferença significativa entre as pastas de cimento.

• Energia de fratura aos 120 dias de idade

Tabela 4-9 – Resultados para as energias de fratura, em N/m, para os corpos de prova de 40x40x160mm³ aos 120 dias de idade de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	15,30	21,65	18,71	16,03
Desvio Padrão	3,68	5,46	2,55	2,14
Coeficiente de Variação	24,05%	25,20%	13,63%	13,35%
Alteração em relação à pasta referência	-	+41,50%	+22,29%	+4,77%

Fonte: Elaborado pelo autor (2018).

Gráfico 4-3 – Resultados das energias de fratura de cada teor de adição de NTC/NFC dos corpos de prova de 40x40x160mm³ aos 120 dias de idade.

Aos 120 dias de idade todas as pastas nanoestruturadas apresentaram ganhos médios de energia de fratura em relação à pasta de cimento referência, com as pastas de cimento contendo adições de 0,10% e 0,20% de NTC/NFC apresentando os melhores resultados, sendo eles 41,50% e 22,29%, respectivamente. No entanto, o teste ANOVA não identificou nenhuma diferença significativa entre as pastas de cimento com e sem adição de NTC/NFC.

• Evolução da energia de fratura nas três idades

Gráfico 4-4 – Resultados das médias para a tenacidade à fratura dos corpos de prova de 40x40x160mm³ aos 7, 28 e 120 dias de idade.

Avaliando os gráficos anteriores e o gráfico de evolução observa-se que aos 7 dias de idade todas as pastas nanoestruturadas apresentaram ganhos médios de energia de fratura em relação à pasta de cimento referência. Nas idades posteriores isso não ocorre, reforçando a ideia de que os NTC/NFC possam atuar na aceleração da formação dos produtos de hidratação do cimento. Aos 28 dias de idade observase que as médias das energias de fratura das pastas de cimento continuam a crescer, excetuando-se a pasta com adição de 0,30% de NTC/NFC que apresentou uma queda no valor médio. Nessa idade, nenhuma pasta nanoestruturada se destacou positivamente em relação à pasta de cimento referência. Aos 120 dias de idade as pastas nanoestrututradas tiveram valores médios de energia de fratura superiores aos valores aos 28 dias e todas as pastas apresentaram valores superiores à pasta de cimento referência.

Fonte: Elaborado pelo autor (2018).

4.3 TENACIDADE À FRATURA (K_{IC})

A tenacidade à fratura foi calculada de acordo com o item 3.4.3 e os resultados obtidos e suas respectivas discussões estão descritos abaixo.

4.3.1 Corpos de prova de 25x25x150mm³

• Tenacidade à fratura aos 7 dias de idade

Tabela 4-10 – Resultados para as tenacidades à fratura, em $MPa.\sqrt{mm}$, para os corpos de prova de 25x25x150mm³ aos 7 dias de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	1,37	1,46	1,69	1,65
Desvio Padrão	0,08	0,16	0,12	0,27
Coeficiente de Variação	5,97%	10,97%	7,00%	16,61%
Alteração em relação à pasta referência	-	+6,57%	+23,36%	+20,44%

Fonte: Elaborado pelo autor (2018).

Gráfico 4-5 – Resultados para a tenacidade à fratura para cada teor de adição de NTC/NFC dos corpos de prova de 25x25x150mm³ aos 7 dias de idade.

Fonte: Elaborado pelo autor (2018).

Aos 7 dias de idade todas as pastas de cimento nanoestruturadas apresentaram ganhos médios de tenacidade à fratura em relação às pastas de cimento referência, sendo que, as pastas nanoestruturadas com 0,20% e 0,30% de NTC/NFC tiveram os melhores ganhos, sendo eles 23,36% e 20,44%, respectivamente. O teste ANOVA indicou que uma ou mais médias são

estatisticamente diferentes. No entanto, o teste de Tukey não indicou qual (is) pares são significativamente diferentes.

Tenacidade à fratura aos 28 dias de idade

Tabela 4-11 – Resultados para as tenacidades à fratura, em $MPa.\sqrt{mm}$, para os corpos de prova de 25x25x150mm³ aos 28 dias de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	1,67	2,14	2,11	2,08
Desvio Padrão	0,15	0,06	0,08	0,08
Coeficiente de Variação	9,15%	2,82%	3,83%	3,76%
Alteração em relação à pasta referência	-	+28,14%	+26,34%	+24,55%

Fonte: Elaborado pelo autor (2018).

Gráfico 4-6 - Resultados para a tenacidade à fratu	a para cada teor de adição de NTC/NFC dos
corpos de prova de 25x25x150r	nm³ aos 28 dias de idade.

Fonte: Elaborado pelo autor (2018).

Aos 28 dias de idade todas as pastas de cimento nanoestruturadas tiveram ganhos médios em relação à pasta de cimento referência. Os percentuais de ganho dos três tipos de pasta nanoestruturadas foram bem próximos, sendo 28,14%, 26,34% e 24,55% para as pastas com 0,10%, 0,20% e 0,30% de NTC/NFC, respectivamente. O procedimento ANOVA demonstrou que houve, pelo menos, uma pasta de cimento com tenacidade à fratura significativamente diferente das outras. Realizando o teste de Tukey para identificar essa pasta de cimento, verificou-se que o par 0,00%-0,10% apresentava uma diferença estatística, enfatizando o ganho de

tenacidade à fratura ao se adicionar 0,10% de NTC/NFC nas pastas de cimento produzidas.

Tenacidade à fratura aos 120 dias de idade

Tabela 4-12 – Resultados para as tenacidades à fratura, em $MPa.\sqrt{mm}$, para os corpos de prova de 25x25x150 mm³ aos 120 dias de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	1,88	-	2,03	1,97
Desvio Padrão	0,09	-	0,11	0,08
Coeficiente de Variação	4,56%	-	5,31%	4,08%
Alteração em relação à pasta referência	-	-	+7,98%	+4,79%

Fonte: Elaborado pelo autor (2018).

Gráfico 4-7 – Resultados para a tenacidade à fratura para cada teor de adição de NTC/NFC dos corpos de prova de 25x25x150mm³ aos 120 dias de idade.

Aos 120 dias de idade as pastas de cimento nanoestruturadas apresentaram ganhos médios de tenacidade à fratura em relação à pasta de cimento referência. No entanto, esses ganhos foram muito baixos, sendo 7,98% para as pastas com adição de 0,20% de NTC/NFC e 4,79% para as pastas com 0,30%. Ao aplicar o procedimento ANOVA verificou-se que não houve nenhuma pasta de cimento que tivesse média de tenacidade à fratura estatisticamente diferente das outras. As pastas de cimento nanoestruturadas com 0,10% NTC/NFC não apresentaram

anormalidades nos resultados que impossibilitam análises seguras e, por isso, foram eliminadas.

Evolução da tenacidade à fratura nas três idades

Gráfico 4-8 – Resultados das médias para a tenacidade à fratura dos corpos de prova de 25x25x150mm³ aos 7, 28 e 120 dias de idade.

Fonte: Elaborado pelo autor (2018).

Analisando o gráfico de evolução e os gráficos anteriores, pode-se constatar que, aos 7 dias de idade, todos as pastas de cimento nanoestruturadas apresentaram ganhos médios de tenacidade à fratura em relação à pasta de cimento referência. Aos 28 dias de idade, os valores de tenacidade à fratura de todas as pastas continuaram a crescer e as pastas nanoestruturadas continuaram a apresentar ganhos médios de tenacidade à fratura em relação à pasta de cimento referência. Aos 120 dias de idade, o gráfico de evolução demonstra que os valores médios da tenacidade à fratura das pastas de cimento nanoestruturadas apresentaram um leve declínio, sendo um comportamento contrário ao que aconteceu com as pastas de cimento referência. No entanto, esse declínio está dentro do intervalo dos desvios-padrão e, portanto, pode-se deduzir que as mudanças nos valores de tenacidade à fratura dos 28 para os 120 dias não foram relevantes. Os ganhos obtidos aos 7 dias de idade foram os maiores, reforçando a ideia de que os NTC/NFC possam ter acelerado a formação dos produtos de hidratação do cimento.

4.3.2 Corpos de prova de 40x40x160mm³

• Tenacidade à fratura aos 7 dias de idade

Tabela 4-13 – Resultados para as tenacidades à fratura, em $MPa.\sqrt{mm}$, para os corpos de prova de 40x40x160mm³ aos 7 dias de idade.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	1,05	1,74	1,45	1,85
Desvio Padrão	0,19	0,16	0,11	0,20
Coeficiente de Variação	18,44%	9,07%	7,47%	10,64%
Alteração em relação à pasta referência	-	+65,71%	+38,09%	+76,19%

Fonte: Elaborado pelo autor (2018).

Fonte: Elaborado pelo autor (2018).

Aos 7 dias de idade, todas as pastas de cimento nanoestruturadas apresentaram valores médios de tenacidade à fratura superiores à pasta de cimento referência, sendo que as pastas com adição de 0,10% e 0,30% de NTC/NFC apresentaram ganhos de 65,71% e 76,19%, respectivamente. O teste ANOVA demonstrou que ao menos uma das médias de tenacidade à fratura das pastas de cimento eram diferentes estatisticamente. Ao executar o teste de Tukey foi verificado que os pares 0,00%-0,10%, 0,00%-0,20%, 0,00%-0,30% e 0,20%-0,30% eram significativamente diferentes, constatando a influência positiva dos NTC/NFC nas pastas de cimento.

• Tenacidade à fratura aos 28 dias de idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	2,19	2,05	2,41	2,05
Desvio Padrão	0,18	0,17	0,15	0,06
Coeficiente de Variação	8,17%	8,35%	6,28%	2,71%
Alteração em relação à pasta referência	-	-6,39%	+10,05%	-6,39%

Tabela 4-14 – Resultados para as tenacidades à fratura, em $MPa.\sqrt{mm}$, para os corpos de prova de 40x40x160mm³ aos 28 dias de idade.

Fonte: Elaborado pelo autor (2018).

Fonte: Elaborado pelo autor (2018).

Aos 28 dias de idade apenas a pasta de cimento com adição de 0,20% de NTC/NFC apresentou ganho médio de tenacidade à fratura em relação às pastas de cimento referência, sendo igual a 10,05%. O procedimento ANOVA demonstrou que nenhumas das médias de tenacidade à fratura das pastas de cimento eram diferentes, indicando que, no caso em questão, os NTC/NFC não influenciaram significativamente nem de maneira positiva nem de maneira negativa nas pastas de cimento.

• Tenacidade à fratura aos 120 dias de idade

referência

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
Média	2,66	2,34	2,59	2,60
Desvio Padrão	0,20	0,15	0,17	0,14
Coeficiente de Variação	7,42%	6,55%	6,50%	5,36%
Alteração em relação à pasta	-	-12,03%	-2,63%	-2,26%

Tabela 4-15 – Resultados para as tenacidades à fratura, em $MPa.\sqrt{mm}$, para os corpos de prova de 40x40x160mm³ aos 120 dias de idade.

Fonte: Elaborado pelo autor (2018).

Fonte: Elaborado pelo autor (2018).

Aos 120 dias de idade nenhuma pasta de cimento nanoestruturada apresentou uma tenacidade à fratura melhor que a pasta de cimento referência. O procedimento ANOVA demonstrou que nenhuma das médias eram estatisticamente diferentes. Portanto, os NTC/NFC não estão influenciando significativamente no comportamento das pastas de cimento nesse caso.

• Evolução da tenacidade à fratura nas três idades

Fonte: Elaborado pelo autor (2018).

Ao analisar o gráfico de evolução e os gráficos anteriores, verificou-se que aos 7 dias de idade todas as pastas de cimento nanoestruturadas apresentaram ganhos médios de tenacidade à fratura em relação à pasta de cimento referência, sendo que as pastas com adição de 0,30% e 0,10% apresentaram, respectivamente, os melhores resultados. Verificou-se, também, que nessa idade é que foram constatados os melhores ganhos de tenacidade à fratura, corroborando com a hipótese já abordada nas análises anteriores, na qual os NTC/NFC ajudam a acelerar a formação dos produtos de hidratação. Aos 28 dias de idade os valores médios das tenacidades à fratura cresceram, no entanto, apenas a pasta de cimento nanoestruturada com 0,20% de NTC/NFC continuou com um valor superior ao da pasta referência. Aos 120 dias de idade as médias das tenacidades à fratura cresceram novamente, porém, nenhuma pasta nanoestruturada apresentou ganho em relação à pasta de cimento referência.

4.4 ABORDAGEM GERAL

Em relação aos resultados obtidos pelos pesquisadores que utilizaram a mistura física para incorporar os NTC à matriz dos compósitos cimentícios, os quais foram apresentados no capítulo referente aos estudos precedentes, os resultados dessa pesquisa se mostraram análogos quando comparados com a resistência à tração e a energia de fratura e se mostraram superiores quando comparados com a tenacidade à fratura. Essas constatações são bastante positivas, pois a produção dos compósitos cimentícios a partir da utilização do clínquer nanoestruturado é menos trabalhosa que a utilizada pelos pesquisadores em questão, visto que a união dos nanomateriais com o cimento se dá de uma forma repetível e contínua, que permite a produção em larga escala e um menor consumo de energia.

Quando comparados com os resultados dos pesquisadores que também utilizaram o clínquer nanoestruturado para fabricar os compósitos cimentícios, os quais também foram apresentados no capítulo referente aos estudos precedentes, os resultados obtidos para a resistência à tração neste trabalho foram superiores aos alcançados por Ludvig (2012) e Souza, T. (2015) e análogos aos alcançados por Paula (2014). Ressalta-se, também, que os resultados obtidos em relação à tenacidade à fratura foram superiores aos alcançados por Ludvig (2012). Essas constatações são positivas não pela comparação dos resultados entre si, mesmo porque cada trabalho possui uma formulação específica para os materiais cimentícios e isso deve ser considerado, mas sim porque a evolução positiva dos resultados destaca o enriquecimento das pesquisas sobre o tema, visto que desde as primeiras investigações algumas melhorias na produção do clínquer nanoestruturado com NTC/NFC têm sido realizadas e a expectativa é sempre de uma evolução positiva nos resultados referentes ao comportamento mecânico.

Avaliando os resultados para a energia de fratura é possível identificar uma grande variabilidade nos valores obtidos. O método de Correlação Digital de Imagem (CDI) é um procedimento muito interessante para se realizar as investigações experimentais acerca dos materiais utilizados na construção civil. Como exemplo, pode-se citar que o método permite as análises dos corpos de prova em pontos que são difíceis de analisar através dos métodos tradicionais e permite uma diminuição de moldagens de corpos de prova e uma consequente economia de materiais. Conforme abordado anteriormente, a energia de fratura foi calculada utilizando-se o método de CDI para calcular os deslocamentos verticais dos corpos de prova e acredita-se que os altos valores para os desvios-padrão possam estar relacionados às dificuldades encontradas durante a aplicação do método. Todas essas dificuldades em conjunto podem provocar uma aleatoriedade na leitura dos dados desejados. Entre as dificuldades encontradas, destacam-se a variação da luminosidade natural durante a execução dos ensaios, a não fixação da câmera digital de alta definição em um único ponto, isto é, todos os dias a câmera foi colocada e retirada do lugar e o processo de pintura dos corpos de prova, que por mais que fosse averiguada a qualidade da pintura no software de análise, ela pode estar aquém do esperado bem no local de leitura desejado. Ressalta-se, também, a limitação guanto ao número de fotos que podem ser tiradas durante o ensaio devido ao armazenamento e processamento das fotos pelo computador, pois se uma velocidade de ensaio mais lenta fosse usada o número de fotos seria muito maior, no entanto, talvez OS deslocamentos fossem mais homogêneos е consequentemente as curvas de força-deslocamento também.

5 CONCLUSÕES

Os materiais cimentícios geralmente apresentam um comportamento insatisfatório em relação à resistência à tração, à absorção de energia e às suas deformações plásticas, sendo suscetíveis a falhas catastróficas quando há a presença de trincas na sua estrutura. A avaliação das propriedades mecânicas de fratura dos compósitos cimentícios é uma maneira de se avaliar a interação entre os materiais utilizados para superar essas deficiências e as matrizes nas quais eles são incorporados.

Os resultados dessa investigação experimental demonstraram que a incorporação do clínquer nanoestruturado com NTC/NFC na matriz cimentícia representa um grande potencial para a resolução desse problema. Isso pode ser inferido porque foi possível verificar ganhos das pastas de cimento nanoestruturadas em relação às pastas de cimento referência nas propriedades mecânicas de fratura investigadas, conforme já foi discutido detalhadamente no capítulo anterior.

Todas as pastas de cimento nanoestruturadas moldadas em corpos de prova de 25x25x150mm³ apresentaram ganhos médios, mesmos que pequenos, em todas as idades e propriedades investigadas quando comparadas com a pasta de cimento referência. Em relação à resistência à tração na flexão, aos 7 dias de idade o maior ganho foi da pasta de cimento com adição de 0,20% de NTC/NFC, sendo esse ganho igual a 45,30%. Aos 28 de idade o maior ganho foi da pasta de cimento com adição de 0,10% de NTC/NFC e esse ganho foi igual a 25,00%. Aos 120 dias de idade o maior ganho também foi da pasta de cimento com adição à tenacidade à fratura, aos 7 dias de idade o maior ganho foi igual a 23,36%. Aos 28 dias de idade o maior ganho foi da pasta de cimento nanoestruturada com 0,20% de NTC/NFC e esse ganho foi apasta de cimento com adição de 0,10% de NTC/NFC e esse ganho foi da pasta de cimento nanoestruturada com 0,20% de NTC/NFC e esse ganho foi igual a 23,36%. Aos 28 dias de idade o maior ganho foi da pasta de cimento com adição de 0,20% de NTC/NFC e esse ganho foi igual a 23,36%. Aos 28 dias de idade o maior ganho foi da pasta de cimento com adição de 0,20% de NTC/NFC e esse ganho foi igual a 23,36%. Aos 28 dias de idade o maior ganho foi da pasta de cimento com adição de 0,20% de NTC/NFC, sendo esse ganho foi igual a 23,36%. Aos 28 dias de idade o maior ganho foi da pasta de cimento com adição de 0,20% de NTC/NFC, sendo esse ganho foi igual a 28,14%. Aos 120 dias de idade o maior ganho foi da pasta de cimento com adição de 0,20% de NTC/NFC e esse ganho foi igual a 7,98%.

O fato supracitado, ganhos médios em relação à pasta de cimento referência, mesmo que pequenos, em todas as idades e propriedades, não se repetiu para as pastas de cimento nanoestruturadas que foram moldadas nos corpos de prova de 40x40x160mm³. Em relação à resistência à tração na flexão, aos 28 dias de idade foram registrados decréscimos médios nas pastas de cimento com adições de 0,10% e 0,30% de NTC/NFC e aos 120 dias de idade foram registrados decréscimos em todas as pastas de cimento nanoestruturadas e, em relação à energia de fratura, foram registrados decréscimos aos 28 dias nas pastas de cimento com adição de 0,20% e 0,30% de NTC/NFC. No entanto, ganhos médios em relação às pastas de cimento referência também foram constatados. Em relação à resistência à tração na flexão, aos 7 dias de idade o maior ganho médio foi da pasta de cimento com adição de 0,30% de NTC/NFC e esse ganho foi igual a 77,78% e, aos 28 dias de idade o maior ganho foi da pasta de cimento nanoestruturada com 0,20%, sendo esse ganho igual a 6,27%. Quando avaliada a energia de fratura, aos 7 dias de idade registrouse o maior ganho médio das pastas de cimento nanoestruturadas com 0,30% de NTC/NFC, o qual foi igual a 113,59% e, aos 120 dias de idade, o maior ganho médio foi da pasta de cimento com adição de 0,10%, sendo esse ganho igual a 41,50%. Em relação à tenacidade à fratura, aos 7 dias de idade registrou-se o maior ganho médio das pastas de cimento nanoestruturadas com 0,30% de NTC/NFC, o qual foi igual a 76,19% e, aos 28 dias de idade, o maior ganho médio foi da pasta de cimento com adição de 0,20% de NTC/NFC, sendo esse ganho de 10,05%.

Os testes estastísticos ANOVA e de Tukey mostraram que, em relação à pasta de cimento referência, existiram ganhos significativos nas propriedades mecânicas investigadas. Quando avaliada a resistência à tração na flexão, o ganho significativo das pastas de cimento moldadas com 25x25x150 mm³ ocorreu para as pastas de cimento com adição de 0,20% de NTC/NFC e 7 dias de idade. Para as pastas de cimento moldadas com 40x40x160 mm³ os ganhos significativos ocorreram também aos 7 dias, porém, para todas as pastas nanoestruturadas. Em relação à energia de fratura, o ganho significativo ocorreu para a pasta de cimento com adição de 0,30% de NTC/NFC e com 7 dias de idade. Quando avaliada a tenacidade à fratura, para as pastas de cimento moldadas com 25x25x150 mm³ o ganho significativo ocorreu aos 7 dias de idade, porém o teste de Tukey não conseguiu identificar qual (is) pares eram significativamente diferentes e, aos 28 dias de idade, o ganho significativo ocorreu para a pasta de cimento com adição de 0,10% de NTC/NFC. Para as pastas moldadas com 40x40x160 mm³, aos 7 dias de idade todas as pastas de cimento nanoestruturadas apresentaram ganhos significativos.

Os resultados mostraram que a adição de NTC/NFC nas pastas de cimento alteraram de forma positiva o comportamento mecânico de fratura das pastas de cimento, especialmente aos 7 dias de idade. Esse comportamento especial nas primeiras idades sugere que os nanomateriais possam ter atuado como pontos de nucleação para a formação dos produtos de hidratação do cimento, conforme foi destacado por Makar e Chan (2009).

Observou-se que, aos 7 dias de idade, para os corpos de prova de 40x40x160mm³, todas as três propriedades mecânicas investigadas apresentaram os maiores ganhos significativos para as pastas de cimento com adição de 0,30% de NTC/NFC. Observou-se, também, que para os corpos de prova de 25x25x150mm³, nessa mesma idade, as duas propriedades mecânicas investigadas – resistência à flexão e tenacidade à fratura – apresentaram os maiores ganhos médios nas pastas de cimento nanoestruturadas com 0,20% de NTC/NFC.

O método de Correlação Digital de Imagem foi aplicado com êxito na pesquisa, porém algumas dificuldades encontradas devem ser ajustadas para pesquisas futuras, tais como a variação da luminosidade natural durante o ensaio, a alteração da posição da câmera entre os ensaios e a padronização da pintura. Esses ajustes podem melhorar as leituras dos deslocamentos verticais dos corpos de prova, que diminuem a variação das áreas sob essas curvas e, consequentemente, ocasionam uma menor variabilidade no cálculo das energias de fratura.

6 SUGESTÕES PARA TRABALHOS FUTUROS

Durante a última década muitas pesquisas foram realizadas acerca da incorporação de nanotubos de carbono nas matrizes cimentícias e muitas conquistas já foram realizadas. O crescimento *in-situ* e contínuo de nanotubos e nanofibras de carbono sobre as partículas de clínquer proporciona a produção do clínquer nanoestruturado de modo repetível e em larga escala, propiciando um aumento considerável nas investigações acerca da incorporação dos nanomateriais em matrizes cimentícias. Portanto, entre as várias possibilidades de se estudar esses compósitos, sugere-se:

- Avaliar o comportamento mecânico de fratura de pastas de cimento nanoestruturadas utilizando outros teores de adição NTC/NFC, fator água/cimento e aditivos;
- Investigar a microestrutura das pastas de cimento com clínquer nanoestruturado juntamente com uma análise dos seus comportamentos mecânicos, objetivando avaliar a influência dos nanotubos de carbono na aceleração da formação de produtos de hidratação do cimento;
- Realizar estudos de microestrutura e comportamento mecânico utilizando a incorporação do clínquer nanoestruturado para produzir outros compósitos cimentícios, como as argamassas, microconcretos e concretos;
- Investigar a influência dos nanotubos e nanofibras de carbono na durabilidade dos compósitos cimentícios;
- Realizar os ajustes sugeridos para o método de Correlação Digital de Imagem e realizar novas investigações acerca da energia de fratura dos compósitos cimentícios nanoestruturados;
- Utilizar o método de Correlação Digital de Imagem para avaliar a abertura da trinca dos compósitos cimentícios nanoestruturados;
- Avaliar a influência dos nanotubos e nanofibras de carbono na resistência à compressão dos compósitos cimentícios nanoestruturados;
- Avaliar a influência da geometria dos corpos de prova nas propriedades mecânicas calculadas nesse trabalho;
- Produzir pastas de cimento nanoestruturadas nas quais a única diferença é o processo de incorporação, sendo ele ou a partir da utilização do clínquer

nanoestruturado ou da mistura física de nanotubos de carbono e cimento, e comparar o desempenho mecânico dessas pastas;

REFERÊNCIAS

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C293 Standard test method for flexural strength of concrete (using simple beam with center-point loading). 2010.

ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND (ABCP). Guia básico de utilização do cimento Portland. 7 ed. São Paulo, 2002. 28p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5733 – Cimento Portland de alta resistência inicial. Rio de Janeiro, 1991.

BALAGURU, P. N. Nanotechnology and Concrete: Background, Opportunities and Challenges. *Proceedings of the International Conference – Application of Technology in Concrete Design*, *Scotland*, *UK*, p.113-122, 2005.

BAUER, L. A. F. Materiais de construção. Rio de Janeiro: LTC, 2008. V.1, 488 p.

CALLISTER, Jr., W. D. Ciência e engenharia dos materiais: uma introdução. 7 ed. Rio de Janeiro: LTC, 2008. 705 p.

CARAM JÚNIOR, R. **Estrutura e Propriedades dos Materias**. Campinas-SP, 2000. (Apostila do Departamento de Engenharia de Materiais – Universidade Estadual de Campinas).

DANOGLIDIS, P. A.; KONSTA-GDOUTOS, M. S.; GDOUTOS. E. E.; SHAH, S. P. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars. *Construction and Building Materials,* v. 120, p. 265-274, 2016.

HAN, B.; SUN, S.; DING, SIQI.; ZHANG, LIQING.; YU, XUN.; OU, JINPING. Review of nanocarbon-engineered multifunctional cementitious composites. *Composites: Part A*, v. 70, p. 69-81, 2015.

HU, Y.; LUO, D.; LI, P.; LI, Q.; SUN, G. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. *Construction and Building Materials,* v. 70, p. 332-338, 2014.

IIJIMA, S. Helicoidal microtubes of graphitic carbon. *Nature*, v. 354, p. 56-58, 1991.

KAUARK, F. S.; MANHÃES, F. C.; MEDEIROS, C. H. *Metodologia da pesquisa:* um guia prático. Itabuna: Via Litterarum, 2010. 88 p.

KONSTA-GDOUTOS, M. S.; METAXA, Z. S., SURENDRA, P. S. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. *Cement & Concrete Composites*, v. 32, p. 110-115, 2010.

LUDVIG, P. Synthesis and Caracterization of Portland Cement Manufactured with Carbon Nanotubes. Tese (doutorado em Engenharia de Estruturas) - Universidade Federal de Minas Gerais. Belo Horizonte: 2012. 199 p.

LUDVIG, P.; SOUZA, T. C. C.; CALIXTO, J. M. F.; LADEIRA, L. O.; de PAULA, J. N. Investigation on the fracture energy of Portland cement composites incorporating insitu synthesized carbon nanotubes and nanofibers. In: Proceedings of 11th International Symposium on Brittle Matrix Composites. Poland: Warsaw, 2015.

MAKAR, J.M; BEAUDOIN, J.J. Carbon nanotubes and their applications in the construction industry. *Proceedings of the 1st international symposium on nanotechnology in construction. Royal Society of Chemistry.* p. 331-341, 2004.

MAKAR, J.; CHAN, G. W. Growth of cement hydration products on single-walled carbon nanotubes. *Journal of the American Ceramic Society, v. 92, p. 1303-1310, 2009.*

MEHTA, P. K; MONTEIRO, P. J. M. *Concreto*: estrutura, propriedades e materiais. São Paulo: Pini, 1994. 573 p.

MEYYAPPAN, M. *Carbon nanotubes: science and applications*. Moffett Field, CA: CRC Press, 2004. 279 p.

MONTHIOUX, M.; KUZNETSOV, V. L. Who should be given the credit for the discovery of carbon nanotubes? *Carbon*, v. 44, p. 1621-1623, 2006.

OLIVEIRA, B. L. Síntese de nanotubos de carbon (NTC) por deposição química de vapor empregando Fe/CaCO₃ e Fe/NTC como catalisador. Dissertação (mestrado em Engenharia Química) – Universidade Federal do Rio de Janeiro. Rio de Janeiro: 2009. 117 p. OLIVEIRA, C. A. M. Os teoremas de Stewart e de Heron e o cálculo da área de um triângulo em função dos lados. Dissertação (Mestrado Profissional em Rede Nacional – PROFMAT) – Universidade Tecnológica Federal do Paraná. Curitiba: 2014. 66 p.

PAN, B.; QIAN, K.; XIE, H.; ASUNDI, A. On errors of digital image correlation due to speckle patterns. *Proc. SPIE* 7375, *ICEM* 2008: *International Conference on Experimental Mechanics*, 2008.

PAN, B.; QIAN, K.; XIE, H.; ASUNDI, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. *Measurement Science and Technology.* v. 20, 2009.

PAULA, J. N. Comportamento mecânico e reológico de pastas de cimento fabricado com nanotubos de carbono crescidos em clínquer para poços de petróleo. Tese (doutorado em Engenharia de Estruturas) - Universidade Federal de Minas Gerais. Belo Horizonte: 2014, p. 125.

PENG, B.; LOCASCIO, M.; ZAPOL, P.; LI, S.; MIELKE, S. L.; SCHATZ, G. C.; ESPINOSA, H. D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. *Nature*, v. 3, p. 626-631, 2008.

RAKI, L.; BEAUDOIN, J.; ALIZADEH, R.; MAKAR, J.; SATO, T. Cement and concrete nanoscience and nanotechnology. *Materials,* v. 3, p. 918-942, 2010.

RILEM TC-50 FMC (Draft Recommedation). Determination of the fracture energy of mortar and concrete by means of three point bend tests on notched beams. *Materials and Structures,* v. 18, n. 106, p. 285-290, 1985.

SANCHEZ, F.; SOBOLEV, K. Nanotechnology in concrete – A review. *Construction* and *Building Materials*, v. 24, p. 2060-2071, 2010.

SHACKELFORD, J. F. Introduction to materials science for engineers. 7 ed. 2010. 588 p.

SIDDIQUE, R.; METHA, A. Effect of carbon nanotubes on properties of cement mortars. *Construction and Building Materials*, v. 50, p. 116-129, 2014.

SILVA, E. L.; MENEZES, E. M. Metodologia da pesquisa e elaboração de dissertação. 4 ed. Florianópolis: UFSC, 2005. 138 p.

SOUZA, T. C. C. Síntese contínua e caracterização de cimento Portland fabricado com nanotubos de carbono. Dissertação (mestrado em Construção Civil) – Universidade Federal de Minas Gerais. Belo Horizonte: 2015. 210 p.

SOUZA, T. C. C.; SUZUKI, S.; LUDVIG, P.; CALIXTO, J. M.; LADEIRA, L. O. Nanotubos de carbono: um caminho para a sustentabilidade de materiais cimentícios. *Concreto & Construções,* a. 77, p. 20-24, 2015.

SOUZA, V. C. Guia para a utilização do Sistema DIC. Projeto de pesquisa (Iniciação Científica na UFMG). Versão 1.0, 2017.

SUN, S.; YU, X.; HAN, B.; OU, J. In situ growth of carbon nanotubes/carbon nanofibers on cement/mineral admixture particles: a review. *Construction and Building Materials,* v. 49, p. 835-840, 2013.

WANG, B.; HAN, YU.; LIU, S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. *Construction and Building Materials,* v. 46, p. 8-12, 2013.

YONEYAMA S, MURASAWA G. Digital image correlation. In: Freire JL, ed. Experimental Mechanics. Encyclopedia of Life Support Systems; 2009

YU, M.; LOURIE, O.; DYER, M. J.; MOLONI, K.; KELLY, T. F.; RUOFF, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. *Science*, v. 287, p. 637-640, 2000.

ZARBIN, A. J. G.; OLIVEIRA, M. M. Nanoestruturas de carbono (nanotubos, grafeno): Quo Vadis? *Química Nova,* v. 36, nº10, p. 1533-1539, 2013.

ZHAO, Z.; KWON, S. H.; SHAH, S. P. Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy. *Cement and Concrete Research*, v. 38, p. 1049-1060, 2008.

APÊNDICES

Apêndice A - Forças máximas no carregamento vertical (N)

As forças máximas no carregamento vertical estão apresentadas conforme a ordem de execução dos ensaios dos corpos de prova e os valores estão arredondados.

• Corpos de prova de 25x25x150mm³

	0,0% NTC/NFC		0,1%	% NTC/	NFC	0,2% NTC/NFC			0,3% NTC/NFC			
	7 dias	28 dias	120 dias	7 dias	28 dias	120 dias	7 dias	28 dias	120 dias	7 dias	28 dias	120 dias
CP1	141	154	231	144	225	165	157	207	224	155	223	217
CP2	110	160	194	116	199	79	183	188	189	181	226	177
CP3	137	172	152	120	201	138	182	209	196	121	212	192
CP4	132	139	172	150	217	187	218	220	209	171	220	187
CP5	114	169	192	164	240	154	170	216	187	160	218	182
CP6	136	219	198	156	227	128	186	228	184	*	209	177
CP7	*	*	175	*	*	130	*	211	*	*	*	150

Nota: * Ocorreram problemas durante o ensaio que impossibilitaram a utilização desses corpos de prova.

Corpos de prova de 40x40x160mm³

	0,0% NTC/NFC		0,1%	1% NTC/NFC		0,2% NTC/NFC			0,3% NTC/NFC			
	7 dias	28 dias	120 dias	7 dias	28 dias	120 dias	7 dias	28 dias	120 dias	7 dias	28 dias	120 dias
CP1	382	685	992	593	775	688	552	861	794	689	823	858
CP2	428	696	951	592	709	869	497	687	834	629	782	721
CP3	333	694	754	566	825	629	457	703	734	637	643	876
CP4	225	597	770	516	676	805	409	878	938	565	679	700
CP5	367	710	788	459	685	854	403	826	894	492	658	834
CP6	*	804	865	*	564	701	610	736	1035	716	695	853
CP7	*	848	*	*	*	*	*	652	*	*	654	819

Fonte: Elaborado pelo autor (2018).

Nota: * Ocorreram problemas durante o ensaio que impossibilitaram a utilização desses corpos de prova.
As áreas transversais de ruptura dos corpos de prova estão apresentadas conforme a ordem de execução dos ensaios.

	0,0%	% NTC/I	NFC	0,1%	% NTC/I	NFC	0,2	% NTC/	NFC	0,3%	% NTC/I	NFC
	7 dias	28 dias	120 dias									
CP1	463	481	542	523	539	507	520	537	511	542	526	543
CP2	517	525	523	505	514	540	525	526	490	546	551	518
CP3	524	493	488	566	508	493	541	538	517	512	544	510
CP4	528	515	517	576	509	475	564	528	552	502	575	501
CP5	511	524	518	576	578	548	513	540	492	518	554	493
CP6	589	494	524	540	560	546	529	514	502	*	563	512
CP7	*	*	519	*	*	522	*	535	*	*	*	520

Corpos de prova de 25x25x150mm³

Nota: * Ocorreram problemas durante o ensaio que impossibilitaram a utilização desses corpos de prova.

• Corpos de prova de 40x40x160mm³

	0,0%	% NTC/I	NFC	0,1%	% NTC/I	NFC	0,29	% NTC/	NFC	0,3%	% NTC/	NFC
	7 dias	28 dias	120 dias									
CP1	1272	1243	1203	1242	1296	1228	1291	1245	1229	1225	1298	1190
CP2	1244	1197	1239	1186	1276	1279	1222	1245	1217	1208	1190	1159
CP3	1206	1242	1213	1238	1217	1183	1203	1241	1213	1219	1188	1199
CP4	1236	1294	1179	1202	1207	1223	1227	1264	1243	1219	1217	1179
CP5	1266	1306	1161	1255	1230	1251	1223	1219	1233	1220	1229	1184
CP6	*	1202	1147	*	1200	1235	1188	1200	1250	1164	1210	1242
CP7	*	1200	*	*	*	*	*	1222	*	*	1244	1256

Fonte: Elaborado pelo autor (2018).

Nota: * Ocorreram problemas durante o ensaio que impossibilitaram a utilização desses corpos de prova.

Apêndice C - Curvas de força x deslocamento (kN x mm)

- Corpos de prova de 40x40x160mm³
 - 7 dias de idade (0,00%, 0,10%, 0,20% e 0,30% de NTC/NFC)

28 dias de idade (0,00%, 0,10%, 0,20% e 0,30% de NTC/NFC)

Nota: As curvas do CP2.40.28.02 e CP3.40.28.02 não apresentaram um comportamento aceitável e foram excluídas.

Nota: As curvas do CP1.40.28.03 e CP2.40.28.03 não apresentaram um comportamento aceitável e foram excluídas.

Nota: A curva do CP2.40.120.01 não apresentou um comportamento aceitável e foi excluída.

Nota: A curva do CP6.40.120.02 não apresentou um comportamento aceitável e foi excluída.

Apêndice D – Propriedades mecânicas de fratura

Os corpos de prova foram separados primeiramente pelo tipo, depois pela idade e em seguida pelos teores de adição de NTC/NFC. Eles não são apresentados conforme a ordem de execução dos ensaios, como ocorre nos Apêndices A, B e C. Após o cálculo da propriedade mecânica de fratura para cada corpo de prova, o desvio de cada valor em relação à média aritmética do grupo foi calculado e este valor, em módulo, foi utilizado para ordenar os corpos de prova dentro de cada teor de adição de NTC/NFC em ordem crescente, isto é, do que está mais próximo da média para o que está mais afastado.

Essa disposição dos corpos de prova em ordem crescente objetivou eliminar um ou dois corpos de prova – os mais afastados da média do grupo – dentro de cada grupo de teor de adição de NTC/NFC para que as análises fossem realizadas com base em cinco corpos de prova para todos os grupos. Os grupos cujo ensaio de flexão em três pontos ocorreu com êxito em apenas cinco corpos de prova não tiveram nenhum valor eliminado.

Resistência à tração na flexão (σ_f) - MPa

- Corpos de prova de 25x25x150mm³
 - o 7 dias de idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	2,47	2,51	3,49	3,02
CP2	2,69	2,40	3,45	2,82
CP3	2,27	2,74	3,54	3,31
CP4	2,18	2,77	3,42	2,43
CP5	2,09	2,85	3,11	3,72
CP6	3,20*	2,01*	3,91*	-
CP7	_	-	-	_

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

|--|

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	3,62	4,13	3,99	3,97
CP2	3,46	4,10	4,09	3,98
CP3	3,37	4,21	4,16	4,06
CP4	3,17	4,04	3,84	3,76
CP5	2,79	4,02	3,82	3,72
CP6	4,87*	4,34*	3,63*	4,26*
CP7	-	-	4,67*	-

Nota²: (-) Corpos de prova que apresentaram problema durante o ensaio.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	3,84	-	4,02	3,68
CP2	3,86	-	4,10	3,57
CP3	3,57	-	3,85	3,96
CP4	4,02	-	3,81	3,98
CP5	3,50	-	3,75	4,03
CP6	3,37*	-	4,58*	4,10*
CP7	4,36*	-	-	2,94*

o 120 dias de idade

- Corpos de prova de 40x40x160mm³
 - \circ 7 dias de idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	2,08	3,32	3,05	3,90
CP2	2,10	3,30	3,09	3,94
CP3	2,22	3,54	2,88	4,12
CP4	2,57	3,82	2,53	3,38
CP5	1,36	2,59	2,49	3,06
CP6	-	-	3,89*	4,64*
CP7	-	-	-	-

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	4,14	4,17	4,57	4,16
CP2	4,47	4,05	4,17	4,07
CP3	4,09	4,36	4,96	4,06
CP4	3,85	3,94	4,03	3,90
CP5	4,96	3,47	5,10	4,52
CP6	5,26*	5,01*	5,15*	3,83*
CP7	3,30*	-	3,94*	4,93*

o 28 dias de idade

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

Nota²: (-) Corpos de prova que apresentaram problema durante o ensaio.

corpos de prova.

 \circ 120 dias de idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	5,73	4,25	5,29	5,14
CP2	5,25	4,88	5,06	4,84
CP3	5,08	4,88	5,57	4,83
CP4	5,94	4,10	4,71	5,48
CP5	6,26	4,06	4,55	5,51
CP6	4,69*	5,08*	6,08*	5,52*
CP7	-	-	-	4,46*

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

Nota²: (-) Corpos de prova que apresentaram problema durante o ensaio.

Energia de fratura $(G_f) - N/m$

- Corpos de prova de 40x40x160mm³
 - o 7 dias de idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	5,73	9,35	9,58	14,44
CP2	5,72	13,98	9,07	15,00
CP3	9,60	6,49	12,98	15,39
CP4	3,03	5,55	7,37	15,70
CP5	11,64	16,50	6,16	15,71
CP6	-	-	18,43*	11,54*
CP7	-	-	-	-

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

0	28	dias	de	idade
---	----	------	----	-------

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	17,66	18,89	17,56	12,96
CP2	19,17	21,67	19,09	12,36
CP3	16,94	21,70	14,60	14,74
CP4	15,71	15,14	14,51	16,93
CP5	22,48	15,11	24,21	8,63
CP6	23,80*	25,01*	-	-
CP7	11,93*	-	-	-

Nota²: (-) Corpos de prova que apresentaram problema durante o ensaio.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	15,92	22,10	18,26	15,85
CP2	14,55	23,77	18,25	15,08
CP3	12,27	24,32	16,96	20,19
CP4	11,74	26,90	16,50	14,72
CP5	22,00	11,18	23,62	14,31
CP6	23,33*	-	-	21,03*
CP7	-	-	-	21,86*

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

Nota²: (-) Corpos de prova que apresentaram problema durante o ensaio.

Tenacidade à fratura (K_{IC}) - MPa.mm^{1/2}

- Corpos de prova de 25x25x150mm³
 - 7 dias de idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	1,40	1,42	1,76	1,63
CP2	1,38	1,47	1,78	1,76
CP3	1,48	1,61	1,82	1,54
CP4	1,34	1,64	1,61	1,25
CP5	1,23	1,19	1,50	2,09
CP6	1,63*	1,19*	2,00*	-
CP7	-	-	-	-

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

 28 dias de 	idade
--------------------------------	-------

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	1,78	2,19	2,11	2,03
CP2	1,85	2,14	2,12	2,03
CP3	1,66	2,22	2,08	2,00
CP4	1,65	2,10	1,99	2,16
CP5	1,41	2,05	2,24	2,19
CP6	2,46*	2,32*	2,32*	1,85*
CP7	-	-	1,87*	-

Nota²: (-) Corpos de prova que apresentaram problema durante o ensaio.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	1,91	1,46	2,07	1,96
CP2	1,94	1,50	2,02	1,90
CP3	2,00	1,35	2,22	1,88
CP4	1,79	1,23	1,95	2,03
CP5	1,78	1,71	1,91	2,10
CP6	1,73*	2,07*	2,34*	2,24*
CP7	2,24*	0,78*	-	1,53*

0	120	dias	de	idade
---	-----	------	----	-------

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

Nota²: (-) Corpos de prova que apresentaram problema durante o ensaio.

• Corpos de prova de 40x40x160mm³

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	1,04	1,76	1,54	1,95
CP2	1,11	1,79	1,52	1,92
CP3	1,15	1,84	1,52	2,10
CP4	1,28	1,88	1,43	1,74
CP5	0,70	1,44	1,25	1,53
CP6	-	-	1,93*	2,48*
CP7	-	-	-	-

 \circ 7 dias de idade

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

0	28	dias	de	idade

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	2,13	2,11	2,32	2,16
CP2	2,11	2,09	2,16	2,05
CP3	2,09	2,04	2,52	2,03
CP4	2,07	2,25	2,53	2,03
CP5	2,54	1,73	2,55	2,00
CP6	2,60*	2,52*	2,07*	2,32*
CP7	1,76*	-	2,04*	2,39*

Nota²: (-) Corpos de prova que apresentaram problema durante o ensaio.

	0,00% NTC/NFC	0,10% NTC/NFC	0,20% NTC/NFC	0,30% NTC/NFC
CP1	2,65	2,18	2,66	2,57
CP2	2,86	2,46	2,60	2,47
CP3	2,88	2,13	2,47	2,44
CP4	2,54	2,46	2,86	2,74
CP5	2,36	2,47	2,37	2,79
CP6	3,13*	2,06*	2,97*	2,79*
CP7	-	-	-	2,22*

o 12	20 dias	s de io	dade
------	---------	---------	------

Nota¹: (*) Valores que foram eliminados para se calcular as médias e os desvios padrão para cinco corpos de prova.

Apêndice E – Análises estatísticas dos ensaios realizados

Para a realização dos testes ANOVA e de Tukey em um nível de significância de 95%, utilizou-se o software *Origin 8.1* e considerou-se que as amostras são independentes e possuem uma distribuição normal.

Resistência à tração na flexão (σ_f) – Mpa

p	out Dat	a										
a	ad Data	(mis.	sing va	lues) 1	alues	s that are	inval	lid and i	thus not	used	in comput	ations
e	escripti	ve Sta	atistics	i i i i i i i i i i i i i i i i i i i								
	5	Sample	Size	Mean	Stan	dard Devia	tion	SE of M	ean			
0,0	00%		6	2,48229		0,41	455	0,16	924			
0,	10%		6	2,54672		0,31	321	0,12	787			
0,1	20%		6	3,48808		0,25	575	0,10	441			
0,3	30%		5	3,06128		0,48	742	0,21	798			
or	ne Wav	ANC	VA			24_0000 000.0						
1	Overal	ANC	VA									
T		DF	Sum o	f Squares	Mea	n Square	F Va	alue	Prob>F	Ĩ		
	Model	3		3,99711		1,33237	9,63	3603 4	42075E-4	1		
	1110 0 01					100000						
	Error	19		2,62712	§	0,13827						
	Error Total Null Hype Alternativ At the 0.0	19 22 othesis: e Hypot 5 level,	The mean hesis: The the popula	2,62712 6,62423 s of all levels means of or ation means a	are equa e or moi re signifi	0,13827 al re levels are d icantly differe	ifferent nt.	t				
	Error Total Null Hypo Alternativ At the 0.0 Fit Stal R-Squa	19 22 othesis: e Hypot 5 level, tistics are	The mean hesis: The the popula	2,62712 6,62423 s of all levels a means of or ation means a r Root M	are equa le or moi re signifi SE [0,13827 al re levels are d icantly differe Data Mean	ifferent nt.	t		741		
	Error Total Null Hype Alternativ At the 0.0 <i>Fit Stal</i> R-Squa 0,603	19 22 othesis: e Hypot 5 level, fistics are 41	The mean hesis: The the popula coeff Va 0,1287	2,62712 6,62423 s of all levels a means of or ation means a r Root M 8 0,37	are equa e or moi re signifi SE [185	0,13827 al re levels are d icantly differe Data Mean 2,88735	ifferent nt.	t				
	Error Total Null Hype Alternativ At the 0.0 <i>Fit Stal</i> R-Squa 0,603 <i>Means</i>	19 22 othesis: e Hypot 5 level, fistics are (41 <i>Com</i>)	The mean hesis: The the popula coeff Va 0,12871 Darisol	2,62712 6,62423 s of all levels means of or ation means a r Root M 8 0,37 75	are equa e or mor re signif SE [185	0,13827 al re levels are d icantly differe Data Mean 2,88735	ifferent nt.	t				
	Error Total Null Hype Alternativ At the 0.0 Fit Stal R-Squa 0,603 Means Tuke	19 22 othesis: e Hypot 5 level, tistics are Com, ey Te.	The mean hesis: The the popula coeff Va 0,1287 Darisol Sf	2,62712 6,62423 s of all levels means of or ation means a r Root M 8 0,37 75	are equa e or mor re signif SE [185	0,13827 al re levels are d icantly differe Data Mean 2,88735	iffereni nt.	t				
	Error Total Null Hype Alternativ At the 0.0 <i>Fit Sta</i> 0,603 <i>Means</i> <i>Tuke</i>	19 22 othesis: e Hypot 5 level, 5 level, fistics are (41 com, ey Te	The mean hesis: The the popula coeff Va 0,1287 0,1297 0,10	2,62712 6,62423 s of all levels a means of or ation means a r Root M 8 0,37 75 nDiff \$	are equa e or mor re signifi SE [185]	0,13827 al re levels are d icantly differe Data Mean 2,88735 q Value	ifferent nt.	t	Alpha	Sig	LCL	UCL
	Error Total Null Hypc Alternativ At the 0.0 <i>Fit Sta</i> R-Squa 0,603 <i>Means</i> <i>Tuke</i> 0,19	19 22 othesis: e Hypot 5 level, tistics are Com, ey Te 6 0,09	The mean hesis: The popula coeff Va 0,1287: Darisoi st Mea 6 0,0	2,62712 6,62423 s of all levels a means of or ation means a r Root M 8 0,37 75 nDiff \$ 6443 0,2	are equa ee or moi re signif SE [185] SEM 21469	0,13827 al re levels are d icantly differe 2,88735 q Value 0,42443	iffereni nt.	Prob 0,9903	Alpha 0,05	Sig	LCL -0,53923	UCL 0,66809
	Error Total Null Hypc Alternativ At the 0.0 <i>Fit Stal</i> R-Squa 0,603 <i>Means</i> <i>Tuke</i> 0,19 0,29	19 22 othesis: e Hypot 15 level, tistics are Com, ey Te 6 0,09 6 0,09	The mean hesis: The coeff Va 0,1287: Darisol St Mea 6 0,0 6 1,0	2,62712 6,62423 s of all levels a means of or ation means a r Root M 8 0,37 75 nDiff \$ 6443 0,2 0579 0,2	are equate e or motore signification SE [185] SEM 21469 21469	0,13827 al re levels are d icantly differe 2,88735 q Value 0,42443 6,6255	ifferent nt.	Prob 0,9903 3322E-4	Alpha 0,05 0,05	Sig 0 1	LCL -0,53923 0,40213	UCL 0,66809 1,60945
	Error Total Null Hype Alternativ At the 0.0 <i>Fit Stal</i> R-Squa 0,603 <i>Means</i> <i>Tuke</i> 0,19 0,29 0,29	19 22 othesis: e Hypot 5 level, tistics are Comp ey Te 6 0,09 6 0,09 6 0,09 6 0,19	The mean hesis: The hesis: The coeff Va 0,1287: Darisoi Sf Mea 6 6 0,9	2,62712 6,62423 s of all levels a means of or ation means a n Root M 8 0,37 75 n Diff 5 6443 0,2 0579 0,2 4136 0,2	are equa e or more re signif SE [185] 21469 21469 21469	0,13827 al re levels are d icantly differe 2,88735 q Value 0,42443 6,6255 6,20108	ifferent nt.	Prob 0,9903 3322E-4 0,00166	Alpha 0,05 0,05 0,05	Sig 0 1 1	LCL -0,53923 0,40213 0,3377	UCL 0,66809 1,60945 1,54502
	Error Total Null Hype Alternativ At the 0.0 <i>Fit Stal</i> R-Squa 0,603 <i>Means</i> <i>Tuke</i> 0,19 0,29 0,29 0,39	19 22 othesis: e Hypot 5 level, tistics are (41 <i>Com</i> , ey Te 6 0,09 6 0,09 6 0,09 6 0,09	Mean coeff Va coeff Va 0,1287/i Darisol st Mea 6 7	2,62712 6,62423 s of all levels a means of or ation means a r Root M 8 0,37 75 nDiff \$ 6443 0,2 0579 0,2 4136 0,2 7898 0,2	are equa e or more re signif SE [185] 21469 21469 21469 22516	0,13827 al re levels are d icantly differe 2,88735 0,42443 6,6255 6,20108 3,6365	ifferent nt.	Prob 0,9903 3322E-4 0,00166 0,08035	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 0 1 1 0	LCL -0,53923 0,40213 0,3377 -0,05414	UCL 0,66809 1,60945 1,54502 1,21211
	Error Total Null Hype Alternativ At the 0.0 <i>Fit Stal</i> R-Squa 0,603 <i>Means</i> <i>Tuke</i> 0,19 0,29 0,29 0,39 0,39	19 22 othesis: 6 Hypot 5 level, <i>tistics</i> are (441 <i>Com</i> , <i>ey Te</i> , 6 0,09 6 0,09 6 0,19 6 0,09 6 0,19	Mean coeff Va 0,1287/ Darisol st Mea 0,00 1,00 0,09 0,05 0,05	2,62712 6,62423 s of all levels e means of or ation means a r Root M 8 0,37 75 nDiff \$ 6443 0,2 0579 0,2 4136 0,2 7898 0,2 1455 0,2	are equa e or more re signif SE [185] 21469 21469 21469 21469 22516 22516	0,13827 al re levels are d icantly differe 2,88735 0,42443 6,6255 6,20108 3,6365 3,23182	iffereni int.	Prob 0,9903 3322E-4 0,00166 0,08035 0,13685	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 0 1 1 0 0	LCL -0,53923 0,40213 0,3377 -0,05414 -0,11857	UCL 0,66809 1,60945 1,54502 1,21211 1,14768

	anpun	e Sla	ausucs	<u> </u>							
	S	ampl	e Size	Mean	Stan	idard Devia	tion SE	ofMean			
0,009	%		6	3,54843		0,70	788	0,28899			
0,109	%		6	4,1411		0,11	735	0,04791			
0,209	%		7	4,02756		0,33	459	0,12646			
0,309	%		6	3,95806	i	0,20	155	0,08228			
One	Way	ANC	VA								
OV	verali	ANC	VA	a construction of the cons	005494		2011-22200	U 17 2 10 150			
		DF	Sum o	f Square	s Mea	an Square	F Value	Prob>F			
Mo	odel	3		1,2111	6	0,40372	2,45806	0,0911	1		
E	FRAF	0.4					and the second distance of the local data of the second distance of	and the second state in the second			
· 14	TION	21		3,449	1	0,16424					
T Nul Alte	Enor Fotal II Hypo ernative the 0.0	21 24 thesis: e Hypot 5 level,	The mean hesis: The the popul	3,449 4,6602 s of all leve e means of ation means	1 6 Is are equ one or mo are not s	0,16424 val vre levels are d ignificantly dif	ifferent ferent.				
Null Alte At t	Total II Hypo ernative the 0.09 t Stat	21 24 thesis: e Hypot 5 level, fistics	The mean hesis: The the popul	3,449 4,6602 s of all leve e means of ation means r Root	1 6 Is are equ one or mo are not s MSE	0,16424 val ore levels are d ignificantly dif Data Mean	ifferent ferent.				
Null Alte At t Fit	Fotal II Hypo ernative the 0.0 <i>t Stat</i> -Squa 0,259	21 24 thesis: a Hypot 5 level, fistics re (89	The mean hesis: The the popul Coeff Va 0,103	3,449 4,6602 s of all leve e means of ation means r Root 3 0,4	1 6 Is are equ one or mo are not s MSE 0527	0,16424 val ore levels are d ignificantly dif Data Mean 3,92314	ifferent ferent.				
Null Alte At t Fit R- 0 Me	In or Fotal Il Hypo ernative the 0.0 the 0.	21 24 thesis: a Hypot 5 level, fistics re (89 Com	The mean hesis: The the popul Coeff Va 0,103 <i>Darisol</i>	3,449 4,6602 s of all leve a means of ation means r Root 3 0,4 75	1 6 Is are equ one or mo are not s MSE 0527	0,16424 ial ire levels are d ignificantly dif Data Mean 3,92314	ifferent ferent.				
T Null Alte At t Fit 0 Me	In or Total In Hypo ernative the 0.09 the	21 24 thesis: a Hypot 5 level, fistics re (89 Com	The mean hesis: The the popula Coeff Va 0,103 parisol st	3,449 4,6602 s of all leve a means of ation means r Root 3 0,4 75	1 6 Is are equ one or mo are not s MSE 0527	0,16424 val re levels are d ignificantly dif Data Mean 3,92314	ifferent ferent.				
T Null Alte At t Fit 0 M€	Total Hypo ernative the 0.09 t Stat Squa 0,259 eans Tuke	21 24 thesis: a Hypot 5 level, fistics re (89 Com, ey Te	The mean hesis: The the popul Coeff Va 0,103 parisoi St Mea	3,449 4,6602 s of all leve e means of ation means r Root 3 0,4 75	1 6 Is are equ one or mo are not s MSE D527 SEM	0,16424 val pre levels are d ignificantly dif Data Mean 3,92314 q Value	ifferent ferent.	Alpha	Sig	LCL	UCL
Null Alte At t Fit 0 Me	Total II Hypo emative the 0.02 t Stat Squa 0,259 eans Tuke 0,1%	21 24 thesis: e Hypot 5 level, tistics re (89 Com ey Te	The mean hesis: The coeff Va 0,103 parisoi st Mea 6 0,5	3,449 4,6602 s of all leve e means of ation means r Root 3 0,4 75	1 6 Is are equ one or mo are not s MSE 0527 SEM ,23398	0,16424 val pre levels are d ignificantly dif Data Mean 3,92314 q Value 3,58222	ifferent ferent.	Alpha 0,05	Sig	LCL -0,0595	UCL 1,24487
Null Alte At t Fit 0 Me	II Hypo ernative ernative the 0.02 t Stat -Squa 0,2599 eans Tuke 0,1% 0,2%	21 24 thesis: a Hypot 5 level, fistics re (89 Com ey Te 6 0,0%	The mean thesis: The the popul Coeff Va 0,103 0,10000000000	3,449 4,6602 s of all leve e means of ation means r Root 3 0,4 75 mDiff 9268 (7913 (1 6 Is are equ one or mc are not s MSE 0527 SEM ,23398 ,22547	0,16424 ial ore levels are d ignificantly dif Data Mean 3,92314 q Value 3,58222 3,00525	ifferent ferent.	Alpha 0 0,05 3 0,05	Sig 0 0	LCL -0,0595 -0,14933	UCL 1,24487 1,10759
T Null Alter At t Fit O Me	II Hypo II Hypo ernative ernative the 0.02 the 0.02 the 0.02 Squa 0,2593 eans Tuke 0,1% 0,2% 0,2%	21 24 thesis: = Hypot 5 level, fistics Rep Com, ey Te 5 0,09 5 0,09 5 0,19	The mean hesis: The the popul coeff Va 0,103 0,000000	3,449 4,6602 s of all leve e means of ation means r Root 3 0,4 75 9268 (7913 (1355 (1 6 Is are equ one or mc are not s MSE 0527 SEM ,23398 ,22547 ,22547	0,16424 ial ire levels are d ignificantly dif Data Mean 3,92314 Q Value 3,58222 3,00525 0,7122	Prob 0,0834 0,1777	Alpha 0 0,05 3 0,05 2 0,05	Sig 0 0 0	LCL -0,0595 -0,14933 -0,74201	UCL 1,24487 1,10759 0,51491
Fit Null Alte Fit O Mee	II Hypo II Hypo emative the 0.03 t Stat Squa 0,2591 eans Tuke 0,1% 0,2% 0,3%	21 24 thesis: a Hypot 5 level, fistics 89 Com 2009 5 0,09 5 0,09 5 0,09 5 0,09 5 0,09	The mean hesis: The the popul coeff Va 0,103 0,103 0,103 0,103 0,103 0,103 0,103 0,103 0,0,103 0,0,4 0,0,4 0,0,4	3,449 4,6602 s of all leve e means of ation means r Root 3 0,4 75 nDiff 9268 (7913 (1355 (0963 (1 6 Is are equ one or mot sen not s 0527 .23398 .22547 .23398 .22547 .23398	0,16424 ial re levels are d ignificantly dif Data Mean 3,92314 Q Value 3,58222 3,00525 0,7122 2,47587	Prob 0,0834 0,1777 0,9573 0,3239	Alpha 0 0,05 3 0,05 2 0,05 3 0,05	Sig 0 0 0 0	LCL -0,0595 -0,14933 -0,74201 -0,24255	UCL 1,24487 1,10759 0,51491 1,06182
T Null Alter At t Fill Mee	Introduct Introduct II Hypo emative emative emative the 0.0% t Squa 0,2591 eans Tuke 0,1% 0,2% 0,2% 0,3% 0,3% 0,3%	21 24 thesis: a Hypot 5 level, fistics 89 Com ey Te 5 0,09 5 0,09 5 0,09 5 0,09 5 0,09 5 0,09 5 0,09 5 0,09 5 0,19	The mean hesis: The the popula 0,103 parison st Mea 6 0,5 6 0,4 6 -0,1 6 0,4 6 -0,1 6 0,4	3,449 4,6602 s of all leve e means of ation means r Root 3 0,4 75 mDiff 9268 (7913 (1355 (0963 (8305 (1 6 Is are equ one or mot sen not s 0527 .23398 .22547 .22547 .23398 .23398	0,16424 ial re levels are d ignificantly dif Data Mean 3,92314 Q Value 3,58222 3,00525 0,7122 2,47587 1,10635	Prob 0,0834 0,1777 0,9573 0,3239 0,861	Alpha 0 0,05 3 0,05 2 0,05 5 0,05 5 0,05	Sig 0 0 0 0 0	LCL -0,0595 -0,14933 -0,74201 -0,24255 -0,83523	UCL 1,24487 1,10759 0,51491 1,06182 0,46914

		S	ampl	e Size	Mean	Stan	dard Devia	ion S	SE of	Mean			
0	.009	%		7	3,78669		0.33	925	0.	12822			
0	,209	%		6	4,01872		0,30	736	0,	12548			
0	,309	%		7	3,75097		0,40	653	0,	15365			
C	ne	Way	ANC	VA			112		11.1				
-1	OV	verall	ANC	VA									
ľ	Č.		DF	Sum of	Square	6 Mea	an Square	F Valu	ue	Prob>F]		
	Mo	odel	2		0,2667	3	0,13337	1,052	32	0,3708			
		10000 COOL	47		2 1544	2	0 40670				1		
	E	ELLOL	11		2,1044	2	0,12073						
10	Null Alte	Error Total II Hypo ernative the 0.0	17 19 thesis: Hypot	The means hesis: The	2,1344 2,4212 of all leve means of	2 s are equipped or mo	u, 12073 ial pre levels are d	ifferent					
	Null Alte At t	Error Total II Hypo ernative the 0.0 If Stat	17 19 thesis: Hypot 5 level, fistics re (The means hesis: The the popula	2,1344 2,4212 of all leve means of tion means	s are equ s are equ one or mo are not s	o, 12073 Ial Ignificantly dif	ifferent Terent.					
	Null Alte At t Fit	Error Total II Hypo the 0.04 the 0.04 t	17 19 thesis: Hypot 5 level, tistics re (16	The means hesis: The the popula Coeff Var 0,09262	2,1344 2,4212 of all leve means of tion means Root	s are equ one or mo are not s MSE ,356	ual ignificantly dif Data Mean 3,84379	ifferent ferent.					
-	Null Alte At t Fit R-0 Me	Error Total II Hypo ernative the 0.0 the 0.0 t	17 19 thesis: a Hypot 5 level, fistics re (16 Com	The means hesis: The the popula Coeff Var 0,09262	2,1344 2,4212 of all leve means of tion means Root	s are equ s are or mo are not s MSE ,356	ual ire levels are d ignificantly dif Data Mean 3,84379	ifferent ierent.					
	Null Alte At t Fit R- 0 Me	Error Total II Hypo ernative the 0.0 <i>t</i> Stal Squa 0,110 <i>eans</i> Tuke	17 19 thesis: Hypot 5 level, fistics re (16 Com	The means hesis: The the popula Coeff Var 0,09262 Darisor St	2,1344 2,4212 of all leve means of tion means Root 2 0 0 0 0 0 0 0	s are equ one or mo are not s MSE ,356	ual ignificantly dif Data Mean 3,84379	ifferent ferent.					
	Null Alte Att Fit R- 0 Me	Error Total II Hypo ernative the 0.04 <i>It Stat</i> Squa 0,110 <i>eans</i> <i>Tuke</i>	17 19 thesis: a Hypot 5 level, 5 level, 5 level, 5 level, 5 level, 6 level, 7 level, 16 16 <i>Com</i>	The means hesis: The the popula Coeff Var 0,09262 Darison st Meai	2,1944 2,4212 of all leve means of tion means Root 2 0 25	s are equivate or mic are not s MSE ,356	ual ore levels are d ignificantly dif Data Mean 3,84379	ifferent Ferent.	ob	Alpha	Sig	LCL	UCL
1	Null Alte At t Fit R-0 0 Me	Error Total II Hypo the 0.0 if Stal -Squa 0,110 eans Tuke 0,2%	17 19 thesis: Hypot 5 level, <i>tistics</i> re (16 <i>Com</i> <i>Cy Te</i> 0,09	The means hesis: The the popula 0,09262 Darison St Mean 6 0,2;	2,1944 2,4212 of all leve means of tion means Root t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s are equ one or mo are not s MSE ,356 SEM ,19806	u, 12073 ial ore levels are d ignificantly dif Data Mean 3,84379 q Value 1,65676	ifferent ierent.	b 538	Alpha 0,05	Sig	LCL -0,27606	UCL 0,74011
	Null Alte At t Fit R- 0 Me	Error Total II Hypo ernative the 0.0 <i>t Stal</i> Squa 0,110 <i>eans</i> <i>Tuke</i> 0,2% 0,3%	17 19 thesis: a Hypot 5 level, tistics re (16 Com cy Te 0,09 0,09	The means hesis: The the popula 0,09262 Darison st Mean 6 0,2: 6 -0,0;	2,1344 2,4212 of all leve means of tion means Root C Root C S Diff 3203 0 3572 0	2 s are equ one or mo are not s MSE ,356 SEM ,19806 ,19029	uial re levels are d ignificantly dif Data Mean 3,84379 Q Value 1,65676 0,26548	ifferent erent.	ob 538 078	Alpha 0,05 0,05	Sig 0 0	LCL -0,27606 -0,52387	UCL 0,74011 0,45243

υ	rescript	Ne Si	ausics	Haan	Oten	dard Daviat	ing OF of	Haan			
0	0.000/	Samp	e Size	Mean	Stand	ard Devial		Mean			
0	0,00%		5	2,0053	-	0,440	J80 U,	19/15			
0	0,10%		6	0,0007	2	0,40	700 0.2	0400			
0	0,20%		6	3,8306	4	0,55	742 0.2	2757			
0	20010	V ANI	1/4	0,0000		0,00	(42 0,2	2101			
	Ouera	ANC									
ħ	Overa	DE	Sum	of Coulors	e Moor	n Caulora	EValua	Brobal	-		
	Model	2	Sum	o noos	s ivieal		Fvalue	FI00-			
	INDUCT					247751	12 02221	1 17200			
	Error	18		4 4537	2	2,97751	12,03381	1,47309	E-4		
20 B	Error Total Null Hyp Alternati At the 0.	18 21 othesis: ve Hypo 05 level	The mear thesis: Th the popu	4,4537 13,3862 is of all leve e means of ation means	2 2 25 25 25 25 25 25 25 25 25 25 25 25	2,97751 0,24743 Il e levels are di cantly differe	12,03381	1,47309	E-4		
	Error Total Null Hyp Alternati At the 0. Fit Sta	18 21 othesis: ve Hypo 05 level	The mear thesis: Th the popu	4,4537 13,3862 is of all leve e means of ation means	2 5 s are equa one or mor are signifi	2,97751 0,24743 al e levels are di cantly differe	12,03381	1,47309	E-4		
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ	18 21 othesis: ve Hypo 05 level atistic: are 720	The mear thesis: Th the popu Coeff V: 0 1612	4,4537 13,3862 is of all leve e means of ation means ar Root	2 2 5 els are equa one or mor s are signifi MSE E	2,97751 0,24743 al e levels are di cantly differe Data Mean 3,08485	12,03381	1,47309	E-4		
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,66	18 21 othesis: ve Hypo 05 level atistic: are 729	The mear thesis: Th the popu Coeff Va 0,1612	4,4537 13,3862 is of all lev- e means of ation means or Root 5 0,4	2 2 5 els are equa one or mor s are signifi <u>MSE E</u> 9742	2,97751 0,24743 el evels are di cantly differe Data Mean 3,08485	12,03381	1,47309	E-4		
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,66 Mean:	18 21 othesis: ve Hypo 05 level atistic: are 729 5 Con	The mear thesis: Th the popu Coeff Va 0,1612 pariso	4,4537 13,3862 s of all leve e means of ation mean ar Root 5 0,4 ///S	2 2 5 els are equa one or mor s are signifi <u>MSE E</u> 9742	2,97751 0,24743 al e levels are di cantly different Cata Mean 3,08485	12,03381	1,47309	E-4		
	Error Total Null Hyp Alternati At the 0. Fit Sta 0,66 Mean: Tuk	18 21 othesis: ve Hypo 05 level atistic: are 729 s Con rey Te	The mean thesis: Th the popu coeff Va 0,1612 pariso st	4,4537 13,3862 is of all leve e means of ation mean or Root 5 0,4 <i>INS</i>	2 2 5 sare equa one or mor s are signifi MSE E 9742	2,97751 0,24743 al e levels are di cantly differe 0ata Mean 3,08485	12,03381	1,47309	E-4		
	Error Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,66 <i>Mean</i> :	18 21 othesis: ve Hypo 05 level atistic: are 729 s Con rey Te	The mean thesis: Th the popu Coeff Va 0,1612 pariso st Mea % 1.2	4,4537 13,3862 is of all leve e means of ation mean ar Root 5 0,4 //// //// //// ///// ///// ////// /////	2 2 5 els are equa one or mor s are signifi MSE [2 9742] SEM 0.3145	2,97751 0,24743 al e levels are di cantily differe 0ata Mean 3,08485 q Value 5,61234	12,03381	Alpha	Sig	LCL 0.35934	UCL 2 13763
	Error Total Null Hyp Alternati At the 0. <i>Fif Sta</i> 0,66 <i>Mean</i> 0,1 0,1	18 21 othesis: ve Hypc 05 level atistic: are 729 s Con ey Te % 0,0 % 0,0	The mean thesis: Th the popu Coeff Va 0,1612 pariso st Mea % 1,2 % 0.0	4,4537 13,3862 is of all leve e means of ation mean or Root 5 0,4 ///S anDiff 24849 (2343)	3 2 2 5 5 els are equa one or mor s are signifi MSE	2,97751 0,24743 al e levels are di cantly differe 0ata Mean 3,08485 q Value 5,61234 4,33568	12,03381	Alpha 55 0,05	Sig	LCL 0,35934 0.07214	UCL 2,13763 1,77472
	Error Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,66 <i>Mean</i> : 0,11 0,2 0,2	18 21 othesis: ve Hypo 05 level atistic: are 729 5 Con rey Te % 0,0 % 0,0 % 0,0	The mean thesis: Th the popu : Coeff Va 0,1612 pariso st Mean % 1,2 % 0,9 % -0.3	4,4537 13,3862 is of all leve e means of ation mean of the means of ation mean of the means of the means of the means of the means of the means of the means of t	3 2 5 5 els are equa one or mor s are signifi MSE E 9742 9742 0,3146 0,3012 0,3012	2,97751 0,24743 al e levels are di cantly differe 0ata Mean 3,08485 q Value 5,61234 4,33568 1,52622	12,03381	Alpha 55 0,05 33 0,05	Sig 1 1	LCL 0,35934 0,07214 -1 17635	UCL 2,13763 1,77472 0,52623
	Error Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,66 <i>Mean</i> : 0 ,11 0,2 0,2 0,2 0,3	18 21 othesis ve Hypo 05 level atistic: are 729 5 Con rey Te % 0,0 % 0,	The mean thesis: Th the popu 200eff Va 0,1612 pariso st Mean % 1,2 % 0,9 % -0,3 % -0,3 % 1,7	4,4537 13,3862 is of all lev. e means of ation mean ar Root 5 0,4 7 24849 12343 12506 17427	3 2 2 5 5 els are equa one or mor s are signifi MSE [2 9742] 9742 0,3146 0,3012 0,3012 0,3012 0,3012	2,97751 0,24743 al e levels are di cantly differe 0ata Mean 3,08485 q Value 5,61234 4,33568 1,52622 8,33056	12,03381	Alpha 55 0,05 33 0,05 18 0,05	Sig 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	LCL 0,35934 0,07214 -1,17635 0,92298	UCL 2,13763 1,77472 0,52623 2,62556
	Error Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,66 <i>Mean</i> : I <i>Tuk</i> 0,11 0,2 0,2 0,2 0,3 0,3	18 21 othesis: ve Hypo 05 level atistic: are 729 % 0,0 % 0	The mear thesis: Th the popu 200eff V2 0,1612 0pariso 55 Mea % 1,2 % 0,9 % -0,3 % -0,3 % 0,5 % 0,5 % 0,5	4,4537 13,3862 is of all lev. e means of ation mean ar Root 5 0,4 75 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	S S 2 2 55 2 els are equa one or moro s are signifi MSE E 9742 2 2 9742 2 2 0,3146 0,3012 0,3012 0,3012 0,3012 0,3012 0,3012 0,3012 0,3012	2,97751 0,24743 al e levels are di cantly differe 20ata Mean 3,08485 4,30568 1,52622 8,33056 2,46866	Prob 0,004 0,030 0,706 7,67047E 0,330	Alpha 55 0,05 33 0,05 18 0,05 -5 0,05 45 0,05	E-4 Sig 1 1 1 1 1 1 0 1 1 0 0	LCL 0,35934 0,07214 -1,17635 0,92298 -0.32551	UCL 2,13763 1,77472 0,52623 2,62556 1.37707

	5	Samp	e Size	Mean	i Star	ndard Deviat	ion SE of	Mean			
0	0,00%		7	4,2966	54	0,66	663 0,	25196			
0	,10%		6	4,1674	47	0,51	221 0,	20911			
)	,20%		7	4,5590	05	0,51	902 0,	19617			
0	,30%		7	4,2108	37	0,38	736 0,	14641			
2	ne Way	ANC	VA			46	-11				
	Overa	I ANO	DVA								
ſ		DF	Sum	of Squar	es Me	an Square	F Value	Prob>F			
	Model	3	1	0,625	71	0,20857	0,73862	0,53981	R.		
	Error	00		0 10 1							
4	LINU	23		6,494	73	0,28238					
1	Total Null Hype Alternativ At the 0.0	23 26 othesis: re Hypo 05 level	The mea thesis: Ti the popu	5,494 7,120 is of all ler e means o ation meal	73 44 vels are eq of one or m ns are not o	0,28238 ual ore levels are d significantly dift	fferent lerent.				
	Total Null Hype Alternativ At the 0.0	23 26 othesis: re Hypo 05 level of istics	The mea thesis: Ti the popu	5,494 7,120 s of all ler e means o ation mean	73 44 vels are eq of one or m ns are not o	0,28238 ual ore levels are di significantly diff	fferent erent.				
	Total Null Hype Alternativ At the 0.0 Fit Sta	23 26 othesis: re Hypo 05 level of <i>istic</i> : are	The mea thesis: Ti the popu Coeff V	6,494 7,120 is of all leve e means o ation mean	73 44 vels are eq of one or m ns are not o	0,28238 ual ore levels are di significantly diff	fferent ferent.				
	Total Null Hype Alternativ At the 0.0 <i>Fit Sta</i> 0,087	23 26 othesis: re Hypo 05 level otistic: are 788	The mea thesis: Th the popu Coeff V 0,123	6,494 7,120 is of all leve e means o ation mean ir Roo 9 0,1	vels are eq of one or m ns are not o t MSE 53139	0,28238 ual ore levels are di significantly diff Data Mean 4,31373	fferent lerent.				
	Total Null Hype Alternativ At the 0.0 <i>Fit Sta</i> 0,087 <i>Means</i>	23 26 othesis: e Hypo 05 level tistic: are 788 ; Con	The mea thesis: Th the popu Coeff V 0,123	6,494 7,120 s of all ler e means o ation mean ar Roo 9 0, <i>INS</i>	73 44 or fone or m ns are not of t MSE 53139	0,28238 ual ore levels are d significantly dift Data Mean 4,31373	fferent lerent.				
	Total Null Hype Alternativ At the 0.0 Fit Sta R-Squa 0,087 Means	23 26 othesis: re Hypo 05 level of istic: are 788 con ey Te	The mea thesis: Th the popu Coeff V 0,123 pariso	6,494 7,120 is of all ler e means o lation mean ir Roo 9 0, <i>INS</i>	73 44 vels are eq of one or m ns are not o t MSE 53139	0,28238 ual ore levels are d significantly dift Data Mean 4,31373	fferent lerent.				
	Total Null Hype Alternativ At the 0.0 Fit Sta 0,087 Means	23 26 othesis: e Hypo 05 level tistic: are 788 ; Con ey Te	The mea thesis: Tr the popu 20eff V 0,123 pariso st Me	6,494 7,120 is of all lev e means o ation mean in Roo 9 0, <i>INS</i>	73 44 vels are eq of one or m ns are not s t MSE 53139 SEM	0,28238 ual ore levels are d significantly dift Data Mean 4,31373 q Value	ifferent lerent.	Alpha	Sig	LCL	UCL
	Total Null Hype Alternativ At the 0.0 Fit Sta 0,087 Means Tuke 0,19	23 26 othesis: re Hypo 05 level tistics are 788 <i>Con</i> ey Te	The mea thesis: Tri the popular 0,123 0,12	6,494 7,120 is of all let e means o ation mean in Roo 9 0, <i>INS</i> anDiff 2917	73 44 vels are eq of one or m ns are not s t MSE 53139 SEM 0,29564	0,28238 ual ore levels are d significantly diff Data Mean 4,31373 q Value 0,61789	fferent lerent. Prob 0,97145	Alpha 0,05	Sig	LCL -0,9473	UCL 0,68896
	Total Null Hype Alternativ At the 0.0 Fit Sta R-Squu 0,087 Means Tuke 0,19 0,29	23 26 othesis: re Hypo 05 level tistic: are 788 con ey Te % 0,0 ⁴	The mea thesis: Ti the popu 0,123 0,	6,494 7,120 as of all ler e means of ation mean ar Roo 9 0, 705 anDiff 2917 ,2624	73 44 vels are eq of one or m ns are not s 53139 SEM 0,29564 0,29564	0,28238 ual ore levels are di significantly diffinition 0,31373 Q Value Q Value 0,61789 1,30647 1,30647	Freent Prob 0,97145 0,79247	Alpha 0,05 0,05	Sig 0	LCL -0,9473 -0,52363	UCL 0,68896 1,04843
	Total Null Hype Alternativ Alternativ O,087 Means □	23 26 othesis: e Hypo 5 level tistic: are 788 <i>Con</i> ey Te % 0,0 ⁴ % 0,0 ⁴	The mea thesis: Th the popular (0,123 (0,123 (0,123 (0,123) (0	6,494 7,120 s of all ler e means o ation mean 9 0, <i>ns</i> anDiff 2917 ,2624 99157	73 44 vels are eq if one or m ns are not i t MSE 53139 0,29564 0,29564 0,29564	0,28238 ual ore levels are disignificantly diff Data Mean 4,31373 Q Value 0,61789 1,30647 1,87311 0,02757	Prob 0,97145 0,79247 0,55733	Alpha 0,05 0,05 0,05	Sig 0 0	LCL -0,9473 -0,52363 -0,42655	UCL 0,68896 1,04843 1,2097
	Total Null Hype Alternativ Attendit R-Squa 0,087 Means © 0,19 0,29 0,29 0,29 0,29 0,29	23 26 othesis: e Hypo 5 level tistic: are 788 <i>Con</i> 6 0,0° % 0,0° % 0,0° % 0,0°	The mea thesis: Th the popular (0,123 (0,123 (0,123) (6,494 7,120 s of all ler e means o ation mean or Roo 9 0, <i>INS</i> anDiff 2917 ,2624 99157 18577	73 44 vels are eq if one or m ns are not s t MSE 53139 SEM 0,29564 0,29564 0,29564 0,29564 0,29564	0,28238 ual ore levels are disignificantly diff Data Mean 4,31373 Q Value 0,61789 1,30647 1,87311 0,42705	Prob 0,97145 0,79247 0,55733 0,99018	Alpha 0,05 0,05 0,05	Sig 0 0 0	LCL -0,9473 -0,52363 -0,42655 -0,8718 9,72472	UCL 0,68896 1,04843 1,2097 0,70026
	Total Null Hype Alternativ At the 0.0 <i>Fit Sta</i> R-Squa 0,087 <i>Means</i> □ <i>Tuk</i> a 0,19 0,29 0,29 0,39 0,39 0,39	23 26 othesis: re Hypo 5 level tistic: are 788 <i>Con</i> 6 0,0 ⁴ 6 0,0 ⁴ 6 0,0 ¹ 6 0,1 ¹ 6 0,0 ¹	The mea thesis: Th the popular (Coeff V 0,123 (Coeff V)) (Coeff V 0,123 (Coeff V)) (Coeff V)) (Co	6,494 7,120 s of all ler e means o ation meal or Roo 9 0, <i>INS</i> anDiff 2917 ,2624 99157 18577 ,0434	73 44 vels are eq if one or m ns are not s 53139 53139 0,29564 0,29564 0,29564 0,29564 0,29564	0,28238 ual ore levels are disignificantiy diff Data Mean 4,31373 Q Value 0,61789 1,30647 1,30647 1,87311 0,42705 0,20759 0,20759	Prob 0,97145 0,79247 0,55733 0,99018 0,99884	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 0 0 0 0	LCL -0,9473 -0,52363 -0,42655 -0,8718 -0,77473	UCL 0,68896 1,04843 1,2097 0,70026 0,86152

	pur	ample	Siza	Mean	Stan	dard Deviat	ion SE o	fMean			
0.0%	4	ampr	6	5 / 9073	Jam		597 0	22019			
10%	6		6	4 54131		0,50	375 0	18524			
20%	6		6	5 20904		0,45	731	0 2316			
30%	6		7	5,1101		0.41	382 0	15641			
ne l	Nav	ANO	1/4			27.1.24					
OVA	erali	ANC	1/4								
Ca	crui	DF	Sum	f Souare:	Mea	n Square	F Value	Prob>F			
Mo	del	3		2.8528	5	0.95095	3,71027	0.02758	2		
	12.202	2/25		212 3-261523	5.5 H			State of the second			
Er	ror	21		5,3823	5	0,2563					
Null Altern At th	rror otal Hypo native te 0.0	21 24 thesis: e Hypot 5 level,	The mean hesis: Th the popul	5,3823 8,235 s of all leve e means of ation means	5 2 one or mor are signifi	0,2563 al re levels are d icantly differe	ifferent nt.				
Null Alter At th	rror otal Hypo mative te 0.0 <i>Stat</i>	21 24 thesis: e Hypot 5 level, tistics	The mean hesis: Th the popul	5,3823 8,235 s of all leve e means of ation means	5 2 s are equa one or mor are signifi	0,2563 al re levels are d icantly differe	ifferent nt.		-7/6		
Null Alter At th Fit 3	rror btal Hypo mative ne 0.0 Stal Squa 346	21 24 thesis: e Hypot 5 level, tistics are C	The mean hesis: Th the popul	5,3823 8,235 s of all leve ation means r Root 9 0.5/	5 2 s are equa one or mor are signifi MSE [0,2563 al re levels are d icantly differe Data Mean	ifferent nt.				
Null Alter At th Fit R-S 0, Mea	rror otal Hypo mative te 0.0 Stat Squa ,346 ans	21 24 thesis: a Hypot 5 level, tistics tre C 42 Com	The mean hesis; Th the popul Coeff Va 0,0994	5,3823 8,235 s of all leve a means of ation means r Root 9 0,50	5 s are equa one or mor are signifi MSE [1626]	0,2563 al re levels are d icantly differe Data Mean 5,08845	fferent nt.				
Null Alter At th Fit . R-S 0, Mea	rror otal Hypo mative ne 0.0 Stat Squa ,346 ans Tuke	21 24 thesis: e Hypot 5 level, fistics are 42 Com	The mean hesis: Th the popul coeff Va 0,0994 Dariso st	5,3823 8,235 s of all leve e means of ation means r Root 9 0,5(75	5 2 s are equa one or mor are signifi MSE [626	0,2563 al re levels are d icantly differe Data Mean 5,08845	fferent nt.				
Fit : Altern At th Fit : R-S 0, Mea 7	rror otal Hypo mative te 0.0 Stat Squa ,346 ans Tuke	21 24 thesis: a Hypot 5 level, tistics tistics 42 Com ey Te.	The mean hesis: The the popul coeff Va 0,0994 Dariso Sf Mea	5,3823 8,235 s of all leve e means of ation means r Root 9 0,5(75	5 2 s are equi sine or mor are signifi MSE [1626] SEM	0,2563 al e levels are d icantly differe Data Mean 5,08845	fferent nt.	Alpha	Sig	LCL	UCL
Fit S Null Altern At th Fit S 0, Mea 1 (rror otal Hypo mative ne 0.0 Stat Squa 346- ans Tuke 0.1%	21 24 thesis: e Hypot 5 level, tistics are Com, ey Te. 6 0.09	The mean hesis: Th the popul coeff Va 0,0994 Dariso st Mea b -0.9	5,3823 8,235 s of all leve e means of ation means r Root 9 0,50 75 mDiff 4842 0	5 2 s are equi one or mor are signifi MSE [626] SEM 29229	0,2563 al re levels are d icantly differe Data Mean 5,08845 q Value 4,58879	fferent nt. Prob 0.01875	Alpha 0.05	Sig	LCL -1.76313	UCL -0.13371
Fit Altern Altern At th Fit A R-S 0, Mea	rror otal Hypo mative 0.0 Stal Squa ,346 ans Tuke 0,1% 0,2%	21 24 thesis: a Hypot 5 level, tistics are C 42 Com, ay Te. 6 0,0% 6 0,0%	The mean hesis: Thi the popul 0,0994 Dariso st Mea b -0,9 b -0,2	5,3823 8,235 s of all leve e means of ation means r Root 9 0,50 75 nDiff 4842 0 8068 0	5 2 2 s are equa one or mor are signifi 626 5 5 5 8 5 8 9 29229 29229	0,2563 al re levels are d cantly differe 5,08845 q Value 4,58879 1,35805	fferent nt. Prob 0,01875 0.77298	Alpha 0,05 0.05	Sig 1 0	LCL -1,76313 -1.09539	UCL -0,13371 0.53403
Null I Alter At th Fit S 0, Mea	rror btal Hypo mative ine 0.00 Stat Squa 3460 ans Tuke 0,1% 0,2%	21 24 thesis: 5 level, <i>tistics</i> <i>tistics</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i> <i>com</i>	The mean hesis: Th hesis: Th coeff Va 0,0994 Dariso st Mea 6 -0,2 6 0,06	5,3823 8,235 s of all leve a means of ation means r Root 9 0,50 75 nDiff 4842 0 8068 0 6773 0	5 2 2 3 are equa one or mor are signifi 1626 5 8 8 8 8 8 8 9 29229 29229 29229 29229	0,2563 al re levels are d icantly differe Data Mean 5,08845 9,08845 4,58879 1,35805 3,23075	fferent nt. Prob 0,01875 0,77298 0,13379	Alpha 0,05 0,05 0,05	Sig 1 0 0	LCL -1,76313 -1,09539 -0,14698	UCL -0,13371 0,53403 1,48245
Null I Alten At th Fit , R-S 0, Mea ((((((((rror tal Hypo mative te 0.00 Stal Stal Squa ,346 ans Tuke 0,1% 0,2% 0,2% 0,3%	21 24 thesis: 5 level, <i>tistics</i> <i>tistics</i> <i>com</i> , <i>cy Te</i> , 6 0,09 6 0,09 6 0,19 6 0,09	The mean hesis: Th the popul coeff Va 0,0994 Dariso st Mea 5 Mea 5 0,09 5 0,09 5 0,09 5 0,00 5 0,00 5	5,3823 8,235 s of all leve e means of ation means r Root 9 0,50 75 nDiff 4842 0 8068 0 6773 0 7962 0	5 2 2 s are equa one or mor are signifi 1626 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0,2563 al re levels are d icantly differe Data Mean 5,08845 4,58879 1,35805 3,23075 1,9061	Freent nt. 0,01875 0,77298 0,13379 0,54423	Alpha 0,05 0,05 0,05 0,05	Sig 1 0 0	LCL -1,76313 -1,09539 -0,14698 -1,1647	UCL -0,13371 0,53403 1,48245 0,40545
Fr To Null I Altern At the Fit S R-S 0, Mea T ((((((((((((rror btal Hypo mative ine 0.01 Stal 3qua 346- ans 7uke 0,2% 0,2% 0,2% 0,3%	21 24 thesis: a Hypot 5 level. <i>tistics</i> tistics (42 <i>Com</i> , <i>ey Te</i> . 6 0,09 6 0,09 6 0,09 6 0,19 6 0,09	Mean coeff Va 0,0994 Dariso sf Mea 6 -0,2 6 6 -0,3 6 0,05	5,3823 8,235 s of all leve a means of ation means r Root 9 0,50 75 nDiff 4842 0 8068 0 6773 0 7962 0 6879 0	5 2 2 3 are equa one or mor are signifi 1626 5 8 8 8 8 8 9 29229 29229 29229 29229 29229 29229 29229 29229 29229 2926 292	0,2563 al re levels are d icantly differe Data Mean 5,08845 9,08845 4,58879 1,35805 3,23075 1,9061 2,85592	Prob 0,01875 0,77298 0,13379 0,54423 0,21271	Alpha 0,05 0,05 0,05 0,05 0,05 0,05	Sig 1 0 0 0	LCL -1,76313 -1,09539 -0,14698 -1,1647 -0,21628	UCL -0,13371 0,53403 1,48245 0,40545 1,35387

Energia de fratura (G_f) – N/m

eccrinti	Va Sta	atictice		0.000	and one				0. 00	eu in eeniņ	, diditionit
Jescripti	Comple	Qizo	Moon	Cta	ndard Davi	ation	OF A	fMoon			
0.00%	Jampin	5 0126	7 1/020	Juan	2 /	2521	1	52627			
0.10%		5	10 37537		4.7	4254	2	12093			
0.20%		6	10,59854		4.4	8475	1	83089			
0.30%		6	14,63076		1	5869	0	64785			
One Wai	ANO	1/4				2,525	- 7/				
Overa	ANC	1/4									
[DE	Sum	of Squares	Mea	n Square	E Value	e	Prob>F	18		
Model	3		156.00166		52.00055	3,7391	17	0.03002	10		
1000	40	-	250.32593		13,907			0.610.0010.000			
Error	18								-		
Error Total Null Hype Alternativ At the 0.0	18 21 othesis: e Hypot 5 level,	The mear hesis: Th the popul	406,32759 is of all levels e means of or lation means a	are equa e or moi re signif	al re levels are d icantly differe	ifferent nt.			2		
Error Total Null Hype Alternativ At the 0.0 Fit Sta R-Squa	18 21 othesis: 7 e Hypot 5 level, 5 level, tistics	The mear hesis: Th the popul	406,32759 is of all levels e means of or lation means a ar Root M	are equa e or moi re signifi SE [al re levels are d icantly differe Data Mean	ifferent nt.					
Error Total Null Hype Alternativ At the 0.0 Fit Sta R-Squa 0,383	18 21 othesis: Te Hypot 15 level, tistics are C 193	The mear hesis: Th the popul Coeff Va 0,3433	406,32759 is of all levels e means of or lation means a ar Root M 3 3,729	are equa e or moi re signif SE [al re levels are d icantly differe Data Mean 10,86201	ifferent nt.			100		
Error Total Null Hype Alternativ At the 0.0 Fit Sta 0,383 Means	18 21 othesis: e Hypot 15 level, 15 level, tistics are 0 93 c Com	The mean hesis: Th the popul coeff Va 0,3433 Dariso	406,32759 is of all levels e means of or lation means a ar Root M 3 3,72! ///S	are equa e or moi re signif SE [021	al re levels are d icantly differe Data Mean 10,86201	ifferent nt.					
Error Total Null Hype Alternativ At the 0.0 Fit Sta 0,383 Means P Tuke	18 21 othesis: ¹ e Hypot 5 level, 5 level, 93 comp ey Te.	The mear hesis: Th the popul Coeff V2 0,3433 Dariso St	406,32759 is of all levels e means of or lation means a ar Root M 3 3,72 MS	are equi e or moi re signif SE [D21]	al re levels are d icantly differe Data Mean 10,86201	ifferent nt.					
Error Total Null Hype Alternativ At the 0.0 Fit Sta R-Squa 0,383 Means	18 21 othesis: 7 e Hypot 15 level, 15 level, 15 level, 15 level, 15 level, 16 level, 17 level, 18 level, 19 level, 10 level, 1	The mean hesis: Th the popul 0,3433 Dariso St Mea	406,32759 is of all levels e means of or lation means a ar Root M 3 3,729 <i>INS</i>	are equa e or mor re signif SE [021]	al re levels are d icantly differe Data Mean 10,86201 q Value	ifferent nt.		Alpha	Sig	LCL	UCL
Error Total Null Hype Alternativ At the 0.0 Fit Sta 0,383 Means Tuke 0,19	18 21 othesis: 7 e Hypot 5 level, 5 level, 5 level, 6 level, 93 <i>c Com</i> , ey Te, 6 0,0%	Coeff Va coeff Va 0,3433 Dariso St Mea 6 3,2	406,32759 is of all levels e means of or air Root M 3 3,729 ms anDiff \$ 3305 2,3	are equa e or moi re signif SE [021] SEM (5856)	al re levels are d cicantly differe Data Mean 10,86201 q Value 1,93857	ifferent nt.	25	Alpha 0,05	Sig	LCL -3,43292	UCL 9,89902
Error Total Null Hype Alternativ At the 0.0 Fit Sta 0,383 Means D. 0,19 0,29	18 21 othesis: - 6 Hypot 5 level, 5 level, <i>tistics</i> are C 93 <i>COM</i> 93 <i>COM</i> 93 6 0,0%	Coeff Va 0.3433 Dariso st Mea 6 3.4	406,32759 is of all levels e means of or lation means a ar Root M 3 3,729 ///S anDiff \$ 3305 2,3 5622 2,2	are equi e or moi re signif SE [D21] EM 5856 25815	al re levels are d icantly differe Data Mean 10,86201 q Value 1,93857 2,16453	Prob	25 09	Alpha 0,05 0,05	Sig 0 0	LCL -3,43292 -2,92596	UCL 9,89902 9,8384
Error Total Null Hype Alternativ At the 0.0 <i>Fit Sta</i> 0,383 <i>Means</i> 0,19 0,29 0,29	18 21 othesis: e Hypot 5 level, 5 level, 5 level, 5 level, 5 level, 93 c Com, ey Te, 6 0,0% 6 0,0% 6 0,1%	Mean Coeff V2 0,3433 Dariso st Mea 3,2 3,3,4 5 3,4 5 3,4 5	406,32759 is of all levels e means of or lation means a ar Root W 3 3,729 775 anDiff \$ 13305 2,3 15622 2,2 12317 2,2	are equi e or moi re signif SE [021] 5856 5856 5815 25815	al re levels are d icantly differe Data Mean 10,86201 q Value 1,93857 2,16453 0,13977	Prob 0,53; 0,44(0,999(25 09 64	Alpha 0,05 0,05 0,05	Sig 0 0 0	LCL -3,43292 -2,92596 -6,15901	UCL 9,89902 9,8384 6,60535
Error Total Null Hype Atternativ At the 0.0 <i>Fit Sta</i> 0,383 <i>Means</i> <i>C</i> 0,19 0,29 0,39	18 21 othesis: e Hypot 5 level, 5 level, 5 level, 5 level, 5 level, 6 level, 6 0,0% 6 0,0% 6 0,0% 6 0,0%	The mear hesis: Th the popul 0,3433 0,24330 0,24330 0,24330 0,24330 0,24330000000000000000000000000000000000	406,32759 as of all levels e means of or lation means a ar Root M 3 3,729 775 anDiff S 13305 2,3 15622 2,2 12317 2,2 18843 2,2	are equi e or moi re signif 221 221 5856 5856 5815 5815 5815	al re levels are d icantly differe Data Mean 10,86201 q Value 1,93857 2,16453 0,13977 4,68979	Prob 0,532 0,441 0,999 0,0183	25 09 64 33	Alpha 0,05 0,05 0,05 0,05	Sig 0 0 0 1	LCL -3,43292 -2,92596 -6,15901 1,10625	UCL 9,89902 9,8384 6,60535 13,87061
Error Total Null Hype Alternativ At the 0.0 <i>Fit Sta</i> 0,383 <i>Means</i> <i>Tuka</i> 0,19 0,29 0,39 0,39 0,39	18 21 othesis: e Hypot 5 level, 5 level, 5 level, 5 level, 6 level, 6 0,0% 6 0,0% 6 0,0% 6 0,0% 6 0,0% 6 0,0% 6 0,0%	The mear hesis: Th the popul 0,3433 0,3443 0,3443 0,3443 0,3443 0,3443 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,4434 0,44340 0,44340 0,44340000000000	406,32759 as of all levels e means of or lation means a ar Root M 3 3,729 MS anDiff S 13305 2,3 15622 2,2 12317 2,2 18843 2,2 15539 2,2	are equa e or more re signif SE [021] 5856 5815 5815 5815 5815	al re levels are d icantly differe Data Mean 10,86201 4,93857 2,16453 0,13977 4,68979 2,66503	Prob 0,532 0,440 0,9990 0,0182 0,269) 25 09 64 33 16	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 0 0 0 1 0	LCL -3,43292 -2,92596 -6,15901 1,10625 -2,12679	UCL 9,89902 9,8384 6,60535 13,87061 10,63757

-	Samp	le Size	Mean	Sta	andard Devi	ation SE	of Mean			
0,00%		7	18,2414)	4,0	4144	1,52752			
0,10%		6	19,5861	2	3,9	6329	1,618			
0,20%		5	17,9942	1	3,9	8866	1,78378			
0,30%		5	13,1235	ō	3,0	7504	1,3752			
Dne W	ay ANC	DVA								
Over	all ANO	OVA								
1	DF	Sum o	f Squares	Mea	an Square	F Value	Prob>F	1		
Mod	el 3	1	26,82159	9	42,27386	2,88923	0,0624			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40			8			and the second sec			
Efre	or 19	2	17,99879		14,63152		-			
Null H Alterna At the	pr 19 al 22 ypothesis: trive Hypo 0.05 level	2 The means thesis: The the popula	04,82037 of all levels means of o ation means	are equ ne or mo are not s	14,63152 ual ore levels are d significantly dif	ifferent ferent.				
Null H Alterna At the Fit S	or 19 al 22 ypothesis: tive Hypo 0.05 level tatistic: uare	2 4 The means thesis: The the popula 5 Coeff Va	r Root M	are equine or mo are not s	14,63152 ual ore levels are d significantly dif Data Mean	ifferent ferent.				
Null H Alterna At the Fit S R-Sc 0,3	or 19 al 22 ypothesis: trive Hypo 0.05 level tatistic: uare 1328	2 4 The means thesis: The the popula 5 Coeff Va 0,2195	77,99879 104,82037 s of all levels means of o ation means r Root I 1 3,82	are equine or mo are not s ISE 512	14,63152 ual ore levels are d significantly dif Data Mean 17,42592	ifferent ferent.				
Fit S 0,3 Meal	ypothesis: tive Hypo 0.05 level tatistic: uare 1328	2 4 The means thesis: The the popula 5 Coeff Va 0,2195 0,2195	77,99875 04,82037 s of all levels means of o stion means r Root 1 3,82 75	are equine or mo are not s ISE 512	14,63152 ual ore levels are d significantly dif Data Mean 17,42592	ifferent ferent.				
Tot: Null H Alterna At the Fit S R-Sc 0,3 Meau P TL	al 22 ypothesis: tive Hypo 0.05 level tatistic: uare 1328 ns Con ikey Te	2 4 The means thesis: The the popula 5 Coeff Va 0,2195 0,2195 0,2195	77,99875 04,82037 s of all levels means of o tion means	are equ ne or mo are not s ISE 512	14,63152 ual ore levels are d significantly dif Data Mean 17,42592	ifferent ferent.				
Null H Alterna At the Fit S 0,3 Mean	ypothesis: titive Hypo 0.05 level tatistics uare 1328 ns Con ikey Te	4 The means thesis: The the popula S Coeff Va 0,2195 Dparisol est Mea	77,99875 04,82037 s of all levels means of o tion means r Root I 1 3,82 75 nDiff	are equine or mo are not s ISE 512 BEM	14,63152 ual ore levels are d significantly dif Data Mean 17,42592 q Value	ifferent ferent.	Alpha	Sig	LCL	UCL
Tota Null H Alterna At the Fit S R-Sc 0,3 Mean C T 0, 0,	ypothesis: trive Hypo 0.05 level tatistic: uare 1328 ns Con ukey Te	The means thesis: The the popula Coeff Va 0,2195 mparison est Mea % 1,3	17,99875 04,82037 s of all levels means of o tion means r Root 1 3,82 75 nDiff 4464 2	are equine or mo are not s ISE 512 BEM 2,1281	14,63152 ual ore levels are d significantly dif Data Mean 17,42592 q Value 0,89357	ifferent ferent.	Alpha 3 0,05	Sig	LCL -4,63925	UCL 7,32852
Efformed and a second	Image: sympothesis: Image: sympothesis: ypothesis: ypothesis: trive Hypothesis: ypothesis: tatistic: ypothesis: uare 1328 ns Conn ns Conn tkey Te 1% 0,0' 2% 0,0' 0,0'	2 4 The means thesis: The the popula 5 Coeff Va 0,2195 0,2195 0 <i>pparison</i> 2 <i>st</i> Mea % 1,3 % -0,2	r/,998/s 04,82037 s of all levels means of o ation means r Root M 1 3,82 75 nDiff 4464 4725 2,	are equ he or mo are not s ISE 512 SEM 2,1281 23976	14,63152 ual ore levels are d significantly dif Data Mean 17,42592 q Value 0,89357 i 0,15611	ifferent ferent.	Alpha 6 0,05 i 0,05	Sig 0 0	LCL -4,63925 -6,5451	UCL 7,32852 6,05061
Fit S Mean Mean Mean Mean 0,3 Mean 0,3 Mean 0,0 0,0	Image: system Image: system ypothesis: the ypothesis: this title Hypothesis: tatistic: Hypothesis: uare Hypothesis: 1328 Hypothesis: title Conn tkey Te 1% 0,0' 2% 0,0'	2 4 The means thesis: The the popula 5 Coeff Va 0,2195 0,2195 0 <i>pparisol</i> 2 <i>st</i> Mea % 1,3 % -0,2 % -1,5	n/,998/s 04,82037 s of all levels means of o ation means r Root N 1 3,82 75 nDiff 4464 4725 2,9188	are equ he or mo are not s SEM 2,1281 23976 31622	14,63152 ual ore levels are d significantly dif Data Mean 17,42592 Q Value 0,89357 0,15611 2,0,97195	ifferent ferent. 0,92048 0,9995 0,90067	Alpha 0,05 0,05 0,05 0,05	Sig 0 0 0	LCL -4,63925 -6,5451 -8,10474	UCL 7,32852 6,05061 4,92098
Erro Tot: Null H Alterna At the <i>Fit S</i> 0,3 <i>Meal</i> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Image: relation of the second secon	2 4 The means thesis: The the popula 5 Coeff Va 0,2195: 0 0 0,2195: 0 0,2195: 0 0,2195: 0 0,2195: 0 0,2195: 0 0 0,2195: 0 0 0,2195: 0 0 0,2195: 0 0 0,2195: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nDiff 3 nDiff 4464 4725 2, 9188 2, 1793 2,	are equine or mo are not s SEM 2,1281 23976 31622 23976	14,63152 ual ore levels are d significantly dif Data Mean 17,42592 Q Value 0,89357 0,15611 0,97195 i 3,23153	ifferent ferent. 0,92048 0,9995 0,90067 0,1365	Alpha 0,05 0,05 0,05 0,05 0,05 0,05	Sig 0 0 0 0	LCL -4,63925 -6,5451 -8,10474 -11,41579	UCL 7,32852 6,05061 4,92098 1,17992
Eff Tot: Null H Alterna At the <i>Fit S</i> 0,3 <i>Meal</i> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Image: relation of the second secon	2 4 The means thesis: The the popula 5 Coeff Va 0,2195 0,2	nDiff 3 nDiff 4464 44725 2, 9188 2, 1793 2,	are equine or mo are not s 512 3EM 2,1281 23976 31622 23976 31622	14,63152 ual ore levels are d significantly dif Data Mean 17,42592 Q Value 0,89357 0,15611 0,97195 3,23153 2,3,94584	Prob 0,92048 0,9995 0,90067 0,1369 0,05223	Alpha 0,05 0,05 0,05 0,05 0,05 0,05 0,05	Sig 0 0 0 0 0	LCL -4,63925 -6,5451 -8,10474 -11,41579 -12,97543	UCL 7,32852 6,05061 4,92098 1,17992 0,05029

counpu	ve Sla									
2	Sampl	e Size	Mear	n Sta	ndard Devi	ation SE	of Mean			
,00%		6	16,635	72	4,9	2995	2,01264			
,10%		5	21,654	53	6,1	0103	2,72846			
,20%		5	18,/14	97	2,8	5113	1,27507			
,30%	910950.3450	1	1/,5/8	97	3,2	9412	1,24506			
ne Waj	V ANC	VA								
Overa	II ANC	VA		- 70-				10		
	DF	Sum (of Square	es Mea	an Square	F Value	Prob>F			
Model	3		76,750	58	25,58356	1.32076	0,29693	£		
the second second second second					and the second second	312002340	كالأستار كالمتحوط فأحسب			
Error	19		368,035	23	19,37028	1.000000	1.11.000.000.000.000			
Error Total Null Hyp Alternativ At the 0.0	19 22 othesis: ve Hypot 05 level,	The mear hesis: Th the popul	368,0352 444,7859 Is of all lev e means of lation mean	23 91 els are equ f one or mo s are not s	19,37028 al re levels are d ignificantly dif	ifferent ferent.				
Error Total Null Hyp Alternativ At the 0.0 <i>Fit Stat</i> R-Squ 0, 172	19 22 othesis: ve Hypot 05 level, otistics are (256	The mear hesis: Th the popul Coeff Va 0 2383	368,0352 444,7859 e means of ation mean ar <u>Root</u> 4 4 4	23 91 els are equ fone or mo s are not s tMSE 10117	19,37028 al re levels are d ignificantly dif Data Mean 18 46585	ifferent ferent.				
Error Total Null Hyp Alternativ At the 0.0 <i>Fit Sta</i> R-Squ 0,172	19 22 othesis: ve Hypot 5 level, atistics are 256	The mear hesis: Th the popul Coeff Va 0,2383	368,035: 444,7859 is of all lev e means of lation mean ar Root 4 4,4	23 91 els are equ f one or mo s are not s t MSE 10117	19,37028 al re levels are d ignificantly dif Data Mean 18,46585	ifferent ferent.				
Error Total Null Hyp Alternativ At the 0.0 <i>Fit Sta</i> 0,172 <i>Means</i>	19 22 othesis: ve Hypot 05 level, atistics are (256 5 Com	The mean hesis: Th the popul Coeff Va 0,2383 Dariso	368,035: 444,7859 is of all lev e means of lation mean ar Root 4 4,4 775	23 91 els are equ f one or mo s are not s t MSE t0117	19,37028 al re levels are d ignificantly dif Data Mean 18,46585	ifferent ferent.				
Error Total Null Hyp Alternatis At the 0.0 <i>Fit Sta</i> R-Squ: 0,172 <i>Means</i>	19 22 othesis: re Hypot 05 level, 05 level, 10 256 256 256 256 256 256 256 256	The mear hesis: Th the popul Coeff Va 0,2383 Dariso St	368,035: 444,785: is of all lev e means of all tion mean ar Rooi 4 4,4 /// 7/ 20 Diff	23 91 els are equ f one or mo s are not s t MSE 10117 SEM	19,37028 ial re levels are d ignificantly dif Data Mean 18,46585	ifferent ferent.	Ainha	Sig	10	UCI
Error Total Null Hyp Alternativ At the 0.0 <i>Fit Sta</i> R-Squ: 0,172 <i>Means</i> Tuk 0,19	19 22 othesis: ve Hypot 05 level, ntistics are 256 s Com ey Te % 0 09	The mean hesis: Th the popul 0,2383 0ariso st Mea 6 5 0	368,035: 444,7859 is of all lev e means of alation mean ar Root 4 4,4 <i>I</i> 75	23 els are equ f one or mo s are not s tMSE 10117 SEM 2 66504	19,37028 al re levels are d ignificantly dif Data Mean 18,46585 q Value 2,66325	ifferent ferent.	Alpha 0.05	Sig	LCL -2 47487	UCL 12 51249
Error Total Null Hyp Alternativ At the 0.0 <i>Fit Sta</i> R-Squa 0,172 <i>Means</i> <i>Tuk</i> 0,19 0,29	19 22 othesis: ve Hypot 05 level, atistics are (256 5 <i>Com</i> <i>ey Te</i> % 0,09 % 0,09	The mear hesis: Th the popul 0,2383 0	368,035: 444,7859 is of all leve e means of alation mean ar Rooi 4 4,4 75 anDiff 01881 07924	23 els are equ f one or mo is are not s tMSE t0117 SEM 2,66504 2,66504	19,37028 al re levels are d ignificantly dif Data Mean 18,46585 Q Value 2,66325 1,10336	ifferent ferent. Prob 0,26799 0.86246	Alpha 0,05 0.05	Sig	LCL -2,47487 -5.41444	UCL 12,51249 9.57292
Error Total Null Hyp Alternativ At the 0.0 <i>Fit Sta</i> R-Squa 0,172 <i>Meanss</i> 7 <i>Tuk</i> 0,19 0,29 0,29	19 22 othesis: re Hypot 05 level, otistics are (256 8 Com ey Te % 0,09 % 0,09 % 0,19	The mear hesis: Th the popul 0,2383 0,2380 0,23833 0,2383 0,2383 0,2383 0,2383 0,2383	368,035: 444,7859 as of all leve e means of alation mean ar Rooi 4 4,4 <i>ns</i> anDiff 01881 07924 03956	23 91 els are equ f one or mc s are not s tMSE 10117 SEM 2,66504 2,66504 2,78354	19,37028 al re levels are d ignificantly dif Data Mean 18,46585 Q Value 2,66325 1,10336 1,49348	Prob 0,26799 0,86246 0,7194	Alpha 0,05 0,05 0,05	Sig 0 0	LCL -2,47487 -5,41444 -10,76646	UCL 12,51249 9,57292 4,88733
Error Total Null Hyp Alternativ At the 0.0 Fit Sta R-Squ: 0,172 Meanss 7 Tuk 0,19 0,29 0,29 0,39	19 22 othesis: ve Hypot 05 level, otistics are (256 <i>Com</i> <i>ey Te</i> % 0,09 % 0,09 % 0,19 % 0,09	The mean hesis: Th the popul 0,2383 0,2380 0,2383 0	368,035: 444,7859 as of all leve e means of allation mean ar Rood 4 4,4 775 anDiff 01881 07924 03956 04325	23 91 els are equ f one or mc s are not s t MSE 10117 SEM 2,66504 2,66504 2,78354 2,44858	19,37028 al re levels are d ignificantly dif Data Mean 18,46585 Q Value 2,66325 1,10336 1,49348 0,54479	Prob 0,26799 0,86246 0,7194 0 97999	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 0 0 0	LCL -2,47487 -5,41444 -10,76646 -5,94179	UCL 12,51249 9,57292 4,88733 7,82829
Error Total Null Hyp Alternativ At the 0.0 <i>Fit Sta</i> R-Squa 0,172 <i>Means</i> 0,19 0,29 0,29 0,39 0,39 0,39	19 22 othesis: ve Hypot 05 level, otistics are (256 <i>Com</i> <i>ey Te</i> % 0,09 % 0,09 % 0,19 % 0,19	The mean hesis: Th the popul 0,2383 0ariso st Mea 6 5,0 6 2,0 6 -2,9 6 0,9 6 -4,0	368,035: 444,785: as of all leve e means of all loomean ar Rooo 4 4,4 775 anDiff 01881 07924 03956 04325 07555	23 91 els are equi f one or mo s are not s t MSE 10117 2,66504 2,66504 2,78354 2,44858 2,57706	19,37028 al re levels are d ignificantly dif Data Mean 18,46585 2,66325 1,10336 1,49348 0,54479 2,23654	Prob 0,26799 0,86246 0,7194 0,97999 0,41204	Alpha 0,05 0,05 0,05 0,05 0,05 0,05	Sig 0 0 0 0	LCL -2,47487 -5,41444 -10,76646 -5,94179 -11,32185	UCL 12,51249 9,57292 4,88733 7,82829 3,17074

Tenacidade à fratura (K_{IC}) - MPa.mm^{1/2}

escript	ive Sta	atistics									
	Sampl	e Size	Mean	Standa	ard Devia	tion	SE of	Mean			
0,00%		6	1,41007	1	0,13	698	0,	05592			
0,10%		6	1,41879		0,19	609	0,	08005			
0,20%		6	1,7452		0,17	294	0	0,0706			
0,30%		5	1,65229		0,30	688	0,	13724			
one Wa	Y ANC	VA									
Overa	ANC	V A	othat!	1.165633			90 DI				
	DF	Sum o	of Squares	Mean	Square	FVa	lue	Prob>F			
Model	3		0,50156) <u>1</u>	0,16719	3,91	049	0,02485	6		
Error	10		0 81232	8 33	0 04275						
- Lindi	19		0,01202	1 12	0,04210	-					
Total Null Hyp Alternati At the 0.	22 oothesis: ve Hypot 05 level,	The mear hesis: Th the popul	1,31388 is of all levels e means of o lation means a	are equal e or more re significa	levels are d	ifferent nt.					
Total Null Hyp Alternati At the 0. <i>Fit Sta</i>	22 oothesis: ve Hypot 05 level, atistics are (The mear hesis: Th the popul	1,31388 s of all levels e means of oi lation means a	are equal e or more re significa SE Da	levels are d antly differe	ifferent nt.					
Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,38	22 pothesis: ve Hypot 05 level, atistics are (174	The mear hesis: Th the popul Coeff Va 0,1331	1,31388 as of all levels e means of o lation means a ar Root M 9 0,20	are equal le or more re significa SE Da 577	levels are d antly differe ata Mean 1,55243	ifferent nt.					
Total Null Hyp Alternati At the 0. <i>Fit Sta</i> 0,38 <i>Means</i>	22 oothesis: ve Hypot 05 level, atistics are (174 s Com	The mear hesis: Th the popul Coeff Va 0,1331 pariso	1,31388 is of all levels e means of or lation means a ar Root M 9 0,200 ///S	are equal e or more re significa SE Da 377	levels are d antly differe ata Mean 1,55243	ifferent nt.					
Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,38 Means	22 pothesis: ve Hypot 05 level, artistics are (174 s Com rey Te	The mean hesis: Th the popul Coeff Va 0,1331 <i>pariso</i> st	1,31388 as of all levels e means of or lation means a ar Root N 9 0,20 <i>INS</i>	are equal ee or more re significa SE Da 377	levels are d antily differe ata Mean 1,55243	ifferent nt.					
Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,38 Means	22 oothesis: ve Hypot 05 level, atistics are (174 s Com rey Te	The mean hesis: Th the popul Coeff Va 0,1331 pariso st Mea	1,31388 as of all levels e means of or lation means a ar Root N 9 0,20 <i>INS</i>	are equal e or more re significi SE D: 577	levels are d antily differe ata Mean 1,55243 q Value	ifferent nt.	rob	Alpha	Sig	LCL	UCL
Total Null Hyp Alternati At the 0. Fit Sta O,38 Means Tuk O,11	22 xothesis: ve Hypol 05 level, atistics are (174 s Com, rey Te % 0,09	The mean hesis: Th the popul Coeff Va 0,1331 pariso st Mea 6 0,0	1,31388 1,31388 us of all levels e means of or lation means a ar Root N 9 0,20 <i>ns</i> anDiff \$ 00872 0,	are equal le or more re significi SE Da 377	levels are d antily differe 1,55243 q Value 0,1033	ifferent nt.	rob 9985	Alpha 0,05	Sig	LCL -0,32695	UCL 0,34439
Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,38 Means: 0,11 0,21	22 22 22 22 25 26 26 27 27 27 27 27 27 27 27 27 27	The mean hesis: Th the popul 0,1331 pariso st Mea 6 0,0 6 0,3	1,31388 1,31388 as of all levels e means of or lation means a ar Root N 9 0,20 ///S anDiff 3 33513 0,	are equal le or more re significa SEE Da 3777 SEM 11938 11938	levels are d antly differe 1,55243 q Value 0,1033 3,97006	ifferent nt. 	rob 9985 5046	Alpha 0,05 0,05	Sig 0 0	LCL -0,32695 -5,48163E-4	UCL 0,34439 0,6708
Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,38 Mean: 0,1' 0,2' 0,2'	22 xve Hypol 05 level, atistics are (174 s Com cey Te % 0,0% % 0,0% % 0,0% % 0,1%	The mean hesis: Th the popul 0,1331 0ariso st Mea 6 0,0 6 0,3 6 0,3 6 0,3	1,31388 1,31388 as of all levels e means of or lation means a ar Root N 9 0,200 ///S anDiff 3 33513 0, 32641 0,	are equal e or more re significa 377 377 377 377 377 377 377 377 377 37	evels are d antily differe 1,55243 q Value 0,1033 3,97006 3,86676	ifferent nt. 0,99 0,09 0,09	rob 9985 5046 5841	Alpha 0,05 0,05 0,05	Sig 0 0	LCL -0,32695 -5,48163E-4 -0,00927	UCL 0,34439 0,6708 0,66208
Total Null Hyp Alternati Attent Fit Sta R-Squ 0,38 Mean: 0,11 0,22 0,33	22 xve Hypot 05 level, atistics are (174 <i>s Com</i> , <i>cey Te</i> % 0,0% % 0,0% % 0,0% % 0,0% % 0,0% % 0,0%	The mean hesis: Th the popul 0,1331 <i>pariso</i> <i>st</i> 6 0,0 6 0,3 6 0,3 6 0,2	Image: 100 million Image:	are equal e or more re significa SE D: 577 SEM 11938 11938 11938 ,1252	evels are d antily differe ata Mean 1,55243 q Value 0,1033 3,97006 3,86676 2,73586	Pr 0,99 0,09 0,09 0,09	rob 9985 5046 5841 4738	Alpha 0,05 0,05 0,05 0,05	Sig 0 0 0 0	LCL -0,32695 -5,48163E-4 -0,00927 -0,10984	UCL 0,34439 0,6708 0,66208 0,59427
Total Null Hyp Alternati At the 0. <i>Fit Sta</i> <i>R</i> -Squ 0,38 <i>Means</i> <i>O</i> ,11 0,22 0,2 0,33 0,33 <i>O</i> ,33 <i>O</i> ,35 <i>O</i> ,35 <i></i>	22 xve Hypol 05 level, atistics are (174 x Com, cey Te % 0,09 %	The mean hesis: Th the popul 0,1331 <i>pariso</i> <i>st</i> 6 0,2 6 0,3 6 0,2 6 0,2 6 0,2	Instruction Instruction 1,31388 Instruction Instruction Iss of all levels Instruction Instruction Instruction Instruc	are equal le or more re significi SE D: 577 SEM 11938 11938 11938 11938 11938 11938 11938	evels are d antily differe 1,55243 q Value 0,1033 3,97006 3,86676 2,73586 2,63737	Pr 0,99 0,09 0,09 0,09 0,09 0,09 0,09 0,0	rob 9985 5046 5841 4738 7562	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 0 0 0 0	LCL -0,32695 -5,48163E-4 -0,00927 -0,10984 -0,11856	UCL 0,34439 0,6708 0,66208 0,59427 0,58555

	5	Sample	Size	Mean	Stan	dard Deviat	ion SE o	Mean			
0.00%	6		6	1,8032	3	0,355	542	0,1451			
0,10%	6		6	2,1724	2	0,09	507 0	03881			
),20%	6		7	2,1025	9	0,14	776 0	05585			
),30%	6		6	2,0447	7	0,124	115 0	05068			
ne I	Way	ANO	VA								
OV	eral	ANC	VA								
		DF	Sum o	of Square	s Mea	n Square	F Value	Prob>F			
Mo	del	3	and an end of the second	0,4681	1	0,15604	3,70311	0,02776	5		
E	rror	21		0,8848	7	0,04214					
To Null Alter At th	otal Hypo mativ he 0.0	24 othesis: e Hypot 5 level, <i>fisfics</i>	The mean hesis: Th the popul	1,3529 is of all lev- e means of ation mean	IS are equa one or moi s are signifi	al e levels are di icantly differen	fferent nt.		-11		
Null Alter At th Fit	otal Hypo mativ he 0.0 Stal Squa	24 e Hypot 5 level, tistics are 0	The mean hesis: Th the popul	1,3529 is of all leve e means of ation mean ar Root	IS are equa one or mol s are signifi MSE [0.5.2.7	al e levels are di icantly differe Data Mean	fferent nt.				
Null Alter At th Fit R-S 0	otal Hypo mativ- he 0.0 Stal Squa 1,345	24 e Hypot 5 level, tistics are 0	The mean hesis: Th the popul Coeff Va 0,1009	1,3529 is of all leve e means of ation mean ar Root 4 0,2	IS are equi- one or moi s are signifi MSE [0527]	al re levels are di icantly differen Data Mean 2,03363	fferent nt.				
Null Alter At th Fit R-S 0 Me	otal Hypo mativ- he 0.0 Stal Squa 345 245	24 othesis: e Hypot l5 level, fistics are 98 com,	The mean hesis: Th the popul coeff Va 0,1009 Dariso	1,3529 is of all leve e means of ation mean ar Root 4 0,2 ///S	els are equa one or mor s are signifi MSE [0527]	al re levels are di cantly differer Data Mean 2,03363	fferent ht.				
Null Alter At th Fit 0 Me	otal Hypo mativ he 0.0 Stal Squa 345 20,345 20,345 20,345 20,345	24 othesis: 5 level, 5 level, 5 level, 5 level, 6 level, 6 level, 6 level, 98 6 Com, ey Te.	The mean hesis: Th the popul coeff Va 0,1009 pariso st	1,3529 s of all leve e means of ation means or Root 4 0,2 ms	els are equa one or mor s are signifi MSE [0527	al e levels are di coantly differen Data Mean 2,03363	fferent t.	1			10
T(Null Alter At th Fit 0 Me	otal Hypo mativ he 0.0 Stat Squa 345 2405 Tuke	24 othesis: E Hypot 5 level, 5 level, 5 level, 5 level, 6 level, 98 Com, ey Te.	The mean hesis: Th the popul coeff Va 0,1009 Dariso St Mea	1,3529 e means of ation mean ar Root 4 0,2 775	9 els are equa one or moio s are signifi MSE [0527	al e levels are di coantly differe Data Mean 2,03363 q Value	Prob	Alpha	Sig	LCL	UCL
To Null Alter At th Fit 0 Me	otal Hypo mativ- he 0.0 Stal Squa 345 2ans Tuke 0,1%	24 othesis: 6 Hypot 5 level, 5 level, 5 level, 6 level, 98 <i>Com</i> , ey Te. 6 0,09	The mean hesis: Th the popul 0,1009 Dariso St Mea 6 0,3	1,3525 is of all leve e means of ation mean ar Root 4 0,2 <i>ns</i> anDiff 16919	els are equi one or moi s are signifi MSE [0527] SEM 0,111851 0,111851	el levels are di cantly differe Data Mean 2,03363 q Value 4,40551	fferent nt. Prob 0,02491	Alpha 0,05	Sig	LCL 0,03885	UCL 0,69953 0,61759
T(Null Alter At th Fit R-S 0 Me	otal Hypo mativ- he 0.0 Stal Squa 345 Paris Tuka 0,1% 0,2%	24 othesis: 5 level, 5 level, 5 level, 5 level, 5 level, 6 level, 6 0,09 6 0,09	Coeff Va coeff Va 0,1009 Dariso Sf Mea 5 0,2 5 0,2	1,3529 is of all leve e means of ation mean ar Root 4 0,2 ns anDiff 19936 19936	9 als are equi one or moi s are signif MSE 0527 SEM 0,11851 0,1142 0,114 0,1142 0,114 0,114 0,114 0,114 0,114 0,114 0,114 0,114 0,114 0,114 0,114 0,114 0,114 0	el evels are di cantly differen 2,03363 q Value 4,40551 3,70702 0,96470	Prob 0,02491 0,07011	Alpha 0,05 0,05	Sig 1 0	LCL 0,03885 -0,01897 0,28916	UCL 0,69953 0,61768 0.24840
T(Null Alter At th Fit 0 Me	otal Hypo matiw he 0.0 Stat Squa 1,345 eans Tuka 0,1% 0,2% 0,2%	24 othesis: e Hypot 5 level, 15 level, 15 level, 15 level, 15 level, 16 0,09 6 0,09 6 0,09 6 0,09 6 0,09	The mean hesis: Th the popul 0,1009 0,20000000000	1,3529 is of all leve means of ation mean ir Root 4 0,2 7 7 6919 1 9936 1 9936 1 994 1 5 6 9	9 als are equi one or moi s are signif MSE [0527 SEM 0,11851 0,1142 0,114	el evels are di cantly differen 2,03363 4,40551 3,70702 0,86479 2,9922	Prob 0,02491 0,07011 0,92728 0,20621	Alpha 0,05 0,05 0,05	Sig 1 0 0	LCL 0,03885 -0,01897 -0,38816 -0,0888	UCL 0,69953 0,61768 0,24849 0,57187
T(Null Altei At ti R-5 0 Me	otal Hypo mativ he 0.0 Stal Squa 1,345 pans Tuka 0,1% 0,2% 0,2% 0,3%	24 othesis: e Hypot 5 level, fistics are 0 98 <i>Comp</i> ey Te. 6 0,09 6 0,09 6 0,09 6 0,09 6 0,09	The mean hesis: Th the popul 0,1009 0,20000000000	1,3529 is of all leve means of ation mean ir Root 4 0,2 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 als are equations one or motions of the state signification of the state sta	al e levels are di cantly differen 2,03363 2,03363 4,40551 3,70702 0,86479 2,8822 1,52321	Prob 0,02491 0,07011 0,92728 0,20621 0,70684	Alpha 0,05 0,05 0,05 0,05	Sig 1 0 0	LCL 0,03885 -0,01897 -0,38816 -0,0888 -0,45799	UCL 0,69953 0,61768 0,24849 0,57187 0,20268
Tri Null Alter At th R-S 0 Me	otal Hype mativ he 0.0 Stal Squa 1,345 2 2 7 0,19 0,29 0,29 0,39 0,39 0,39	24 othesis: e Hypot 5 level, tistics are 0 98 <i>Comp</i> ey Te. 6 0,09 6 0,09 6 0,09 6 0,09 6 0,09 6 0,09	The mean hesis: Th the popul 0,1009 0,20000000000	1,3529 is of all leve means of ation mean ir Root 4 0,2 7 7 6919 1 9936 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 als are equi one or moi s are signif MSE [0527 SEM 0,11851 0,1142 0,1142 0,11851 0,1185 0,1185 0,1185 0,1185 0,1185 0,1185 0,1185 0,1185 0,1185 0,1185 0,1185 0,1185 0,118 0,18 0,	al e levels are di cantly differen 2,03363 2,03363 4,03551 3,70702 0,86479 2,8822 1,52331 0,71602	Prob 0,02491 0,07011 0,92728 0,20621 0,70684	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 1 0 0 0	LCL 0,03885 -0,01897 -0,38816 -0,0888 -0,45799 0,27614	UCL 0,69953 0,61768 0,24849 0,57187 0,20268 0,2605

	Com	la Ciza	Mag	n Ct	andord Davie	tion OF	flloon			
0.007	Sam	Te Size	Mea 1 0 1 0	1 50	andaro Devia	NON SEC	n mean			
1,00%		7	1,912	20	0,17	395 0	15000			
10%		1	1,443	12 EA	0,39	904 C	06747			
20%		0	2,085	72	0,10	453 0	00402			
1,30%	0.8502020	1	1,948	13	0,22	232 6	1,08403			
ne Wa	ay AN	DVA								
Over	all AN	OVA							í.	
	DF	Sum	of Squa	res M	ean Square	F Value	Prob)>F	-	
Mode	1 3		1,58	085	0.52695	7.72535	9.6007	7F-4		
20075	201					1.1.5	0.0000000	10.5		
Erro	r 23		1,56	884	0,06821	1.1.				
Erro Tota Null Hy Alterna At the (r 23 I 26 pothesis ive Hyp 0.05 leve	: The mea othesis: T I, the popi	1,56 3,1 ts of all le e means lation mea	884 497 evels are e of one or ans are sig	0,06821 equal more levels are d inificantly differe	ifferent nt.			5	
Erro Tota Null Hy Alterna At the (Fit St	r 23 1 26 pothesis ive Hyp 0.05 leve catistic Jare	: The mea othesis: T I, the pop S Coeff V	1,56 3,1 ts of all le e means lation means lation means	884 497 evels are e of one or ans are sig ot MSE	0,06821 equal more levels are d inificantly differe Data Mean	ifferent nt.				
Erro Tota Null Hy Alterna At the (Fit St R-Sq 0,5(r 23 pothesis ive Hyp 0.05 leve patistic Jare 0191	The mea othesis: T I, the pop S Coeff V 0,142	1,56 3,1 is of all le e means lation means l	884 497 evels are e of one or ans are sig ot MSE ,26117	0,06821 equal more levels are d inificantly differe Data Mean 1,8389	ifferent nt.				
Erro Tota Null Hy Alterna At the (Fit Si R-Sq 0,5() Mear	r 23 I 26 pothesis ive Hyp 0.05 leve catistic Jare 0191	The mea othesis: T I, the pop S Coeff V 0,1420	1,56 3,1 ts of all le e means lation means l	884 497 of one or ans are sig ot MSE ,26117	0,06821 equal more levels are d inificantly differe Data Mean 1,8389	ifferent nt.			2	
Erro Tota Null Hy Alterna At the (Fit St R-Sq 0,5(Mear	r 23 I 26 pothesis ive Hyp 0.05 leve catistic Jare 0191 <i>Is Col</i> key T	: The mea othesis: T I, the popi S Coeff V 0,142 mpariso	1,56 3,1 ts of all le e means lation means l	884 497 evels are e of one or ans are sig ot MSE ,26117	0,06821 equal more levels are d inificantly differe Data Mean 1,8389	ifferent nt.			8	
Erro Tota Null Hy Alterna At the (Fit St R-Sq 0,5(Mean P Tu	r 23 I 26 pothesis ive Hyp 0.05 leve atistic Jare 0.191 is Col key T	: The mea othesis: T I, the popi S Coeff V 0,1421 npariso est Me	1,56 3,1 rs of all le re means lation mer ar Ro 13 0 VITS	884 497 evels are e of one or ans are sig ot MSE ,26117	0,06821 equal more levels are d inificantly differe Data Mean 1,8389	ifferent nt.	Alpha	Siq	LCL	UCL
Erro Tota Null Hy Alterna At the (Fit St R-Sq 0,5(Mean P Tu	r 23 1 26 pothesis ive Hyp 0.05 leve <i>atistic</i> Jare 0.191 <i>is Col</i> <i>key T</i> 1% 0.0	: The mea othesis: T I, the popular S Coeff V 0,142 mparisc est Me % -0,	1,56 3,1 as of all le le means lation means lation means ar Ro 3 0 0 0 7 5 anDiff 46913	884 497 evels are e of one or ans are sig ot MSE ,26117 SEM 0,1396	0,06821 equal more levels are d inificantly differe Data Mean 1,8389 Q Value 6 4,75248	ifferent nt.	Alpha 0.05	Sig	LCL -0,85546	UCL -0.08281
Erro Tota Null Hy Alterna At the (Fit SI R-Sq 0,5(Mean D,5(Mean D,5(0,5(0,2)	r 23 1 26 pothesis ive Hyp 0.05 leve catistic Jare 1191 <i>bs Coll</i> <i>key T</i> % 0,0 2% 0,0	The mea othesis: T I, the popi S Coeff V 0,1420 mpariso est Me % -0, % 0,	1,56 3,1 as of all leve means lation means lation means ar Ro 3 0 005 anDiff 46913 17268	884 497 evels are e of one or ans are sig ot MSE ,26117 SEM 0,1396 0,1453	0,06821 qual more levels are d inificantly differe Data Mean 1,8389 Q Value 4,75248 3 1,68067	ifferent nt. Prob 0,0134 0,64003	Alpha 0,05 0,05	Sig 1 0	LCL -0,85546 -0,22942	UCL -0,08281 0,57478
Erro Tota Null Hy Altena At the (Fit Si R-Sq 0,5(Mean Q,5(0,2) 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2	r 231 26 pothesis ive Hyp 0.05 leve catistic Jare 0.191 <i>bs Col</i> <i>key T</i> 1% 0,0 2% 0,0	: The mea othesis: T I, the popular S Coeff V 0,1420 mparisc est Me % -0, % 0, % 0,	1,56 3,1 as of all live means lation means lation means ar Ro 13 0 775 anDiff 46913 17268 34181	884 497 evels are e of one or ans are sig ot MSE ,26117 0,1396 0,1453 0,1453	0,06821 equal more levels are d inificantly differe Data Mean 1,8389 Q Value 4,75248 1,68067 3 6,2467	ifferent nt. Prob 0,0134 0,64003 0,00107	Alpha 0,05 0,05 0,05	Sig 1 0	LCL -0,85546 -0,22942 0,23972	UCL -0,08281 0,57478 1,04391
Erro Tota Null Hy Alterna At the (<i>Fit Si</i> R-Sq 0,5(<i>Meai</i> 0,5(0,2) 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2	r 23 r 23 pothesis ive Hyp 0.05 leve patistic Jare 0.191 <i>Is Coll</i> <i>key T</i> 1% 0,0 2% 0,0 2% 0,1 3% 0,0	: The mea othesis: Ti, the popi S Coeff V 0,1420 mparisc est Me % -0, % 0, % 0, % 0,	1,56 3,1 is of all le e means lation means lation means lation means lation means lation means an Ro 13 0 0775 an Diff 46913 17268 54181 03587	884 497 evels are e of one or ans are sig ot MSE ,26117 0,1396 0,1453 0,1453 0,1396	0,06821 equal more levels are d inificantly differe Data Mean 1,8389 Q Value 6 4,75248 8 1,68067 8 6,2467 6 0,36338	Prob 0,0134 0,64003 0,00107 0,99388	Alpha 0,05 0,05 0,05 0,05	Sig 1 0 1	LCL -0,85546 -0,22942 0,23972 -0,35045	UCL -0,08281 0,57478 1,04391 0,42219
Erro Tota Null Hy Alterna At the (<i>Fit Si</i> R-Sq 0,5(<i>Meai</i> 0 , 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,	r 23 r 23 pothesis ive Hyp 0.05 leve patistic Jare 0.191 <i>Is Coll</i> <i>key T</i> 1% 0,0 2% 0,0 2% 0,1 3% 0,1 3% 0,1	: The mea othesis: T I, the popular S Coeff V 0,1424 mparisc est Me % -0, % 0, % 0, % 0,	1,56 3,1 as of all le e means lation means lation means lation means an Ro 3 0 W1S an Diff 46913 17268 64181 03587 0,505	884 497 evels are e of one or ans are sig 0t MSE ,26117 0,1396 0,1453 0,1453 0,1453 0,1396 0,1396	0,06821 equal more levels are d inificantly differe Data Mean 1,8389 Q Value 6 4,75248 8 1,68067 8 6,2467 9 0,36338 6 5,11586	Prob 0,0134 0,64003 0,00107 0,99388 0,00735	Alpha 0,05 0,05 0,05 0,05 0,05 0,05	Sig 1 0 1 1	LCL -0,85546 -0,22942 0,23972 -0,35045 0,11868	UCL -0,08281 0,57478 1,04391 0,42219 0,89133

0.033	100 C 100 C	ire on	10000	100							
		Sampl	e Size	Mear	n Stai	ndard Deviat	ion SE of	Mean			
0,0	00%		5	1,053	77	0,21	723 0,0	9715			
),'	10%		5	1,741	58	0,1	767 0,0	7902			
),2	20%		6	1,532	38	0,223	316 0	0911			
0,3	30%		6	1,952	56	0,32	381 0	1322			
Dr	ne Wa	Y ANC	VA								
2	Overa	III ANC	N/A	2702	11:202	(1251)		000010000			
-		DF	Sum (of Squar	res Me	an Square	F Value	Prob>F			
-	Model	3		2,360	085	0,78695	13,03245	9,17053E	-5		
ł	Error	18		1,086	591	0,06038		11212110010110100	-		
Contraction of the	Error Total Null Hyp Alternati At the 0.	18 21 oothesis: ve Hypo 05 level,	The mear hesis: Th the popul	1,086 3,447 s of all le e means o ation mea	591 775 of one or m of one or m ins are sign	0,06038 ual ficantly differe	ifferent nt.				
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ	18 21 oothesis: ve Hypo 05 level, atistics are	The mear hesis: Th the popu	1,086 3,447 is of all le e means (ation mea	391 775 vels are eq of one or m ins are sign ot MSE	0,06038 ual ficantly differe Data Mean	ifferent nt.				
	Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,68-	18 21 oothesis: ve Hypo 05 level, atistics are 475	The mear hesis: Th the popul Coeff Va 0,1549	1,086 3,447 s of all le e means (ation mea ation mea ation 6 0,	091 775 vels are eq of one or m ins are sign ot MSE 24573	0,06038 ual ficantly differe Data Mean 1,58575	ifferent nt.				
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,68- Mean:	18 21 wothesis: ve Hypo 05 level, atistics are 475 s Com	The mear hesis: Th the popul Coeff Va 0,1549 <i>pariso</i>	1,086 3,447 s of all le e means (ation mea ur Ro(6 0, ///S	391 775 or els are eq of one or m ins are sign ot MSE 24573	0,06038 ual ore levels are d ficantly differe Data Mean 1,58575	ifferent nt.				
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,68 Mean: Tuk	18 21 wothesis: ve Hypo 05 level, atistics are 475 s Com rey Te	The mear hesis: Th the popul Coeff Va 0,1549 pariso st	1,086 3,447 s of all le e means (ation mea arr Ro(6 0, <i>INS</i>	391 775 of one or m ins are sign ot MSE 24573	0,06038 ual ficantly differe Data Mean 1,58575	ifferent nt.				
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,68. Mean:	18 21 oothesis: ve Hypo 05 level, atistics are 475 s Com rey Te	The mear hesis: Th the popul Coeff Va 0,1549 pariso st Mea	1,086 3,447 s of all le e means (ation mea ur Roo 6 0, <i>INS</i>	391 vels are eq of one or m ins are sign of MSE 24573 SEM	0,06038 Jual Dre levels are d ficantly differe Data Mean 1,58575	ifferent nt.	Alpha	Sig	LCL	UCL
	Error Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,68- <i>Mean</i> : <i>Tuk</i>	18 21 vothesis: ve Hypo 05 level, atistics are 475 s Com rey Te	The mear hesis: Th the popul Coeff Va 0,1549 pariso st Mea 6 0,6	1,086 3,447 s of all le e means of ation means ation a	391 775 wels are eq of one or m ins are sign ot MSE 24573 SEM 0,15541	0,06038 ual ore levels are d ficantly differe Data Mean 1,58575 q Value 6,25888	fferent nt.	Alpha 9 0,05	Sig 1	LCL 0,24857	UCL 1,12706
	Error Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,68 <i>Mean:</i> 0,11 0,11 0,2	18 21 we Hypo 05 level, atistics are 475 s Com rey Te % 0,09 % 0,09	The mean hesis: Th the popul 0,1549 pariso st Mea 6 0,6 6 0,4	1,086 3,447 s of all le e means o ation mea ar Roo 6 0, <i>ns</i> anDiff 8782 .7861	391 775 vels are eq of one or m ins are sign 0t MSE 24573 0,15541 0,1488	0,06038 ual ore levels are d ficantly differe Data Mean 1,58575 q Value 6,25888 4,54883	fferent nt. Prob 0,0016 0,0225	Alpha 9 0,05 8 0,05	Sig 1 1	LCL 0,24857 0,05806	UCL 1,12706 0,89915
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,68- Means 0,11 0,21 0,22	18 21 xothesis: ve Hypo 05 level, atistics are 475 s Com rey Te % 0,09 % 0,09 % 0,19	The mean hesis: Th the popul 0,1549 <i>pariso</i> <i>st</i> <u>Mea</u> 6 0,6 6 0,4 6 0,4	1,086 3,447 s of all le e means of ation means ation a	391 775 vels are eq of one or m ins are sign 0t MSE 24573 0,15547 0,1488 0,1488 0,1488	0,06038 Jual Dre levels are d ficantly differe Data Mean 1,58575 Q Value 6,25888 4,54883 1,98836	fferent nt. Prob 0,0016 0,0225 0,5118	Alpha 9 0,05 8 0,05 2 0,05	Sig 1 1 0	LCL 0,24857 0,05806 -0,62975	UCL 1,12706 0,89915 0,21134
	Error Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,68 Mean: 0,11 0,21 0,2 0,2 0,3	18 21 vothesis: ve Hypo 05 level, atistics are 475 s Com rey Te % 0,09 % 0,09 % 0,09 % 0,09 % 0,09 % 0,09 % 0,09	The mean hesis: Th the popul 0,1549 <i>pariso</i> <i>st</i> <u>Mea</u> 6 0,6 6 0,4 6 0,2 6 0,2 6 0,2	1,086 3,447 s of all le e means of ation means ation a	391 775 vels are eq of one or m ins are sign ot MSE 24573 0,15541 0,1488 0,1488 0,1488 0,1488	0,06038 ual ore levels are d ficantly differe Data Mean 1,58575 Q Value 6,25888 4,54883 1,98836 8,54239	Prob 0,0016 0,0225 0,5118 5,65566E	Alpha 9 0,05 8 0,05 2 0,05 5 0,05	Sig 1 1 0	LCL 0,24857 0,05806 -0,62975 0,47825	UCL 1,12706 0,89915 0,21134 1,31934
	Error Total Null Hyp Alternati At the 0. <i>Fit Sta</i> R-Squ 0,68 <i>Means</i> 0,11 0,21 0,21 0,21 0,31	18 21 vothesis: ve Hypo 05 level, atistics are 475 s Com % 0,0% % 0,0% % 0,0% % 0,0% % 0,0% % 0,0% % 0,0% % 0,0% % 0,0% % 0,0%	The mean hesis: Th the popul 0,1549 <i>pariso</i> <i>st</i> <u>Mea</u> 6 0,6 6 0,4 6 0,2 6 0,2 6 0,2 6 0,2	1,086 3,447 s of all le e means of ation means ation means of means of e means of ation means of means of e means of e means of e me	391 775 vels are eq of one or m ins are sign 0t MSE 24573 SEM 0,15541 0,1488 0,1488 0,1488 0,1488 0,1488 0,1488	0,06038 ual ore levels are d ficantly differe Data Mean 1,58575 Q Value 6,25888 4,54883 1,98836 8,54239 2,00521	Prob 0,0016 0,0225 0,5118 5,65566E 0,5048	Alpha 9 0,05 8 0,05 2 0,05 5 0,05 5 0,05 7 0,05	Sig 1 1 0 1	LCL 0,24857 0,05806 -0,62975 0,47825 -0,20957	UCL 1,12706 0,89915 0,21134 1,31934 0,63152

		Sam	ple S	Size	Mean	Star	ndard Deviat	ion SE o	fMean			
Ļ	00%	Chatter can		7 4	,29664	- CILL	0,666	663 0	25196			
	10%			6 4	1,16747		0,512	221 0	20911			
ļ	20%			7 4	1,55905		0,519	902 0	19617			
Ļ	30%			7 4	,21087		0,387	736 0	14641			
r	ne Wa	V AA	IOV	4				111				
1	Overa	A	IOV	4								
Г		DF	S	um of S	Squares	Me	an Square	F Value	Prob>F			
	Model	1	3		0,62571	1	0,20857	0,73862	0,53981	R		
1.0	Error	2			C 40470	2	0.00000	the first of the second strength		100		
٩.	EHOL	4.	2		0,494/3	8	0,28238			-		
Card Construction of the	Total Null Hyp Alternatio At the 0.	2(othesi ve Hy 05 lev	s: The pothes el, the	means o sis: The m populatio	o,49473 7,12044 of all levels heans of o on means a	are eq ne or m are not s	0,28238 ual ore levels are di significantly diff	fferent lerent.				
Contraction of the second seco	Total Null Hyp Alternatio At the 0. Fit Sta R-Squ	20 othesi ve Hy 05 lev atisti are	s: The pothes el, the CS CO	e means o sis: The m population eff Var	0,49473 7,12044 of all levels neans of o on means a Root M	are eq ne or m are not s	0,28238 ual ore levels are di significantly diff Data Mean	fferent erent.				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total Null Hyp Alternation At the 0. Fit Stat R-Squ 0,08	20 othesi ve Hy 05 lev atistic are 788	s: The pothes el, the CS Cor 0,	e means o sis: The m population eff Var 12319	o,49473 7,12044 of all levels teans of o on means a Root M 0,53	are eq ne or m are not s ISE 139	0,28238 ual ore levels are di significantly diff Data Mean 4,31373	fferent ierent.				
and the second of the	Total Null Hyp Alternation At the 0. Fit Stat R-Squ 0,08 Means	othesi ve Hy 05 lev atistii are 788	s: The pothes el, the CS Co 0, mpa	e means o sis: The m population eff Var 12319 arrisons	0,49473 7,12044 of all levels beans of o on means a Root M 0,53	are eq ne or m are not s ISE 139	0,28238 ual ore levels are di significantly diff Data Mean 4,31373	fferent erent.				
The second secon	Total Null Hyp Alternation At the 0. Fit Sta R-Squ 0,081 Means Tuk	are 788 5 Co 7ey 7	s: The pothes el, the CS Co 0, mpa Test	e means o sis: The m e populatio eff Var 12319 arisons	7,12044 of all levels teans of o on means a Root M 0,53	are eq ne or m are not s ISE 139	0,28238 ual ore levels are di significantly diff Data Mean 4,31373	fferent erent.				
The second secon	Total Null Hyp Alternatin At the 0. Fit Stat R-Squ 0,08 Means	othesi ve Hy 05 lev atisti are 788 5 Co rey 7	s: The pothes el, the CS Co 0, mpa Test	e means o sis: The m e populatio eff Var 12319 <i>Arrisons</i> Meant	7,12044 of all levels reans of o on means a Root IN 0,53	are eq ne or m are not s 139 SEM	0,28238 ual ore levels are di significantly diff Data Mean 4,31373 q Value	fferent erent.	Alpha	Sig	LCL	UCL
A THE MARK AND A COMPANY OF A C	Total Null Hyp Alternatin At the 0. Fit Sta R-Squ 0,08 Tuk 0,14	are 788 5 Co 76 Y 1	s: The pothes el, the CS Co 0, mpa Test	e means o sis: The m e population eff Var 12319 Arrisons Meant -0,129	7,12044 of all levels leans of o on means a 0,53 c Diff : 0,17 0,	s are eq ne or m are not s 139 139 SEM 29564	0,28238 ual ore levels are di significantly diff Data Mean 4,31373 q Value 4 0,61789	fferent lerent.	Alpha 0,05	Sig	LCL -0,9473	UCL 0,68896
	Total Null Hyp Alternatio At the 0. Fit Sta R-Squ 0,08 Means Tuk 0,1 0,1 0,2	20 othesi ve Hy 05 lev atistic are 788 5 Co rey 1 % 0, % 0,	s: The pothes el, the CS Co 0, mpa Test	e means o sis: The m population eff Var 12319 Arisons Meant -0,129 0,26	7,12044 of all levels teans of o on means to 0,53 c Diff 3 317 0, 324 0,	are eq ne or m are not s 139 3EM 29564 28404	0,28238 ual ore levels are di significantly diff Data Mean 4,31373 q Value 4 0,61789 4 1,30647	fferent lerent. Prob 0,97145 0,79247	Alpha 0,05 0,05	Sig 0 0	LCL -0,9473 -0,52363	UCL 0,68896 1,04843
	Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,08 Means Tuk 0,14 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,2	2. 20 oothesi ve Hy 05 lev atistii are 788 5 CO rey 7 % 0, % 0, % 0, % 0,	5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7	e means o sis: The m population eff Var 12319 arrisons Meant -0,129 0,20 0,391	0,49473 7,12044 of all levels reans of o on means i 0,53 0 01ff 3 017 0,324 0,157	are eq ne or m are not s 139 139 3EM 29564 28404 29564	0,28238 ual ore levels are di significantly diff Data Mean 4,31373 4,31475 4,	fferent erent. Prob 0,97145 0,79247 0,55733	Alpha 0,05 0,05 0,05	Sig 0 0 0	LCL -0,9473 -0,52363 -0,42655	UCL 0,68896 1,04843 1,2097
	Total Null Hyp Alternati At the 0. Fit Sta R-Squ 0,08 December 201 0,14 0,24 0,24 0,24 0,34	2. 20 20 20 20 20 20 20 20 20 20	5 5 5 5 5 5 5 5 5 5 5 5 5 5	e means o sis: The m populatic eff Var 12319 Arisons Meant -0,129 0,26 0,391 -0,085	0,49473 7,12044 of all levels reans of o on means of 0,53 0 01ff 3 017 0,324 0,577 0,577	are eq ne or m are not s 139 3EM 29564 29564 28404 28404	0,28238 ual ore levels are di significantly diff Data Mean 4,31373 4 0,61789 4 1,30647 4 1,87311 4 0,42705	fferent erent. 0,97145 0,79247 0,55733 0,99018	Alpha 0,05 0,05 0,05 0,05	Sig 0 0 0	LCL -0,9473 -0,52363 -0,42655 -0,8718	UCL 0,68896 1,04843 1,2097 0,70026
	Total Null Hyp Alternati At the 0. <i>Fit Sta</i> <i>R</i> -Squ 0,08 <i>Means</i> <i>Tuk</i> 0,1 ⁴ 0,2 ⁴ 0,2 ⁴ 0,3	2. 2(oothesis ve Hyj 05 lev atistii are 788 5 CO rey 7 % 0, % 0,	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	e means o sis: The m populatic eff Var 12319 Arisons 0,129 0,26 0,391 -0,085 0,04	Root N 0,49473 0,12044 0,12044 0,11 <th1< th=""> 0,11 0,11</th1<>	s are eq ne or m are not s 139 3EM 29564 29564 29564 29564 29564 29564	0,28238 ual ore levels are di significantly diff Data Mean 4,31373 Q Value 4 0,61789 4 1,30647 4 1,87311 4 0,42705 4 0,20759	Frob 0,97145 0,79247 0,55733 0,99018 0,99884	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 0 0 0 0	LCL -0,9473 -0,52363 -0,42655 -0,8718 -0,77473	UCL 0,68896 1,04843 1,2097 0,70026 0,86152

	Sa	ampl	e Size	Mean	1 Sta	Indard Deviat	tion SE o	fMean			
0,00%			6	2,7364	44	0,27	703	0,1131			
),10%			6	2,294	14	0,19	014 0	07762			
),20%			6	2,656	12	0,22	781	0,093			
),30%			7	2,5739	95	0,21	467 0	08114			
ne V	Vay.	ANC	VA								
Ove	erall.	ANC	VA								
ľ.	1	DF	Sum of	Squar	es Me	ean Square	F Value	Prob>F			
Mod	del	3		0,666	91	0,2223	4,24215	0,01716	10		
-	(A) ((A) (A)	1000									
Eff	ror	21		1,100	47	0,0524					
Null H Altern At the	ror Ital Hypoti native e 0.05 Stati	21 24 hesis: Hypot level,	The means hesis: The the populat	1,100 1,767 of all le means o ion mea	147 '38 vels are e of one or n ns are sig	0,0524 qual nore levels are d nificantly differe	ifferent nt.				
Null H Altern At the Fit S	ror Ital Hypoti native e 0.05 Stati Squar	21 24 hesis: Hypot level, istics	The means hesis: The the populat Coeff Var	1,100 1,767 of all le means o ion mea	147 '38 of one or n ns are sig	0,0524 qual nore levels are d nificantly differe Data Mean	ifferent nt.				
Null H Altern At the Fit S R-S 0,3	ror Ital Hypotinative e 0.05 Stati Quar 3773	21 24 hesis: Hypot level, <i>istics</i> e (34	The means hesis: The the populat Coeff Var 0,08923	1,100 1,767 of all ler means o ion mea Roc 0,	147 '38 vels are e of one or n ns are sig ot MSE 22892	0,0524 qual nore levels are d nificantly differe Data Mean 2,56552	ifferent nt.				
Null H Altern At the Fit S R-S 0,3 Mea	ror Ital Hypoti native e 0.05 Stati Stati Squar 3773	21 24 hesis: Hypot level, istics e (4 Com	The means hesis: The the populat Coeff Var 0,08923 Darison	1,100 1,767 of all le means o ion mea Roc 0, S	147 '38 vels are e of one or n ns are sig ot MSE 22892	0,0524 qual nore levels are d nificantly differe Data Mean 2,56552	ifferent nt.				
Null H Altern At the Fit S R-S 0,3 Mea	ror Ital Hypoti native e 0.05 Stati quar 3773 ans (uke	21 24 hesis: Hypot level, istics com V Te	The means hesis: The the populat Coeff Var 0,08923 Darison St	1,100 1,767 of all le means o ion mea Roc 0, S	147 '38 vels are e of one or n ns are sign ot MSE 22892	0,0524 qual nore levels are d nificantly differe Data Mean 2,56552	ifferent nt.				
Null H Altern At the Fit S 0,3 Mea	ror Ital Hypoti native e 0.05 Stati quar 3773 ans o Tuke	21 24 hesis: Hypot level, istics e (34 Com y Te	The means hesis: The the populat Coeff Var 0,08923 parison st Mean	1,100 1,767 of all le means o ion mea Roc 0, S	147 '38 vels are e of one or n ns are sig ot MSE 22892 SEM	0,0524 qual nore levels are d nificantly differe Data Mean 2,56552 q Value	ifferent nt.	Alpha	Sig	LCL	UCL
Fif S Null F Altern At the Fif S 0,3 Mea 0	ror Ital Hypoti native e 0.05 Stati quar 3773 ans (Tuke) 0,1%	21 24 hesis: Hypot level, istics e Com y Te 0,09	The means hesis: The the populat Coeff Var 0,08923 Darison. St Mean 6 -0,4	1,100 1,767 of all le means c ion mea Roc 0, 5 Diff 423	147 '38 vels are e of one or n ns are sig 0t MSE 22892 SEM 0,1321	0,0524 qual nore levels are d nificantly differe Data Mean 2,56552 q Value 7 4,73275	ifferent nt.	Alpha 0,05	Sig	LCL -0,81069	UCL -0,07391
Fif 5 R-S 0,3 Mea ■ 0 0 0 0 0 0 0 0 0 0 0 0 0	ror Ital Hypoti native e 0.05 Stati quar 3773 ans (Tuke) 0,1%	21 24 hesis: Hypot level, istics e (04 <i>Com</i> <i>y</i> Te 0,09 0,09	The means hesis: The populat Coeff Var 0,08923 Darison St Mean 6 -0,4 6 -0,08	1,100 1,767 of all le means c ion mea 0, 5 Diff 423 032	147 '38 vels are e f one or n ns are sig ot MSE 22892 SEM 0,1321 0,1321	0,0524 qual nore levels are d nificantly differe Data Mean 2,56552 q Value 7 4,73275 7 0,8595	ifferent nt. Prob 0,01496 0,92847	Alpha 0,05 0,05	Sig 1 0	LCL -0,81069 -0,44871	UCL -0,07391 0,28807
Fit S Mull H Altern At the Fit S 0.3 Mea 0 0 0 0 0	ror tal Hypoti native e 0.05 Stati quar 3773 3773 3773 3773 0.05 (quar	21 24 hesis: Hypot level, istics ce (4 <i>Com</i> , <i>y</i> Te 0,09 0,09 0,19	The means hesis: The the populat 0,08923 0arison st Mean 6 -0,4 6 -0,08 6 0,36	1,100 1,767 of all le means o ion mea 0, 5 0, 5 0, 5 0, 198	147 38 vels are e f one or n ns are sig 0t MSE 22892 SEM 0,1321 0,1321 0,1321	0,0524 qual nore levels are d nificantly differe 2,56552 q Value 7 4,73275 7 0,8595 7 3,87325	Prob 0,01496 0,05525	Alpha 0,05 0,05 0,05	Sig 1 0 0	LCL -0,81069 -0,44871 -0,00641	UCL -0,07391 0,28807 0,73037
Fit S Meaa Meaa Meaa 0,: 000 000 000 000 000 000 000	ror tal Hypotti native e 0.05 Statii equar 3773 ans (Cuke) 0,1% 0,2% 0,2%	21 24 hesis: Hypot level, istics com, y Te 0,09 0,09 0,09 0,09 0,09	The means hesis: The the populat 0,08923 0arison st Mean 6 -0,4 6 -0,08 6 0,36 6 -0,1	1,100 1,767 of all le means c ion mea 0, 5 0 0 198 625	147 38 vels are e f one or n ns are sig 0t MSE 22892 SEM 0,1321 0,1321 0,1321 0,1273	0,0524 qual nore levels are d nificantly differe 2,56552 q Value 7 4,73275 7 0,8595 7 3,87325 6 1,80438	Prob 0,01496 0,05525 0,5876	Alpha 0,05 0,05 0,05 0,05	Sig 1 0 0	LCL -0,81069 -0,44871 -0,00641 -0,51748	UCL -0,07391 0,28807 0,73037 0,19249
Eff To Null H Altern At the Fif 5 0,3 Meaa 0 0 0 0 0 0 0 0 0 0 0 0 0	ror tal Hypotit hative e 0.05 Statii quar 3773 ans (Cuke) 0,1% 0,2% 0,2% 0,2% 0,3%	21 24 hesis: Hypot level, istics com y Te 0,09 0,09 0,09 0,09 0,19 0,09	The means hesis: The the populat 0,08923 <i>Darison</i> <i>st</i> Mean 6 -0,4 6 -0,08 6 0,36 6 -0,1 6 0,27	1,100 1,767 of all le means o ion mea 0, 5 00 10 198 625 981	147 38 vels are e of one or n ns are sig 0,1321 0,1321 0,1321 0,1321 0,1321 0,1273 0,1273	0,0524 qual nore levels are d nificantly differe 2,56552 q Value 7 4,73275 7 0,8595 7 3,87325 6 1,80438 6 3,10702	Prob 0,01496 0,92847 0,05525 0,5876 0,15668	Alpha 0,05 0,05 0,05 0,05 0,05	Sig 1 0 0 0	LCL -0,81069 -0,44871 -0,00641 -0,51748 -0,07518	UCL -0,07391 0,28807 0,73037 0,19249 0,63479