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Resumo

Nanopartículas são pequenos aglomerados (clusters) com poucos nanômetros de dimensão

podendo conter até cerca de um milhão de átomos. O comportamento físico-químico destes

clusters está fortemente ligado à sua geometria, número de partículas e composição. Devido

à complexidade do problema, a configuração destes clusters não pode ser compreendida

puramente por dados experimentais. Portanto, são necessários modelos ou hipóteses para

dar sentido aos resultados destes experimentos. Computadores modernos possibilitam o

avanço de abordagens ab initio que são capazes de prever a estrutura de menor energia de

um cluster mesmo sem nenhum dado experimental, embora sejam eficientes apenas para

pequenos clusters demandam alto custo computacional. Fenômenos quânticos contribuem

para a dificuldade de se prever a geometria ótima de clusters em casos que se necessitam

de grande exatidão. Quanto maior a exatidão esperada para os resultados, mais fenômenos

quânticos devem ser levados em consideração, o que aumenta a complexidade do cálculos

da energia do cluster. Métodos de busca por soluções, especialmente Algoritmos Genéticos

(GA), tem sido usados em uma variedade de estudos apresentando boas soluções em

uma maneira altamente paralelizável. Estes GAs se beneficiam de metáforas elaboradas

e têm sido constantemente aprimorados ao longo dos anos. Neste trabalho, um método

mecanicista para a geração aleatória de clusters é usado a fim de melhorar a eficiência de

GAs usados para optimização de clusters.

Palavras-chave: Otimização de clusters. Algoritmos Genéticos. Química quântica.
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Abstract

Nanoparticles are small particle agglomerates (clusters) of few nanometers ranging from

a dozen up to a million atoms. The cluster behavior is strongly linked to its geometry, the

number of particles and composition. The cluster configuration cannot be determined by

experimental data solely and further hypothesis are necessary for giving meaning to the

experimental results. The improvement of the current computer programs makes possible

the advance of ab initio approaches which are able to determine the structure of the

lowest energy without the need for any experimental data, but only for small clusters and

at expenses of high computational cost. Quantum effects involved in clusters increase

the difficulty of valuing geometries, especially when high accuracy is required. The higher

the expected accuracy is, the more of those quantum aspects should be taken under

consideration, increasing the complexity of the required algorithms. Search for solutions

methods, especially using Genetic Algorithms (GA), have been used in a variety of cluster

studies bringing light to good solutions in a highly parallel fashion assessing marginally the

geometry domain. GA methods benefit from elegant metaphors and have been constantly

improved throughout the years. In the present work, a mechanistic method for random

generation of clusters is studied to improve the GA learning in cluster geometry optimization

methods.

Keywords: Cluster optimization. Genetic Algorithm. Quantum Chemistry.
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Chapter 1

Introduction

Every known industry sector is intimately constrained to a specific set of materials. Curtarolo

et al. (2013) stated that the rare event of changing those materials in a well-established

technology is to be considered a revolution. Particularly the growth of industrial demands

in specialized sectors such as electronics or biotechnology highlights the necessity for the

comprehension of materials in the nanoscopic scale for business development.

Nanoparticles are small particle agglomerates (clusters) of few nanometers ranging from

a dozen to a million atoms. Despite having the same chemical composition, the physical-

chemical behavior of substances varies significantly when comparing cluster state to bulk

solid state. Johnston (2003) states that is particularly relevant for both research and develop-

ment in fields like catalysis, fullerenes or nanotechnology in general.

Clusters can be composed of different atom types or even a collection of molecules, being

observed in various environments like molecular beams, vapor phase, colloidal suspensions,

isolated in inert matrices or over surfaces (JOHNSTON, 2003). The behavior of clusters is

strongly linked to its geometry, the number of particles and composition so that relevant

physical properties can be calculated in terms of those features.

As stated by Marks (1994) and Silva, Galvão & Belchior (2014), the cluster configuration

cannot be understood by experimental data solely meaning that mathematical models and

further hypotheses are necessary to give meaning to the experimental results.
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It is necessary to elaborate a suitable approximate energy function to represent the cluster,

considering the quantum and electromagnetic phenomena involved. The problem is then

to minimize this energy function to find the target cluster geometry that corresponds to the

most probable atomic arrangement represented as the global minimum of the total energy of

the system.

The ab initio approaches model the cluster behavior by basic physical principles instead

of relying on any empirical data for the energy calculation. That constitutes an unbiased

approach considering quantum aspects of the clusters and hence going beyond the problem

of minimizing electronic attraction and repulsion or any empirical force field models.

The higher the expected accuracy is, the more of those quantum aspects should be taken

under consideration. Fortunately, the underlying physical laws requested for those are

completely known as refereed by Dirac (1929) almost a hundred years ago. However, the

celebrated resolution of the complex physical models has the drawback of a considerable

computational cost.

The quantum effects involved in cluster energy calculations contribute to the unpredictability

of the output geometries, especially when high accuracy is required. Therefore every possible

geometry is a reasonable prospect solution to the problem. The so-called Potential Energy

Surface (PES) to be surveyed, is a hypersurface of potential energy values, and it is used to

represent the domain of the N-dimensional space of cluster geometries.

The use of Genetic Algorithms (GA) focuses the core of the computational effort to the search

for minima among the PES in a highly parallel fashion recombining randomly generated

building blocks of candidate solutions (genes) to yield the putative global minimum while

assessing only marginally the PES.

According to Mitchell (1998), the application of a GA involves a considerable amount of

choices, and since search methods, especially GA, benefit from elegant metaphors. There is

an inherent need for proper encoding, and there is no ideal choice for the coding of mutation,

crossover, or even for the random generation of the initial population. Some approaches to

implement GA in cluster optimization apply empirical chemical properties as heuristics for

the initial population (JOHNSTON, 2003; HEILES et al., 2012; KAZAKOVA; WU; RAHMAN,

2013).

The mechanisms in which such heuristics affect the GA can be either positive or detrimental

since they can create an unwanted bias, preventing a proper exploration of the PES. Many

of those approaches use references from the average atomic displacement of the bulk solid

state to limit the space in which the initial prospect solutions are generated.

2



That creates a demand for knowledge about the sparsity of the clusters’ atoms before

geometry optimization. Furthermore, the function to be optimized is unconstrained, and the

wrong estimate of those limits can affect the efficiency of the GA.

A proposal for different use of the atomic distance is presented. The proposed approach is

used for the generation of the first population and does not have any constrain to the overall

packing factor or the cluster’s limiting shape.

3



Chapter 2

Objectives

2.1 General objectives

The objective of this study is to evaluate a new strategy for the generation of the initial

population of clusters to be used in Genetic Algorithms (GA).

2.2 Specific objectives

1. Elaborate a mechanistic algorithm for a random cluster generation in a 3-dimensional

space subjected to constraints such as bond length and normal distribution parameters.

2. Improve the strategy used for first GA population using optimal bond distances or bulk

average distance as a reference.

3. Evaluate the proposed generation algorithm in comparison to reference one.

4



Chapter 3

Theoretical Background

The theoretical background of this work is divided into two main subjects: I. Calculation of

the cluster energy (section 3.1), and II. Implementation of Genetic Algorithms (section 3.2

and section 3.3).

3.1 Quantum aspects of clusters

The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble. (DIRAC, 1929).

The methods that only tackle the Schrödinger equation (SE) for giving information without

the need for any experimental data are called ab initio methods. The ab initio assessment

for complex systems is challenging without proper approximations and some computational

heuristics even considering current computers. Although, as suggested by Dirac (1929), the

whole of chemistry lies in the solution of SE equation.

Some of those approximations not only make possible the ab initio assessment in theoretical

chemistry but also enables inherent notions of the chemical practice like molecular shape,

orbitals, and atom types.

3.1.1 Born-Oppenheimer approximation

Since the SE is related to the Hamiltonian operator for the total energy of the system, one

can take much advantage from the mass difference between the electron and the proton.

The proton weights roughly 1800 times more than the electron, motivating the approximation

that considers the nucleus — a collection of protons and neutrons — fixed in regard to the

motion of the electrons.

5



As explained by Koch & Holthausen (2015), in regard to the much-celebrated work of Born &

Oppenheimer (2000), the kinetic energy of a nucleus can be disregarded, thus, the potential

energy of the nucleus is constant. In this case, the Hamiltonian operator shrinks to an

electronic Hamiltonian:

Helec = T + VNe + Vee , (1)

where the electronic Hamiltonian (1) is influenced by the electronic kinetic energy, T , the

potential energy between nucleus-electron, VNe and between electron-electron, Vee.

This allows the electronic part of SE to be solved as a function of nuclear positions, resulting

in the Potential Energy Surface (PES), a hypersurface in N-dimensional space. An energy

value on the PES would be an eigenvalue of the electronic Hamiltonian according to the

eigenvalue equation (2).

HelecΨ = VPESΨ , (2)

where Ψ is the eletronic wave-function, or the eigenfunction associated to the eigenvalue

VPES.

The cluster geometry study benefits from the Born-Oppenheimer approximation for being

able to separate nuclear and electronic motion with considerable reliability, that enables

the assessment of VPES as a function of the nuclear coordinates. The study of this PES

constitutes the basis of the cluster geometry optimization.

3.1.2 Cluster Energy Calculations

Two approaches for cluster energy calculations are presented here. Empirical potentials are

compared to an ab initio approach. Both approaches can be used to elaborate the objective

function to be optimized for obtaining the most adequate cluster geometry.

3.1.2.1 Empirical potentials

Experimental information can be used to model atomic interactions and even to neglect

quantum aspects of nuclear motion in an attempt to overcome the difficulties imposed by

the SE. In this context, the motion of the atoms is considered as subjected to Newton’s

second law and the whole cluster is modeled as interacting spheres. Such approach is

called force field model. At that approach, the problem of calculating optimal energy would

be approximated by a search in a PES generated by a simpler objective function.

As referred by Jensen (2017), the metaphor used in the empirical potential models is mostly

described as “ball and spring” model with atoms being the balls with different sizes and

“softness” and the spring representing bonds having different lengths and “stiffness”.

6



That metaphor apart, empirical potential models are mostly responsible for the notion of

rigid directional bonds between atoms, the concept of atom types and the whole organic

chemistry. There are many force field models. Each of them, most applicable to specific

systems, being responsible for several branches of chemistry that wouldn’t exist without

such approximations.

From the perspective of force field methods, the clusters are usually seen as a collection of

different atoms, or molecules, subjected to atomic or molecular bonds. The bond here is as

an abstraction of a distinct interaction between every pair of atoms regarded as a spring.

3.1.2.2 Many-body Gupta potentials

As described by Johnston (2003), hetero-elemental metallic clusters or nanoalloys can be

modeled with reasonable accuracy by the many-body Gupta potential which approximates

the cluster’s potential energy by a sum of attractive energy, V i
Ne, and repulsive energy, V i

ee

for each atom i, where the overall energy of the cluster is given as:

VPES =
N∑
i

(
V i
ee − V i

Ne

)
. (3)

The repulsive and attractive terms can be calculated separately concerning the interaction of

each atomic pair i-j:

V i
ee =

N∑
j 6=i

A(a, b)e
−p(a,b)

(
rij

r0(a,b)
−1

)
, (4)

and

V i
Ne =

(
N∑
j 6=i

ζ2(a, b)e
−2q(a,b)

(
rij

r0(a,b)
−1

)) 1
2

. (5)

In the equations (5) and (4), the quantities: A, r0, ζ, p and q, are empirical quantities fitted

experimentally by the values of cohesive energy, lattice parameters, and independent elastic

constants of the materials in the bulk form, given in respect to the atom types a and b for

the reference crystal structure at 0 K. Table 1 shows the values for the parameters used

following the construction of Paiva & Galvão (2015).

Table 1 – Parameters for the Gupta potential for the Al-Mg system.

Al-Al Mg-Mg Al-Mg

r0 (Å) 2.8637 3.21 3.03685
A (eV) 0.1221 0.198722 0.160411
ζ 1.316 0.349712 0.832856
p 8.612 15.977780 12.29849
q 2.516 1.684590 2.100295
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Figure 1 – Diatomic energy optimization for the bond Al-Mg.

Figure 1 illustrates the Gupta energy as a function of the distance between the elements (r12)

for the diatomic system Al-Mg. In this case, the L-BFGS minimization can quickly obtain the

global minimum of the Gupta function. In such a simplification, the distance r12 represents

the cluster’s geometry, and the optimization result is the diatomic optimal distance between

the two specimens. This function depicts the diatomic optimization model in which the

asymmetrical curve shows a single minimum of −1.366 eV, at 2.89246 Å relatively close to

the empiric fitted minimal distance r0 of the atoms at the bulk form (shown at table Table 1).

The curve in Figure 1 captures some of the Gupta model characteristics. The starting

point is the null energy of the system with the elements apart, the energy value decreases

smoothly, before reaching the optimal distance. Equation (4) asymptotically dominates the

exponential growth in energy for short distances reaching even undesired positive values for

r12 < 2.366 Å.

Notice that the proximity between r0 and the diatomic optimal value is not providential since

both exponents in equations (5) and (4) are affected by the distance ratio:

rij
r0(a, b)

. (6)

Many works use the r0 distance as a reference for the packing factor or a first trial distance of

the atoms in a random cluster generation (JOHNSTON, 2003; KAZAKOVA; WU; RAHMAN,

2013).

8



3.1.2.3 Density functional theory

The Density Functional Theory (DFT) is a method that simplifies calculations considering

quantum aspects involved in clusters based on the Inhomogeneous Electron Gas (IEG)

approximation as presented by Hohenberg & Kohn (1964). DFT extends the concept of the

electron density to the idea of a pair density that contains all information about electron-

electron correlation explained in detail in Koch & Holthausen (2015). The DFT provides an

approximate function for obtaining the eigenvalue VPES shown in the electronic Schrödinger

equation (2).

3.2 Genetic Algorithm

The traditional theory of GAs (first formulated in Holland 1975) assumes that,
at a very general level of description, GAs work by discovering, emphasizing,
and recombining good “building blocks" of solutions in a highly parallel
fashion. (MITCHELL, 1998).

3.2.1 Overview of evolutionary search methods

Many problems require solutions that are too complex to program by hand. This is the case

of cluster geometry optimization. The most suitable atomic arrangement is the one of the

lowest energy i.e. the global minimum of the PES.

Assessing the energy of every possible solution of the PES means solving the SE for all

possible geometries. An effort that could take centuries of computational effort requiring the

algorithm to be adaptive for being able to assess only marginally the PES and yet being

able to propose a reasonable solution for the putative global minimum as an alternative for a

simple try-an-error procedure among an enormous number of possible solutions.

Genetic Algorithm (GA) is an example of a method for searching for solutions, where the

prospect solutions are evolved to better ones by means of selection. There are other general

methods like Hill Climbing, Simulated Annealing, and Tabu Search. Mitchell (1998) states

that all “Search for Solutions” methods are based on the following steps:

• Initially generate candidate solutions (or a set of);

• Evaluate the candidate solutions;

• Decide which candidates will be kept and which will be discarded;

• Produce variants by using some kind of operators on the surviving candidates.

Johnston (2003) highlights that the use of GA in geometry optimization can benefit from

more sophisticated approaches. Such approaches would be implemented in order to reduce

the space of variables, increase accuracy and convergence.
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3.2.2 Overview of Genetic Algorithms

Both the complex systems in which the GA is applied and biological evolution in nature

represent cases in which there is an enormous set of possible solutions. Those solutions are

expressed as genetic sequences and the best solutions are represented by the sequences

that would result in highly adapted organisms to a given environment following the natural

selection theory of evolution. Many adaptive computer programs use the phenomena involved

in evolution as a metaphor. Although the evolution, in nature, depends on several other

factors like competition and cooperation between the individuals, and even the fitness criteria

itself can change in time.

The GA evolves a group of candidate solutions expressed by “chromosomes” which are a

collection of “genes”. In essence, each chromosome can be coded as a string or a list of

values which characterizes the state of the individuals, and each value at that list is regarded

as a gene. Preferably, any change in a gene of the chromosome would produce a different

individual, a different state, and a different prospected solution as well.

A feature of interest in the GA application is that instead of evolving a single solution, it

evolves a subset of solutions, called population. The variability of the initial population can

result in a broader search and the stability of the final population indicates convergence.

The GA implementation together with its operators are based on the specifications of the

approached problem. The simplest form of GA application would require at least three types

of operators: selection, crossover, and mutation.

Selection: Takes place to distinguish solutions. The operator will be taken over the population

to select well fitted chromosomes that would be most likely reproduced.

Crossover: Such operator is inspired by reproduction and provides the exchange of infor-

mation between two different chromosomes to create an offspring.

Mutation: Such operation occurs with a relatively rare frequency. Variations of the mutation

operator are used to prevent stagnation of the population since objective functions could

have basins of attraction that would work as traps, and thus enabling a better exploration of

the space of solutions.

3.3 GAs for cluster geometry optimization

GAs have been used in chemistry since the 1990s. The early works in cluster geometry

optimization were done independently by Hartke (1993) and Xiao & Williams (1993) using

GA for minimizing the empiric equations of molecular clusters.
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Figure 2 illustrates the flow of a standard GA substituting the usual operator crossover by

the so-called mating operator (subsection 3.3.4).

Figure 2 – Example of flow chart for a GA

Source: Johnston (2003)
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3.3.1 Encoding cluster optimization for the Genetic Algorithms

The application of a GA involves a considerable amount of choices. There is an inherent

need for proper encoding. The proposed data structure must capture every aspect of the

candidate solution affecting the calculation of the objective function, and it governs both the

resolution and the computation cost of the operators used throughout the search. The data

structure is a strong pillar of an efficient algorithm, but proper encoding also constrains the

interpretation of the results. A particular encoding could enable further insights, metaphors,

or any heuristics, that could benefit both the efficiency and the accuracy of the GA.

The early works of cluster geometric optimization used a binary encoded GA for the geo-

metric optimization small silicon clusters (up to Si4) (HARTKE, 1993), and benzene (C4H6),

naphthalene (C10H8) and anthracene (C14H10) (XIAO; WILLIAMS, 1993). The binary encod-

ing involves the discretization of the spatial coordinates converted into binary values, an

approach that enables the GA operators to work in a bitwise fashion. In binary encoded

candidate solutions, essential GA operations, like Crossover and Mutation, work simply by

trimming and flipping bits in a string.

Zeiri (1995) introduced a GA using real-valued Cartesian coordinates opposing the bitwise

encoding. The new encoding used continuous variables in a vector space to represent each

atom position in the cluster. Using the vector representation, the GA operates over a schema

made of the three variables that represent each atom positions in the cluster, rather than a

bit locus in a binary transcription of the whole candidate solution. Each atomic coordinate

can be then associated with a specific atom type. The correlation between each atomic

coordinate is a relevant parent characteristic the offspring preserves. The use of real-valued

Cartesian coordinates thus adds accuracy to the GA algorithm while also enabling a higher

resolution for each candidate solution.

The use of real-valued Cartesian coordinates thus adds accuracy to the GA algorithm while

also enabling a higher resolution for each candidate solution. Deaven & Ho (1995) stated

that standard bitwise Crossover operation does not preserve sufficiently the characteristics

of the parents.

With a suitable encoding for the candidate solutions, the next logical step is to create a

method for the generation of a random individual and then the first population. Several

strategies have been presented throughout the years with the aim to improve the search

domain exploration, speeding up convergence towards the global minimum without stalling

or biasing the algorithm. The evolution of such strategies is presented here in this chapter.

12



3.3.2 The initial population

Since GA is a stochastic algorithm, the starting point has a significant effect on the con-

vergence. There is a chance that the algorithm would get stuck in a basin showing early

convergence or would not have a budget to explore thoroughly a particular configuration that

could reach a lower energy level.

There is a set of GA parameters that could prevent early convergence on-the-fly leveling

the selective pressure by acting upon fitness scaling or just by the result of mutation. Both

resources are explained later in this work, although there is an intrinsic limitation of mutation

and fitness scaling in the context of GA. Considering that the essence of GA, as explained

by Holland (1992), is to recombine solutions to create better ones, the first population not

only sets a starting point for the algorithm but it also feeds the search with the building blocks

that will be recombined and mutated to form better solutions.

The generation approach is intimately linked to how the space of solutions is explored for the

energy minimization problem. These structures can be more compact or sparse depending

on the strategy used, and even an unbiased generation would have a chance of finding

preferably certain types of structures.

A cluster shape cannot be modeled solely by labeling the apparent two-dimensional (2D)

envelope shape. This type of oversimplification might force one’s intuition to disregard the

contribution of the atoms at the core of the cluster. Noticeably, a shape evaluation throughout

the cluster atoms is hardly conspicuous from any 3-dimensional (3D) visualization since the

N atoms in the cluster would have at least 3N − 6 degrees of freedom. A brief description of

cluster shape descriptors is shown in appendix A.

A suitable generation approach would lead to:

1. Better exploration of the space of solutions by increasing initial population diversity;

2. Reduced population of conceptually unfit structures;

3. Increased proportion of structures with lower raw energy value.

3.3.3 Local minimization

Deaven & Ho (1995) performed a gradient driven local optimization of the cluster energy for

the C60 molecule. In their approach, every individual was subjected to a gradient driven local

or minimization molecular dynamics quenching to perform what they called relaxation. In

such a method, every cluster geometry is relaxed to the nearest a local minimum in the PES.
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Pereira et al. (2007) highlighted the use of the Broyden-Fletcher-Goldfarb-Shanno limited

memory quasi-Newton method (L-BFGS) as a powerful optimization technique combining

features of modest computational costs and the super-linear convergence exhibited by the

full memory quasi-Newton method (BFGS).

The L-BFGS algorithm is a quasi-Newton algorithm used for local minimization of strictly

convex functions, continuously differentiable in unconstrained systems ((NOCEDAL, 1980)).

L-BFGS works well with strictly convex functions, continuously differentiable for unconstrained

systems. In such method, the user specifies the number of corrections (k) of an initial

Hessian matrix (H0) to be stored in memory. These corrections are used to create a sparse

approximation of the Hessian matrix Hk used for finding a minimum in a multivariable

objective function as described by Liu & Nocedal (1989).

As illustrated in Figure 3 the relaxation occur moving individuals from a continuous energy

surface (illustrated by the continuous curve) to the nearest point of attraction i.e. the local

minimum (illustrated by the stepped lines bellow the continuous curve). In the figure, the

point B were relaxed into point B0 and both points A and A′ were relaxed into A0.

Johnston (2003) presents the local minimization as a Lamarckian approach in the GA context.

Most GA applications perform the relaxation to the nearest minimum at every step. As a

result, the offspring’s genetic characteristic is the one obtained after the local minimization

rather than the one it inherited directly from the parents.

Figure 3 – Illustration of the potential energy surface

Source: Johnston (2003)
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3.3.4 Cut and splice crossover operator (mating)

Deaven & Ho (1995) showed a significant improvement in the energy optimization by using

a cut and splice crossover operator or mating operator as presented by the authors. The

operation takes over two parent geometries G and G′ to yield the child G”:

P (G,G′)→ G” . (7)

The single-cut method, as implemented by Johnston (2003), selects a random plane passing

through the center of mass of each parent to yield a single offspring. The plane virtually cuts

both parents in two collections of atoms, one above and other below the plane as shown in

the Figure 4. The atoms above the plane belonging to one parent are then spliced to the

atoms below the plane of the other parent to create the child G”. If the offspring does not

yield the correct number of atoms, both parents have to move the same distance in opposite

directions perpendicular to the plane. The spliced offspring would also undergo relaxation

to the nearest local minimum so that the algorithm and its operations would only input and

output local minima geometries as presented by Deaven & Ho (1995).

Figure 4 – Schematic representation of the single cut mating operator as proposed by Deaven & Ho
(1995)

Source: Johnston (2003)

Johnston (2003) stated this mating operator has been employed in most subsequent cluster

GA work among a significant number of GA programs used in cluster geometry optimization.

In Johnston’s implementation of the mating operator, the random plane would be chosen by

a random rotation of the cluster in two directions and the cut itself could be done through the

middle of the cluster or in a weighted fashion taking more atoms from the fittest cluster. The
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same study refers to improvements done by other authors highlighting the implementation

of new pseudo-genetic operators or new ways of handling populations in GA operations

like crossover and mutation. Pereira & Marques (2010) presented a variant for the mating

operator taking only the n-nearest neighbors of a randomly chosen atom of a parent, adding

a few from the second parent and even generating random new atoms if required.

3.3.5 Mutation schemes

Mitchell (1998) emphasizes that the role of mutation is to prevent the loss of diversity. Many

studies — including Deaven & Ho (1995) and Johnston (2003) — revealed the notion that

even good mating and selection operators wouldn’t prevent stagnation. They noticed that

some ecology seemed to be trapped in an attractive watershed increasing the number of

iterations necessary to find the fittest minimum in comparison to the algorithms with mutation.

Johnston (2003) presented different schemes that would be used for mutation, depending

on the type of cluster being studied:

Atom displacement: Since the cluster is represented as a set of atom types and their

coordinates a simple mutation would just replace a subset of those coordinates by randomly

generated values.

Twisting: The first steps of the Deaven and Ho mating operator are applied to simply rotate

the upper half of the cluster’s atoms in the axis perpendicular to the plane.

Cluster replacement: An entire cluster is replaced by a randomly generated one.

Atom permutation: Hetero-elemental clusters would have the position of pairs of different

atom types switched without altering the clusters’ geometry.

The local minimization operator can also affect the output of the mutation complementarily.

3.3.6 Dynamic fitness scaling

In most applications of GA for cluster geometry optimization the cluster energy is the matter

of concern for the selection. The energy value itself is often used alone for differentiating

clusters and maintaining diversity in the ecology even though many geometries could have

similar energy values.

To work around the similarities in the energy value a dynamic fitness scaling was implemented

by Johnston (2003). A dimensionless normalized value for energy was implemented in his

work to compare the clusters in the population. The assigned value ρi of the energy Vi of the

current cluster i was taken in regard to the worst individual of the current population (i.e. the

one with the biggest energy Vmax) and the current fittest individual with the lowest energy
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Vmin as in (8):

ρi =
Vi − Vmin

Vmax − Vmin

, (8)

this normalized energy value is then assigned to a fitness function to control how rapidly

fitness falls off with an increasing cluster energy.

3.3.7 The solution “building blocks”

As stated by Mitchell (1998) in an attempt to describe GA effectiveness: good solutions

tend to be made up of good building blocks. The statement was concerning the theoretical

background of GA first explained by Holland (1992). In Holland’s theory, GA would work

combining randomly generated genes but also learning from the combinations in the way.

The notion of building blocks was formalized as schemata. Every GA operation could create

a bias towards a larger group of individuals emphasizing the fittest and learning about the

search environment on the fly. Johnston (2003) considers good schemata to be regions of

the parent clusters, subgroups of atomic arrangement, that contribute to the overall energy

minimization. This learning mechanism is arguably translated in the Deaven & Ho (1995)

mating operator that recombines a collection of such subgroups by trimming geometrical

hemispheres rather than randomly sorting atom positions regardless of the surroundings.
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Chapter 4

Related Work

4.1 Random cluster generation

Random cluster generation algorithms aim to yield atom positions to be associated with atom

types for the realization of the initial population. Such coordinates usually are real-valued

numbers following the insights of Zeiri (1995).

4.1.1 Scaling limitations of standard generations

If the algorithm generates each coordinate value randomly and regardless of the previous

choices, the range (Rmax) in which the algorithm chooses each distance constitutes an

enclosing cube for the whole cluster where each coordinate is generated according to:

xi ≤ Rmax . (9)

The fitness of such an algorithm is intrinsically dependent on the choice for the magnitude

of the displacement (Rmax). Hence, creating a scaling problem relative to many cluster

properties such as the number of atoms and each atom’s physical-chemical properties. If

the same range is carelessly used to enclose different clusters with different atom numbers

or different atom types, some clusters would be generated with an unwanted bias towards a

higher or lower packing factor.

Johnston (2003) generated real-valued Cartesian coordinates randomly following a uniform

distribution [0, 3
√
N ] so that the volume of the box would scale proportionally to the number of

atoms (N ). Kazakova, Wu & Rahman (2013) implemented a GA for the geometry optimization

of nanoalloys of Cu–Au using a force field model for the cluster energy. They have followed

the same strategy of Zeiri (1995), but also using the parameter (r0) as a reference for

the cube scale targeting better Gupta potential values. The edge of the cube thus grew

proportionally to:

xi ≤ r0
3
√
N . (10)
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Heiles et al. (2012) implemented a similar approach for studying nanoalloys of Au–Ag

clusters, combining GA with DFT calculations generating the initial population randomly in a

sphere whose radius, ρmax is given as:

ρmax = 1.1 r0
3
√
N (11)

The target quantity r0 in equations (10) and (11) can be both the bonding distance in the pure

solid or arithmetic mean of the different references for atomic distances in hetero-elemental

clusters taken as an average effect for the whole cluster.

4.1.2 Other strategies

Cai et al. (2002) have implemented a Fast Annealing Evolutionary Algorithm in which it

followed one of two possible strategies for the initial population: (i) a completely random

generation in a shpere or (ii) growing a seed taken from previous results.

For the random generation in a sphere, the radius scaled with (12):

ρmax = re

(
1

2
+ 3

√
3N

4π
√

2

)
, (12)

where re is called pair equilibrium separation and is set to 1. This quantity is analogous to

the target for the average atomic distance (r0). While growing a seed of optimizated results,

clusters with less atoms are used to start the new cluster generation. In this approach the

optimized cluster with N −m atoms is used as the core of a N atoms cluster where the m

missing atoms were generated as increment atoms at the ρmax radius with random spherical

displacements ∆θ and ∆φ.

While growing seed from previous results, Cai et al. (2002) uses optimized smaller clusters

as a starting point or the core of a bigger cluster subjected to the optimization. The proposed

solution then needs then to randomize only the position of the missing atoms. Naturally, such

an approach would require data from previous generations and a careful mixture with other

approaches since the seed used as a core could create an undesired bias to the search.

The approaches presented in this chapter aim to circumvent the inherent problem of enclos-

ing a cluster to a particular geometry at the starting point of the geometry optimization. The

downfall is that even with the knowledge of empirical properties such as a reference for the

target atomic distance (r0) for a given atom type, one can not accurately learn the overall

packing factor or its external shape before the optimization. Chapter 5 presents a proposal

for better use of the distance r0, which does not have any constrain to the overall packing

factor or the cluster’s limiting shape.
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Chapter 5

Metodology

In this work, each individual of the initial population is generated as an iterative atomic

addition over previously positioned atoms. Such an approach prevent the generation of

clusters with stray atoms or extreme atomic repulsion.

5.1 The cluster representation

The cluster is modeled as a list of Cartesian coordinates and the associated atom types

as explained in subsection 3.3.1. There are many redundancies not approached at the

generation being that the same cluster can be equally represented by different lists of

coordinates. Figure 5 shows different views (with different Cartesian coordinates) of the

expected global minimum of the Al6Cu2 cluster.

Any permutation of the coordinates belonging to atoms of the same type in the list of

coordinates would generate the same cluster since there is no expected label or locality

between atoms of the same type. Any rigid body rotation or translation of the geometry

would alter the coordinates of the cluster while representing the same geometric structure i.

e. same individual.

The presence of these redundancies means that the cluster is represented by a 3N variable

structure being N the number of atoms in the cluster. Naturally none of the transformations

mentioned before would change the energy value and the energy value alone is enough to

discern effectively between the clusters.

The cluster visualization is done with the help of an open source graphical user interface

(GUI): WxMacMolP lt. This GUI is used for the General Atomic and Molecular Electronic

Structure System (GAMESS) as presented by Bode & Gordon (1998) and provides 3D

visualization with rotation possibilities helping intuition about the subject of optimization.
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Figure 5 – Different views of the expected global minimum of Al6Cu2 cluster

Source: Prints taken from the program images.

5.2 The increment atoms approach

For the random generation of clusters an incremental approach was used. In such approach

a string containing all atom types is generated and then sorted to work as a random queuing

list for atom types. The first atom is placed at the origin. While there are still atom types in

the queue, a random one is chosen as a pivot. A random increment vector is then generated

in spherical coordinates and added to the pivot atom coordinates. The new coordinate is

attributed to the sorted atom type and the procedure repeats until the queue is empty.

The increment approach randomizes the distance between the pivot atom and the appended

one at every iteration to increase the size of the cluster without the need to guess the packing

factor or the cluster volume.

The cluster generation is described in the algorithm 1. The elaboration of the increment

vector is taken in a spherical coordinates system with random uniform θ and φ ranging from

[0, π] and [0, 2π] respectively and the ρ value taken from a normal distribution centered in the

expected bulk lattice parameter r0 or a diatomic optimized distance. The normal distribution

standard deviation is usually set as 10% of r0.
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The method does not constraint the volume of the cluster. The cluster is evaluated with

respect to the distance between the increment atom and its nearest neighbor. This distance

should not be closer than 80% of r0 (i.e. the proximity range) for preventing extreme atomic

repulsion, and it should not be larger than 250% of r0 (i.e. maximum distance) for preventing

the inclusion of any stray atoms in the cluster. If an increment atom triggers a failure in either

proximity or maximum distance check it is disregarded and generated again as shown in

algorithm 1.

Algorithm 1: The increment generation algorithm
Input: List of atom types and their quantities (e.g. Al:10, Mg:10, ...)
Output: Representation of the created cluster
create a shuffled list of atom types, QUEUE.
remove an ATOM_TY PE from QUEUE and place it at (0, 0, 0) in the CLUSTER.
while there are still items in QUEUE do

choose a random BASE_ATOM from CLUSTER
create an increment vector in polar coordinates, INC_V ECTOR with:
ρ← selected from a random normal distribution N(r0, σ);
θ ← selected from a random uniform distribution U(0, 360);
φ← selected from a random uniform distribution U(0, 180).
convert INC_V ECTOR into the rectangular coordinates vector, RECT_INC.
NEW_ATOM.coordinates← (BASE_ATOM.coordinates+RECT_INC).
NEW_ATOM.type← next ATOM_TY PE in QUEUE.
evaluate NEW_ATOM in respect to other atoms in the CLUSTER.
if NEW_ATOM pass all requirements in evaluation then

append NEW_ATOM at cluster;
remove atom type from the QUEUE.

end
end

5.2.1 Bulk and optimal diatomic distances

For ab initio approaches, no reference of the experimentally determined lattice parameter is

presented, but the cluster generation method can be roughly the same while calculating an

optimal diatomic distance as a substitute reference for r0. A previous step is then necessary

for calculating r0 as the optimal diatomic distance of all the species involved considering the

objective function being optimized (in this case, DFT).

The relaxation to the nearest local minimum was done using the python’s optimization

function from the scipy library that follows L-BFGS approach explained by Liu & Nocedal

(1989). And all generated clusters were also subjected to relaxation after the generation

process.
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5.3 The reference atoms approach

This reference method can randomly generate the coordinate of the cluster’s atoms using

a uniform distribution and yet resembling the increment approach in terms of the cluster

evaluation for a fair comparison and is shown in the algorithm 2.

As mentioned before, the evaluation of the cluster is done following the same parameters

used in the increment atoms approach for proximity range and maximum distance.

The calculation of ρmax shown in algorithm 2 follows the Kazakova, Wu & Rahman (2013)

scalability insight where the volume of the limiter sphere scales proportionally to the number

of atoms (N) and is also dependent on the Gupta parameter r0. The calculated limiter sphere

radius is:

ρmax = r0
3
√
N . (13)

Algorithm 2: The reference generation algorithm
Input: List of atom types and their quantities (e.g. Al:10, Mg:10, ...)
Output: Representation of the created cluster
calculate the spherical radius limiter, ρmax.
create a shuffled list of atom types, QUEUE.
while there are still items in QUEUE do

create a position vector in polar coordinates, POSITION with:
ρ← selected from a random uniform distribution U(0, ρmax);
θ ← selected from a random uniform distribution U(0, 360);
φ← selected from a random uniform distribution U(0, 180).
convert POSITION into the rectangular coordinates vector.
NEW_ATOM.coordinates← RECT_POSITION .
NEW_ATOM.type← next ATOM_TY PE in QUEUE.
evaluate NEW_ATOM in respect to other atoms in the CLUSTER.
if NEW_ATOM pass all requirements in evaluation then

append NEW_ATOM at cluster;
remove atom type from the QUEUE.

end
end
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Chapter 6

Results

6.1 Energy distribution of randomly generated clusters

The new incremental strategy (hereafter denoted as new ) was compared to the spherical

random reference generation (termed ref ). In the reference procedure the atoms are simply

sorted in a sphere whose volume grows proportionally to the number of atoms. The main

difference is that in the reference strategy the inclusion of an atom in the cluster was roughly

independent of the atoms previously included although respecting the same validation

parameters for proximity and stray atoms.

For validating the proposed strategy, 500 generated clusters of the AlxMgx stoichiometry

with 12, 16 and 20 atoms (Al6Mg6, Al8Mg8 and Al10Mg10) were analysed with respect to 3

indicators: The cluster energy before any optimization step (raw energy), the cluster energy

after L-BFGS optimization (optimized energy) and the number of iterations performed by

the local optimization process (L-BFGS). The average values are shown in Table 2 and their

distributions are pictured in Figure 6.

Table 2 – Comparison between new and ref average results.

Average number Raw energy Optimized energy
of iterations (eV) (eV)

Al6Mg6

new 131.944 -11.774245 -20.467526
ref 144.422 -8.389084 -20.477823

Al8Mg8

new 160.512 -16.153776 -28.310082
ref 165.752 -11.485943 -28.324609

Al10Mg10

new 174.744 -20.791567 -36.28177
ref 181.404 -14.639601 -36.25815
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Figure 6 – Distribution of values for the 500 Al6Mg6 clusters
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Both incremental (proposed) and the reference approach were tested. The raw energy value

of larger randomly generated clusters of the same stoichiometry with 40 and 60 atoms

(Al20Mg20 and Al30Mg30) were also analyzed for giving scalability insights for both strategies.

6.1.1 The raw energy.

The Raw energy values resembled a normal distribution with similar standard deviation,

but with a shifted average as shown in the Table 3. The distributions of energy values

were closely studied for AlxMgx structures with 12 atoms shown in Figure 6 comparing the

indicators of the incremental strategy (new) and reference strategy (ref ).

A hypothesis test was performed for evaluating the hypothesis of both distributions (raw and

new) being samples of the same population for each indicator. α < 0.05 was considered

a reasonable threshold for the rejection of that hypothesis. The tests considered the two

samples to be independent of one another and using a scipy module for testing the null

hypothesis that the 2 distributions could have identical average (expected) values.
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Table 3 – Statistical tests result for ref and new raw energy values.

Average raw Standard
p-value

energies (eV) deviation (eV)

Al6Mg6

new -11.774245 1.276208
< 10−5

ref -8.389084 1.696443

Al8Mg8

new -16.153776 1.664292
< 10−5

ref -11.485943 2.056415

Al10Mg10

new -20.791567 1.917559
< 10−5

ref -14.639601 2.274293

The shift in the raw energies’ distribution at Figure 6a (also visible in Table 3) indicates

a larger chance of generating a better structure before optimization using the proposed

strategy (new). This gap is enforced by the hypothesis test result (p-value) shown in Table 3.

The significantly low p-value gives support to the conclusion that each approach has its

distribution of raw energies (i. e. a different average and standard deviation). It is also

believed that systems with more atoms tend to generate more isolated distributions.

This result encourages the search for further improvements in the generation strategy for

being able to make GA runs operating over raw clusters and without frequent local relaxation.

Such an improvement could reduce the computational cost of the algorithm and provide

better consistency for the GA operators and their learning process.

6.1.2 The optimized energy.

The distributions for the optimized energy values are shown in Figure 6b and in Table 4.

The histograms indicate that the optimized energies of both generation strategies follow the

same distribution function instead of two dissociated distributions. This result is supported

by the hypothesis test (p-value) shown in Table 4. The considerable value (greater than 0.05)

indicates that both approaches reach the optimal energy values with similar probability.

Table 4 – Comparison between new and ref optimal energy values.

Average optimal Standard
p-value

energies (eV) deviation (eV)

Al6Mg6

new -20.467526 0.259007
0.5352

ref -20.477823 0.265292

Al8Mg8

new -28.310082 0.331634
0.4992

ref -28.324609 0.347130

Al10Mg10

new -36.281770 0.467075
0.4380

ref -36.258150 0.494354
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Figure 7 presents a set of scatter plots for each individual matching the raw energy with the

optimized energy showing that the frequency of achieving the global minimum is roughly the

same between the proposed (new) and the reference strategy (ref ) despite the proposed

strategy scatter plots showing more clusters randomly generated with lower energy values.

It is noticeable in Figure 7 that the clusters with the lowest raw energies do not necessarily

generate the clusters with the lowest optimized energy. No correlation was found between

raw and optimized energies for the clusters studied.

Figure 7 – Raw energy against optimized energy for the 500 AlxMgx clusters
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Another point of interest in this comparison is that the lowest optimized energies of Al6Mg6,

shown in Figure 7a (new) and Figure 7b (ref ), fall in disconnected plateaus indicating a

level of discretization of the optimized structures, coherent with the results of Doye, Miller &

Wales (1999) that showed the exponential growth of the number of minima with the size of

the cluster.

6.1.3 The number of iterations.

The number of iterations taken by the L-BFGS method to relax the generated structure to a

local minimum is relevant for a highly time-consuming objective function. In this case, the

computational cost will be directly proportional to this number, and if one of the generating

methods requires fewer iterations, it will be the most cost-effective. This values are shown in

Table 5.

The results showed little difference between the two methods, approximately, from 65 to 300

iterations in all distributions as shown in Figure 6c. The hypothesis test result shown by the

p-value in Table 5 indicated that the two approaches generated different average iterations

being the new approach consistently (although moderately) more efficient.

Table 5 – Comparison between new and ref number of iterations.

Average number Standard
p-value

of iterations deviation (eV)

Al6Mg6

new 131.944 34.006247
< 10−5

ref 144.422 37.238474

Al8Mg8

new 160.512 40.024366
0.0456

ref 165.752 42.621573

Al10Mg10

new 174.744 38.944043
0.0049

ref 181.404 35.542155

No correlation was found between the raw energy value and the number of iterations as

show in Figure 8. In many cases, the cluster with worse raw energy required fewer iterations

for the optimization. These results are credited to the complexity of the Hessian matrix,

considering that e. g. Al10Mg10 systems have 54 degrees of freedom.
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Figure 8 – Raw energy against number of iterations for the 500 AlxMgx clusters
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(c) Iteratons x raw energies - Al8Mg8 (new)
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(e) Iteratons x raw energies - Al10Mg10 (new)
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6.2 Results of larger clusters

The larger structures showed, in average, a similar behavior. The mean and standard

deviation (µ ± σ) for the raw energy distribution was of -44± 3 (new) against -31± 3 (ref )

for Al20Mg20 structures, and -67± 4 (new) against -48± 4 (ref ) for Al30Mg30. This behavior

indicates consistency among the different distributions of each cluster generation strategy.
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Figure 9 – Distribution of raw energy values for the 500 instances of larger AlxMgx clusters
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The number of possible structures increase significantly with the number of atoms creating an

immensely diverse set of expected structures for the random generation following the results

of Doye, Miller & Wales (1999). Figure 9 shows two separate distributions with a significant

difference in the raw energy mean values and slightly different standard deviations.

These fairly symmetrical bell-shaped distributions were also tested in regard to the normality

of the distribution. A normal probability plot was constructed for a visual test of normality

of the raw energy values of the 500 clusters with 20, 40 and 60 atoms. Each probability plot

compares the normalized 500 clusters sample with a benchmark Montecarlo cumulative

normal distribution in which the expected result would contract to a straight line centered on

the origin if a normal distribution is found. In the normality test presented by Filliben (1975),

the correlation coefficient (R) can be used to quantify the normal distribution hypothesis in

the normal probability plot.

Another test was performed complementarily following the approach of d’Agostino (1971)

and showed that all these distributions could be considered normally distributed. In this

normality test both Skewness and kurtosis are considered in a two-sided hypotesis test in

which the acceptance criteria is a p-value greater than 0.05 in which the clusters with 22,

40 and 60 atoms scored 0.3795. 0.5808 and 0.6188 respectively.

The normality test aims to verify if the mechanistic route for realizing the first population

creates any undesirable bias against the exploration of the PES. Since all verified realiza-

tions resulted in normally distributed raw energies, the method is credited sufficiently

unbiased.
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Chapter 7

Conclusion

The proposed method showed better results for the raw energy values scoring a gap of 6,

13, 19 eV when compared to the reference method for the AlxMgx clusters with 20, 40 and

60 atoms respectively. This approximate 40% increase in the negative energy did not impose

a significant bias, since the proposed method yielded a normally distributed random function

with lower raw energies

Even though the proposed method required, on average, slightly fewer (< 5%) iterations for

reaching the same optimized energies in the smaller clusters, all the ecologies from both

methods are believed to reach the same optimized structures with approximately the same

computational cost. Hence the proposed method was considered suitable for creating the

first population in a GA.

The indication of a mechanistic generation improving the raw energy distribution raises the

question about other inprovements in the GA inspired by such heuristics. The randomized test

showed no correlation between the distributions of raw and optimized energies, indicating

that lower raw energies alone would not link to lower optimized energies. On the other

hand, the construction of a more suitable and unbiased first population could lead to a

more coherent learning in a GA, reducing the frequency needed for the BFGS optimization.

Specially in regard to the mating operator (DEAVEN; HO, 1995).

Another remaining question is whether or not the implemented heuristics improve the GA in

the case of ab initio approachs. For that, the whole generation procedure is expected to be

done using DFT as the objective function which is more time-consuming.

Implementation of other GA operators should be tested in different objective functions as

well. The goal is the evaluation of the benefit of such approaches to the GA and understand

how they behave in a less predictable environment such as DFT.
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Appendix



APPENDIX A – Shape descriptors

Shape descriptors have to be sensitive to highlight system properties as they are perceived

by the objective function and at the level of detail used for the energy calculations. Arteca

(1996) stated that it is essential to select an appropriate descriptor that addresses the

problem at hand sustaining reasonable discriminating power — since the use of a descriptor

carries a loss of information with respect to the original system.

Although small scale characteristics will influence the large scale, it will not be possible to tell

small scale characteristics from large scale since the latter relies on averaged contributions

from small scale. Extensively averaging local interactions could hide important information

creating a evaluation problem. Therefore, it is necessary to adapt the descriptors to the size

of each system, considering that the chosen descriptor could show important features of

clusters at the chosen scale, but also inebriate the analysis in a different scale.

In this present work, estimators were used as shape descriptors for qualifying the cluster

structure to bring light to the subtle characteristics of each generation method.

A.1 Characterizing the nuclear geometry

The simplest descriptor of a closed surface is the surface volume. The volume indicates

size but can also bring (e. g.) insights about relative atomic spread. The natural instinct is

to model the nuclear structure by a sphere that encloses all the atoms involved. Different

structures can be, thus, visualized as fluctuations of the cluster spread.

A.1.1 Measurements of structure size

For the scope of this work, the cluster is centered on the global origin. A decision that enables

the reduction of three position variables when this origin is chosen to be one of the atoms in

the cluster. Any distance taken from the center of mass (~cm), can also be represented by the

subtraction:

d = ||~cm − ~ri|| (14)

The radius of the smallest sphere that encloses the atoms of the cluster, Rmin, is calculated

as half of the furthest distance, Rmax, between two atoms in the cluster:

Rmax = max (||~ri − ~rj||) = 2Rmin (15)
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A.1.2 Matrix of inertia, I

The matrix of inertia:

I =


∑
mi(y

2
i + z2i ) −

∑
mixiyi −

∑
mixizi

−
∑
miyixi

∑
mi(x

2
i + z2i ) −

∑
miyizi

−
∑
mizixi −

∑
miziyi

∑
mi(x

2
i + y2i )

 (16)

Where the values (x, y, z) are distances taken form the center of mass:

~cm − ~ri = (xi, yi, zi) (17)

Can also be shown in terms of the its eigenvalues:

I =

λ1 0 0

0 λ2 0

0 0 λ3

 (18)

A.1.3 Molecular asphericity, ω

Arteca (1996) introduced the molecular asphericity, ω, as a shape descriptor based on the

three moments of inertia, λi:

ω =
1

2

{
2∑

i=1

3∑
j=i+1

(λi − λj)2
}{

3∑
i=1

λi

}−2
(19)

The closer the value gets to 0 the closer the structure shape is to a sphere. Since molecular

dynamics are not considered here, the spherical interpretation of the static might seem

vague. Although, even while considering only rigid body rotation, highly symmetrical would

still be observed as close to spheres.

A.1.4 Mean atomic distance

This descriptor is presented as a reference for the atomic separation. Naturally, a more

sparse cluster would have a larger mean distance between atoms. To the scope of this work,

special attention was given to the standard deviation of the atomic distances, based on the

assumption that different distributions indicate different structures. Higher fluctuations of the

atomic distances would also indicate a deviation from a cubic or spherical shell structure

towards a more linear structure.
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