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Abstract

Physical systems are subject to constraints, like input saturation or physical limits to the

states, which also appears on each switched system mode. One way of dealing with them

is to apply the Command Governor scheme, which changes the controller’s reference to

enforce constraints. When the system is a switched one, the problem of stability arises.

Switched systems are a common kind of system used to describe non-linear systems by

dividing them into linear sections or different modes of operations of the same system,

like the different phases an airplane goes through during take-off or landing. However,

arbitrarily switching the modes of a switched system can cause instability, requiring a

switching rule design. The most commonly used rule is the dwell-time switch, in which

the system waits for a dwell-time to elapse after the references changes to switch modes.

Seeing the possibility of speeding up such systems’ convergence, we propose a new rule

based on the controller’s Region of Attraction, which requires the system’s state to be

inside the mode’s controller’s Region of Attraction to switch, guaranteeing stability after

a mode switch. With this technique, we also propose a hybrid switch technique, which

can further speed up convergence and generate lower actuator effort in some cases. We

present some simulations to illustrate the proposal’s potential and compare it with a

scheme exploiting a dwell-time approach. The results suggest that our approach adds

new CG and supervisor design possibilities, reducing the transition time between system

modes and improving the closed-loop performance indexes.

Keywords: Command Governor, Discrete-time systems, Switching systems, Lya-

punov stability, Region of attraction
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Chapter 1
Introduction

Physical systems have constraints on their inputs, outputs, and states, which are

usually ignored to facilitate the controller’s design. Such constraints can result from

physical limitations, such as a tank’s capacity or a turbine’s maximum power output, or

can be mathematically imposed to achieve some goal, like keeping a process’ pH bounded.

In the literature, different solutions exists to address actuator saturation constraints, see

e.g. (Klug et al., 2015; Tarbouriech et al., 2011). However, those techniques do not enforce

constraints but design controllers that avoid the borders of constraints or even allow the

system to violate them for a short period.

By taking advantage of optimization techniques, Model Predictive Control uses an on-

line optimization procedure to predict a system’s state evolution on a prediction horizon

and compute a system’s optimal control trajectory and allows constraints to be imposed

to states, inputs, outputs, and their variations (Wang, 2009; Zhang, 2016). As the op-

timization procedure is online, constraints are enforced, and the controller will actively

avoid violations while allowing for less conservative control paths.

Besides MPC, other techniques were developed to keep systems constrained, but in-

stead of computing the optimal control path that keeps the system constrained, it uses

model prediction to change the reference given to existing controllers to keep the system

constrained. The first of such techniques were reference filters, which imposed only soft-

constraints (Vahidi et al., 2007), i.e. constraints which penalize the objective function

when constraints are violated instead of rendering the problem infeasible.

This idea then evolved into Reference Governors (RG), which divides the problem into

two parts: tracking and constraint enforcement. The controller solves the tracking prob-

1



× Controller

Reference Governor

System
r(k)

δ

g(k) u(k) y(k)

x(k)

Figure 1.1 – Reference Governor’s block diagram for a linear system. The inner loop’s
controller guarantees reference tracking and the outer loop guarantees con-
straints satisfaction.

lem in the inner loop without taking constraints into account, and the Reference Governor

solves the constraint enforcement problem in the outer loop by using the reference and

system’s output to change the inner loop’s reference. Figure 1.1 shows a block diagram

for this technique. The optimization problem finds the best δ that minimizes the distance

between g(k) and r(k) without violating constraints. Because of the numerical simplicity

of the optimization problem, this approach has an easy implementation but suffers from

loss of dimensions. Such a loss comes from the fact that δ ∈ R while r(k) ∈ Rn (Gilbert

& Kolmanovsky, 1999).

Building on this idea and on the work of Kapasouris et al. (1988), which explores

the ideas of the Lyapunov Theorem and Invariant Sets Theorem (Blanchini & Miani,

2008), Bemporad et al. (1997) and Casavola et al. (2000) developed what is known today

as the Command Governor (
 

 

CG) approach. The difference is that Reference Governors

optimize a number δ, which multiplies the reference r(k) to create the virtual reference

g(k), whereas Command Governors optimize the the vector g(k) directly, requiring more

computational processing power but yielding better closed-loop performance.

Reference and Command Governors are still subjects of studies, and used in conjunc-

tion with other techniques. It has been of particular interest on the adaptive control

field (Arabi et al., 2020; Dogan et al., 2020; Gruenwald et al., 2020; Makavita et al.,

2019; Ristevski et al., 2019; Wilcher et al., 2020) as a mean to add constraints to the

system. It has also been used to constrain switching networks (Ong et al., 2020), net-

works with delays (Shen et al., 2019) and interconnected systems (Tedesco & Casavola,

2020). Peng et al. (2019) also used a Command Governor to develop an anti-disturbance

controller for an uncertain, constrained system and Schwerdtner et al. (2019) developed

an anti-windup controller for systems with saturated inputs. Seeber et al. (2019) pro-

vide a real-time implementation of reference shaping for a biomass grate boiler, based on

2



1.1. Objectives

Command Governor, to avoid actuator saturation and to constrain mass-flow.

The Command Governor can be used in so many different scenarios because it is a

add-on technique, not requiring adaptation from the controller or system. This is one

main advantage of the Command Governor, as well as the fact that it enforces hard-

constraints. The main drawback is that it requires an online optimization procedure,

which might not be doable on systems with fast dynamics. Another concern is that the

optimization problem might not be feasible in the presence of model uncertainties, as, for

example, an observer might put the model’s state on an invalid state for the optimization

problem. A common technique is to re-apply the last calculated reference value when the

optimization problem is unfeasible, but it can lead to instability if the situation persists

for extended periods of time (Garone et al., 2017).

This work applies the CG technique to switched systems. Switched systems are

composed of many subsystems, called modes, which switch according to a switching

rule (Liberzon & Morse, 1999; Liberzon, 2003). Only one subsystem can be active at

a given time. The switching can cause instability even when all subsystems are stable.

Techniques exist to guarantee stability under abirtrary switching, such as using polytopic

linear parameter varying representations (Deaecto et al., 2014), but they are extremely

conservative. Development leads to the notion of a dwell-time: how long a subsystem

must remain active before switching to avoid instability (Liberzon & Morse, 1999). Dif-

ferent approaches have been proposed to compute the minimum dwell time (see (Chesi

et al., 2010) and reference therein) and stabilizing controller (see (Lin & Antsaklis, 2009)

for switched linear systems). Fewer solutions exist to deal with constrained switching

systems, see e.g. (Franzè et al., 2017; Lucia & Franzè, 2017) and references therein.

In (Franzè et al., 2017; Lucia & Franzè, 2017), the CG framework is used to supervise

the system mode switches and to assure both stability and constraint satisfaction.

1.1 Objectives

In this work, considering a class of constrained switched systems, we propose a novel

switching rule based on the controllers’s region of attraction. There are other techniques

for stabilizing switched systems, but for constrained switched systems, specially when

using the Command Governor structure, the dwell-time seems to be the only one applied.

3



1.2. Thesis organization

Without employing the Command Governor structure, however, the Model Predictive

Control technique accomplishes the same goal. For the proposed technique two rules can

be stated:

• the system’s state is inside the next controller’s region of attraction.

• the system’s state is inside the command governors’ constraint’s intersection.

This allows two switching rules. In the first scenario, the first rule triggers a partial

switch, in which only the controller is changed. The second rule is used to complete

the switch, swaping the active command governor unit. We call this a hybrid switch.

The second scenario makes a complete switch using only the second rule. Both scenar-

ios need the same stability condition, the only difference is that the second avoids the

first set membership check, at the cost of possibly missing on convergence’s speed gains

opportunities.

1.2 Thesis organization

The main concepts involved in this work are explained in Chapter 2 - Theoretical

Foundations. The proposed technique is explained in Chapter 3 - Switching Rules. In

Chapter 4 - Results we show two experiments that illustrate the advantages of the pro-

posed technique.

4



Chapter 2
Theoretical Foundations

This work presents a Command Governor-based control strategy, based on the concept

of region of attraction, for switched systems. Thus, those are the main concepts involved

in this work and will be further explained in the following sections.

2.1 Switched Systems

A switched system is a system composed of many subsystems, called modes, and a

mode-transition rule. It is often used to divide non-linear systems into many linear systems

around different operation points, creating linear approximations, which are active one

at a time. Differently from switching systems, in which mode transition can happen

arbitrarily, in the switched system, a supervisor orchestrates them (Liberzon & Morse,

1999; Lucia & Franzè, 2017).

A linear switched system can be described as follows

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), (2.1)

y(t) = Cσ(t)x(t) +Dσ(t)u(t), (2.2)

where σ(t) : t > 0 → K = {1, . . . , N} is the switching function. Ai, Bi, Ci and Di are

real matrices and represent linearizations around different operation points. On the other

hand, there are also nonlinear switched systems with the form

ẋ(t) = fσ(t)(t, x(t), u(t)), (2.3)

y(t) = gσ(t)(t, x(t)), (2.4)

but those will not be discussed here. In both cases, tk : k ∈ N is the switching instant.

5



2.1. Switched Systems

There are two classes of switching functions: pertubation and control. For the former,

given J(σ) a switching criterion and DT = σ(·) : tk+1 − tk ≥ T ∀ k ∈ N, we solve

σ = sup
σ∈DT

J(σ), (2.5)

and for the later, which is the one of interest for us, given S the set of all stabilizing

switching functions, we solve

σ = inf
σ∈S

J(σ). (2.6)

This is, however, a very broad definition. In plain english, the pertubation switching

function finds the worse-case scenario (the admissible pertubation depends on the mag-

nitude of T ) and the control the best-case. To define stabilizing switching functions, let

us analyse the stability of switched systems.

The linear switched system is not guaranteed to be stable even if all subsystems are sta-

ble (Liberzon & Morse, 1999). This happens because the switching signal itself is a source

of instability, as the subsystems might behave differently and diverge or start cycling un-

der constant switching. This can also be seen if you consider the set {A1, A2, . . . , AN} to

be the vertices of a polytope, as the system will be instantaneously jumping between the

vertices (Geromel & Colaneri, 2005).

If we consider the system to be a polytope and can find P ≻ 0 such that

A⊤
i P + PAi ≺ 0, (2.7)

then the system is stable under arbitrary switching (Geromel & Deaecto, 2014). However,

this is a conservative solution and might yield very small regions of attraction. A more

desirable result is to have a mode dependent Lyapunov cadidate function leading to

A⊤
i Pi + PiAi ≺ 0, (2.8)

which is, however, only stable under arbitrary switching, from any mode i to any mode

j, if

V (x(tk+1)) = x⊤(tk+1)Pjx(tk+1) (2.9)

= x⊤(tk)e
A⊤

i TkPjxe
AiTk(tk) (2.10)

< x⊤(tk)e
A⊤

i (Tk−T )Pixe
Ai(Tk−T )(tk) (2.11)

< x⊤(tk)Pix(tk) (2.12)

= V (x(tk)), (2.13)

6



2.2. Command Governor

implying that all subsystems must be stable (Geromel & Colaneri, 2005).

The solutions discussed so far allow arbitrary switching, but a large class of systems

will not satisfy the required condition. If the switching is assumed to not be arbitrary,

one can create a switching rule that will guarantee stability. There is a class of such rules

called slow-switching. The dwell-time is a rule of this class requiring tk+1 − tk > T , that

is, the system must remain on a mode for T seconds before switching again. This time is

counted from the moment the reference changes. The goal is to minimize T , minimizing

the time the system has to wait (Chesi et al., 2010; Franzè et al., 2017; Liberzon & Morse,

1999). Note that there is one dwell-time T for each mode.

Other ways of guaranteeing switching stability exists. See Geromel and Colaneri

(2005), Geromel and Deaecto (2014), and Liberzon and Morse (1999).

2.2 Command Governor

2.2.1 System Description

A linear, switched, discrete-time system given in the state-space representation can

be described as follows
x(k + 1) = Aix(k) +Biu(k),

y(k) = Cix(k) +Diu(k),

c(k) = Eix(k) + Fiu(k),

(2.14)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rp is the output, c(k) ∈ Rnc is the constrained

or weight output, the matrices Ai ∈ Rn×n, Bi ∈ Rn×nu , Ci ∈ Rny×n, and Di ∈ Rny×nu

concern the system’s dynamic and output, matrices Ei ∈ Rnc×n and Fi ∈ Rnc×nu concern

the constrained output and are chosen by the designer to take into account the constraints

associate with the state and control signal. The sub-index i = 1, . . . , N refers to the active

model.

2.2.2 Command Governor

The Command Governor (CG) is an add-on technique that extends existing con-

trollers with constraint enforcement. It uses the system model to predict states given

a reference r(k) and computes the virtual reference g(k) closest to r(k) that keeps the

system constrained. Figure 2.1 presents a block diagram containing a single CG unit.

7



2.2. Command Governor

r(k)
Command
Governor

Primal
Controller System

y(k)

c(k)

[
xc(k)

x(k)

]

g(k) u(k)

x(k)xc(k)

Figure 2.1 – Command Governor Block Diagram. The system’s and controller’s states
are fedback to constraint the output c(k).

The process diagram in Figure 4.1 is simplified here as the dashed blue square. The

reference is not an input of the process, but of the CG and the output of the CG is the

input of the process. The CG block has two inputs: the reference and the augmented

state vector, a concatenation of the controller’s state xc(k) and the system’s state x(k).

An optmization procedure, described below, calculates the reference g(k) which keeps

the system output c(k) within a predefined region, called the constraint. In the system

defined in Equation (2.14) the constraint is applied to a linear combination of the states

and inputs of the system. c(k) is not fed back to the CG because the information needed

to calculate it is already used during the design of the CG logic, so it can be reconstructed

from the augmented vector.

In what follows we use the sets C, W , and V(x(k)) defined as follows:

1. C is the set of restrictions, which contains all allowed values of c(k).

2. W is the set of all constant references ω that keep c(k) constrained on the steady-

state.

W = {ω ∈ Rny : c(k) ∈ C, k →∞}.

3. V(x(k)) is the set of ω values which ensures that the constrained output belongs to

C during the transitory

V(x(k)) = {ω ∈ W : c(k) ∈ C, 0 < k ≤ k0},

We write the set V(x(k)) in terms of convex constraints on the virtual reference, the

k0 future states, the minimization of the distance to the desired reference, and actuator

saturation bound.

8



2.2. Command Governor

The output of the Command Governor is given by the following convex optimization

procedure:

g(k) = arg min
ω∈V(x(k))

∥ω − r(k)∥2Ψ (2.15)

where Ψ is a semi-definite positive weighing matrix and g(k) is the virtual reference closest

to the desired reference, not allowing the system to violate the constraints. Observe that

the set V(x(k)) is defined by evolving the system in closed-loop, without disturbances, a

number k0 of samples ahead, and testing if the state sequence do not violate constraints.

2.2.3 Supervisor

The supervisor is responsible for selecting which i-th CG is currently active. Figure 2.2

shows its block diagram, in which we see that all CGs are continuously updated, but only

CG3 is active, sending control signals to the system. The policy for switching CGs is

problem-dependent. It might be another controller giving better performance, according

to some metric, or being able to access a state-space region. Note that each CG unit has

its Ci, Wi and V(x(k))i sets.

However, even if the policy allows the change, it will not be admissible if x(k) ̸∈ Xi∩Xj,

where

Xi =

x ∈ Rn|

ω
x

 ∈ Zi for at least one ω ∈ Rny

 (2.16)

is the set of all states that can be steered to an equilibrium point without constraint

violation, with

Zi =


r
x

 ∈ Rny+n|c(k) ∈ Ci,∀k ∈ Z+

 (2.17)

being the admissible output set.

A switched system must have many CG units, each of them with its constraint region.

A generic CG switch from CGi to CGj, denoted CGi → CGj, is admissible (with respect

to the plant constraints) if the two CG’s domains have a nonempty intersection. If one

wants to go from CG1 to CG3 and there is no intersection, one must find a path through

other CGs with nonempty intersections. Therefore the union of all CG’s domains cannot

be a disconnected domain.

9



2.2. Command Governor

CG2 PC2

[
xC2(k)

x(k)

]
g2(k)

xC2(k)

CG3 PC3

[
xC3(k)

x(k)

]
g3(k)

xC3(k)

CG1 PC1

[
xC1(k)

x(k)

]
g1(k)

xC1(k)

Supervisorr(k)

r′(k)

System y(k)
ui(k)

u3(k)

u2(k)

u1(k)

x(k)

x(k)

Figure 2.2 – Supervisor Block Diagram. Each mode has its corresponding Command
Governor unit. The Supervisor uses the system’s state and reference to
generate an intermediary reference to the Command Governors, allowing the
system to follow a path between modes. The intermediary references are
called waypoints. The Command Governors generate references for their
controllers and the Supervisor only allows the current active one to send its
control signal to the system.

To change the active CG, one needs to go to a point interior to the CG’ domains

intersection, called way-point. Such a point can be chosen arbitrarily inside the intersec-

tion of regions defined by the constraints of the concerned CGs. However, it is better to

use points in the central area, not so close to the borders, to avoid problems involving

disturbances and controller sensitivity (Keel & Bhattacharyya, 1997). All the paths from

one CG to another can be calculated offline, for example, using graph theory(Ahuja et al.,

1990; Pettie, 2004). Such an aspect is now handled in this work and, then, the path is

assumed to be known.

In (Franzè et al., 2017; Lucia & Franzè, 2017) it has been shown that any CG switch,

e.g. CGi → CGj can be safely accomplished (not violating the constraints) from any

point belonging to the intersection between the two CGs’ domains. Therefore, a possible
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2.3. Region of Attraction

way to achieve a safe switch is to define a waypoint reference in the intersection set. Once

the plant trajectory, under the action of CGi is confined in the intersection region, then

CGj is activated.

This approach is a way of guaranteeing stability, as the dwell-time is calculated to

allow the switching to occur neither too soon nor too often, giving enough time to the

current controller to stabilize the system before switching again. It is, however, a very

conservative approach that assumes a worst-case scenario. Although it might be necessary

to stabilize some systems, it is not always needed and may lead the convergence time to

take longer.

2.3 Region of Attraction

The Region of Attraction is a definition which initiated with the work of the French

mathematician Henri Poincaré. He studied real, nonlinear differential equations’ be-

haviour, finding that the states’ evolution in time is stable, unstable or cyclic. However,

he did not find proof, which was later given by the Swedish mathematician Ivar Bendix-

son (Bendixson, 1901).

Differential equations which describe real-world dynamics needs to satisfy a condition,

which imposes a bound to its first derivative. In other words, the rate of change of the

differential equation must be limited. This is a special form of function continuity called

Lipschitz continuity. All differential equations that represent the dynamics of a real-world,

physical system satisfy this condition. The condition is∥∥∥∥∂f(x, t)∂x

∥∥∥∥ ≤ L, (2.18)

where L is a real, positive constant, the rate of change. This condition is important as it

guarantees that the differential equation ẋ = f(x, t) with initial condition x(t0) = x0 has

a unique solution for every δ in [t0, t0 + δ] (Donchev & Farkhi, 1998). In other words, the

differential equation has only unique solutions.

For equations satisfying this condition, Bendixson (1901) presents the definition of a

region with interesting properties. First, he defines the existence of a critical point for

differential functions, which are points such that the differential function’s derivative are

zero and remain zero as the time goes to infinity. He then shows that there are two types

of critical points: stable and unstable. A stable critical point is such that all states on

11



2.3. Region of Attraction

a given neighbourhood converge to the point as time goes to infinity. For an unstable

critical point, they diverge. He then proceeds to show the existence of limit-cycles, which

are not critical points, but, for a differential equation f(t, x, y), f(t, x, y) = f(t− t0, x, y),

meaning that variables (x, y), the state, are repeating thenselves cyclic every t− t0 time

units. Cycles can be classified as stable or unstable by taking any of its points and

applying the same analysis as for critical points, with the addition that it may be semi-

stable, meaning that points inside the region convert and outside diverge, or vice-versa.

To verify the type of a critical point, one can take the derivative of the function and

apply at the point. For a continuous-time differential equation, the resulting values need

to be negative for the point to be a stable critical point, otherwise it is an unstable critical

point. For a discrete-time system, their absolute values must be smaller than one for the

point to be stable. Limit-cycles are only possible around critical points, so to test for

their existence on a function f(x), one must analyze the stability of the critical-point and

then define a region H(x), which contains the critical point, and calculate the gradient

(∇) of H(x) on f(x). The following list sumarizes the possible outcomes:

1. if the point is unstable and ∇H(x)f(x) < 0, then there is a stable cycle inside

the region H(x);

2. if the point is unstable and ∇H(x)f(x) > 0, then there is an unstable cycle

inside the region H(x) or no cycles;

3. if the point is stable and ∇H(x)f(x) < 0, then there is a semi-stable cycle inside

the region H(x) or no cycles;

4. if the point is stable and ∇H(x)f(x) > 0, then there is a semi-stable cycle inside

the region H(x).

Figure 2.3 shows some possible gradients. In 2.3c there is a stable point and a semi-

stable cycle. Notice how all points inside the cycle converge to the origin (center of the

figure) and all points outside diverges. The cycle exists but is not stable, as the state

might either converge or diverge after some time. In 2.3b the gradients are the opposite

of the previous case, resulting on a sustained cycle. Every initial state will converge to

the cycle and the state will keep looping forever. In 2.3a there is no cycle, but there could

be one. This is the most common case, specially when working with linearizations. All
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2.3. Region of Attraction

states converge to the origin, regardless of the initial state. Note that we do not know

what happens outside the plotted region. There could be a cycle hidden there, or the

gradient might change completely, so we cannot make any affirmation about the system’s

behaviour outside the plotted region. You could call this region H(x) and it would be a

Region of Attraction.
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(c) Semi-stable cycle

Figure 2.3 – Different cycles’ gradient maps. In 2.3a there is a stable critical point and all
values converge to it. In 2.3b there is an unstable critical point and stable
limit-cycle, so all values converge to the limit-cycle and remain cycling on
its border. The vector field in 2.3c is the contrary of that on the previous
subfigure, and the values will only stay on the limit-cycle if they start there
and there is no pertubation or noise, otherwise they will either converge to
the critical point or diverge.

Definition 1 A Region of Attraction is the neighbourhood of a critical point which is

forward invariant under the flow generated by it (Milnor, 1985, p. 178).

This definition allows limit-cycles to be inside the region of attraction, which is unde-

sirable for control purposes, where we expect the system to converge, leading to a more

restricted defition. Lyapunov’s stability criteria states that for the system ẋ = f(t, x), if
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2.3. Region of Attraction

there is a function V (x) such that

V (x) = 0 ⇐⇒ x = 0, (2.19)

V (x) > 0 ⇐⇒ x ̸= 0, (2.20)

V (x1) > V (x2) ⇐⇒ x1 > x2 (2.21)

V̇ (x) = ∇V (x)f(x) ≤ 0 ∀x ̸= 0, (2.22)

then the system is stable (Chen, 2012; Hespanha, 2018). Futhermore, if V̇ (x) < 0, the

system is asymptotically stable. In this context, V (x) is an energy function, but its

derivative reminds us of Poincaré’s theorem. In fact, Lyapunov’s function can be seen as

a more restricted form or Poincaré’s region, which always contains stable points or stable

cycles inside it. If the derivative is strictly negative, the region V (x) is guarantee to not

contain cycles (Chen, 2012). Because of this link between the two theorems, Lyapunov’s

stability criteria is often used to estimate the region of attraction.

In case of a linear system described by ẋ = Ax, it is necessary and sufficient to search

for a function V (x) = x⊤Px. It is the most used candidate since it is easy to verify its

positiviness: V (x) ≥ 0 ∀x if P is SDP (semidefinte positive) (Bochnak et al., 1998). It is

also a simple region to describe and derive, making it easy to use with LMI tools. Note,

however, that there are infinite possible regions, and V (x) = x⊤Px is most certainly not

the largest region, making it a conservative solution.
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Chapter 3
Switching Rules

This chapter presents two switching rules: the dwell-time, the most employed and

studied of such techniques in literature, and the proposed rule based on the region of

attraction. Other techniques exist, like using robust control to design a controller that

never allows the system to unstabilize; however, they are more conservative and not viable

in many cases.

3.1 Dwell-time

As discussed in Section 2.1, the act of switching can cause instability, even if all modes

are stable. Although it is possible to verify if the system is stable under arbitrary switching

(and therefore to design controllers to do so), the procedure is not straightforward and

challenging to apply to most real-world situations.

There are, however, other ways of verifying and guaranteeing the stability of switched

systems. The dwell-time is one of such techniques that restricts the switching signal σ(t)

to the set

DT := {σ(·) : tk+1 − tk ≥ T}, (3.1)

where tk and tk+1 are the switching instants, for all k ∈ R, which forces the system to

remain for T seconds on a mode before switching to next one (Colaneri, 2009). This

falls in the class of slow-switching rules. The timer is restarted every time the reference

changes and switching is only allowed after T seconds has passed. For large enough values

of T , this rule guarantees the system’s stability.
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3.1. Dwell-time

As the dwell-time certifies stability of the switch, it decouples the switching logic and

the system stability, making it possible to analyse the system stability for each mode

independently. One problem, however, is that computing the minimum dwell-time is not

easy and is the focus of current research. An easier problem is to find an upper bound

for it, which can be done efficiently using numerical algorithms (Colaneri, 2009).

Another technique that uses the concept of dwell-time is the average dwell-time, where

the switching rule σ allows for a fixed number of discontinuities Nσ(t, τ) for t ≥ τ ≥ 0

such that the set DTD,N0 satisfies

Nσ(t, τ) ≤ N0 +
t− τ

τD
, (3.2)

where τD is the average dwell-time and N0 is the chatter bound (Hespanha & Morse,

1999). This set is larger than DT and allows for signals with discontinuities separated by

at most τD.

To illustrate how the dwell-time works, consider the state-space of a fictional two-state

system shown in Figure 3.1. • marks the system’s initial state, ⋄ are the waypoints and

⋆ is the reference. The collored ellipses are each mode’s state’s constraints, numbered 1,

2, 3 from left to right. Since there are three ellipses, we have three modes, meaning three

command governors, controllers and linearized systems. The waypoints are intermediate

references, chosen to allow the system to travel from the current state (•) to the reference

(⋆) without violating any constraint.

Consider that the system is on steady-state at • when the reference switched to ⋆. The

supervisor scheme used here is the one given in Figure 2.2. The supervisor will receive

the new reference r(k) and, because the system is currently on mode 1, will set r′(k) to

the first waypoint’s coordinates, since it is not possible to gro from • to ⋆ directly without

violating the constraints.

Because a reference change occurred, the supervisor will start a timer, counting down

from the first mode’s dwell-time, T1. Even if r(k) changes again, r′(k) will not be changed

until this timer expires. This gives the first mode’s controller enough time to converge to

the first waypoint, guaranteeing stability.

Because the waypoint is at mode 1’s and mode 2’s constraints intersection, the super-

visor is allowed to change the the system to the second mode and change the reference

r′(k) to the second waypoint’s coordinates, as soon as the dwell-time’s timers expire (both

changes happen simultaniously). Again, because the reference changed, a new timer will
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•

⋄ ⋄

⋆

Figure 3.1 – Dwell-time illustrative example. The plane is the phase-plane of a second
order system. Each colored region represents one mode’s contraints, each
symbol inside a circle represents a point of interest: • is the initial state,
⋄ are the waypoints and ⋆ the final reference, as set by the operator. The
arrows show the path the system will take as the supervisor changes the
references to the waypoints and then to ⋆.

start, but now counting down from mode 2’s dwell-time, T2. The same procedure will be

repeated once the system’s state reaches the second waypoint, when r′(k) will finally be

set to r(k).

Algorithm 1 presents a generalized version of the algorith described in the given ex-

ample.

Algorithm 1 dwell-time implementation
1: Input: CGi ← current CG, CGj ← target CG.
2: change r′(k) to next way-point
3: while dwell-time of CGi not ellapsed do
4: calculate g(k)
5: execute controller
6: end while
7: change to CGj

8: restart algorithm

Firstly, CGi is set to the currently active CG and CGj to the next CG in the path

(briefly disscussed in Subsection 2.2.3). Then the reference r′(k) is set to the next waypoint

in the path. The timer is started and the supervisor will wait for it to ellapse before making

any change to the system. While it is not ellapsed, the active CG and controller will drive

the system to the reference r′(k). As soon as the time ellapses, the system switches modes,

activating CGj. The procedure is then repeated.
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3.2. Region of Attraction

3.2 Region of Attraction

The goal of this switching rule is to allow the system to converge faster to the final

reference when going through a path of restricted mode switches. To achieve this goal,

it is necessary to guarantee stability after switching modes and switch modes as soon as

possible.

The main contribution of this work is to propose a switching rule based on the con-

troller’s region of attraction yielding a guaranteed stable closed-loop system. As described

in Section 2.3, the controller’s region of attraction is the forward invariant neighbourhood

under the flow generated by a critical point. On a switched system, there is one controller

and linearized system for each mode, therefore there is also one region of attraction for

each mode.

Since the definition of a Region of Attraction undesirably allows the existence of limit-

cycles within the region, we turn to Lyapunov’s theorem to further restrict the region,

eliminating them. The set which represents the region of attraction becomes contractive,

becoming smaller as the system’s state converges to the critical point. The Lyapunov

function is seen as an energy function, and its value at some point in the state-space is

an energy level. This leads to the so called level sets, which are all points that yield the

same energy level, in Lyapunov’s sense.

The level set, denoted LV (P ), where P is the matrix used in the function V (x) =

x⊤Px, is an estimative of the region of attraction and, being contractive, implies that,

once the system reaches a lower energy level, in Lyapunov’s sense, it can not go to a state

with higher energy and can only stay at the same level if it is zero, which guarantees

convergence, as the only point with zero energy is the origin of the linear system.

The region of attraction is, therefore, a certificate of stability for a system. However,

as stated in Section 2.1, having stable modes is not enough to guarantee the stability

of the system after switching. Nonetheless, the following region of attraction based rule

guarantees that the system will remain stable after switching:

σi =

1 if ξi(k) ∈ LV (Pi)

0 otherwise
, (3.3)

where ξi(k) is the mode’s state, and σi is the switching rule, meaning that the system
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can switch to the ith mode if σi = 1. The switching rule does not force the use of any

particular region of attraction estimation. Any method can be used to estimate the region

of attraction, and the use of Lyapunov’s theorem is just an example.

Let us discuss the stability of the system when this rule is used. Suppose a system

with two modes is currently in mode 1, and the supervisor has deemed that it needs to go

mode 2. The switch will only occur when the system’s state is inside the second mode’s

controller’s region of attraction. Because it is inside the region of attraction, it guarantees

that it will converge, and therefore the switch is stable.

Consider the same scenario, however the system has 10 modes and the switch from

mode 1 to mode 2 follows the path 1 → 3 → 8 → 2, meaning that, to go from 1 to 2, it

first needs to switch to 3, then to 8 and only then to 2. The worst-case would be if the

system is in the middle of the intersection of all regions of attraction. In this case, the

system will instantly switch modes, going from 1 to 2 in 3 sample times, in the case of a

discrete system. However, since the switch can only happen when the state is inside the

next mode’s controller’s region of attraction, it will simply cause the previous scenario to

be applied recursivelly, and the system will remain stable after it reaches the last mode.

In another scenario, the software generating the references for the supervisor (i.e. gen-

erating r(k)) might malfunction or have a badly defined rule that will make the reference

jump between many values, making the system try to switch modes seemly randomly. In

this case the system will do the switches as long as it is allowed, but the state will always

be inside some controller’s region of attraction. It will then either never converge nor

diverge (because of the ever-changing reference) or enter a state that is only inside one

mode’s controller’s region of attraction, at which point it will not switch modes anymore.

The illustrative scenarios show that the state will always be inside some controller’s re-

gion of attraction, and therefore it is not possible for the system to diverge. It can oscilate

due to varying references, but that is a case of malfunction or badly desined referencing

system, not normal operation. Furthermore, when used in conjunction with Command

Governors, the reference is always guaranteed to be inside the region of attraction (since

the constraint region is completely contained inside it), even if the supervisor’s reference

is not, eliminating the possible scenario where the system diverges because the reference

is outside the region of attraction, dragging the system out of it.

To illustrate, we will use the same example of Section 3.1, but this time applying the
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region of attraction based rule. A difference, seen in Figure 3.2, is the presence of the

dashed circles, representing each controller’s region of attraction. When the reference r′(k)

changes to the first waypoint’s coordinates, the supervisor will start checking whether the

system’s state is inside the region of attraction of the next mode’s controller and, when

it enters this region, the controller and linearized model will be changed to those of the

system’s mode 2, but the constraints will still be those of mode 1. We call this a hybrid

switch. In Figure 3.2, the dashed arrows represent a path followed while in a hybrid mode.

•

⋄ ⋄

⋆

Figure 3.2 – Region of attraction illustrative example. The plane is the phase-plane of a
second order system. Each colored region represents one mode’s contraints,
each symbol inside a circle represents a point of interest: • is the initial state,
⋄ are the waypoints and ⋆ the final reference, as set by the operator. The
dashed circles represent each controller’s Region of Attractoin. The arrows
show the path the system will take as the supervisor changes the references
to the waypoints and then to ⋆. Arrows in solid line mean the system is
entirely on the active mode, dashed arrows mean the system is on a hybrid
state.

The advantage of the hybrid switch is the possibility to speedup convergence. It is

not required, but if the second controller is known to have a desired better performance

index, it can be allowed. If it is known that it performs worse, this rule can be ignored.

Here we assume that switching earlier always results in faster convergence to highlight in

the figure when those changes would occur.

While in this hybrid mode, the system continues to converge to the waypoint. The

supervisor checks at each instant whether the system’s state is inside the current and
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next mode’s constraint’s intersection. Upon entering the intersection, a full mode switch

is performed, activating mode 2’s command governor and constraints. The supervisor sets

the reference r′(k) to the next waypoint in path, in this case the second one, and system

is free to converge to it.

The same procedure will be repeated, with a hybrid switch occurring when the system’s

states enters the third mode’s controller’s region of attraction and another full switch when

it enters modes 2 and 3’s constraints intersection.

With this switching rule, there is no wait: the system will change mode as soon as

possible, yielding faster overall convergence. The hybrid switching is an addition that

may increase the performance of the system at the cost of computation resources, but is

not necessary and can be safelly ignored. Algorithm 2 shows the proposed rule in both

its forms, assuming the use of a Command Governor, which is always recommended for

this rule as it helps to guarantee stability.

Algorithm 2 Switching rule based on region of attraction
1: Input: CGi ← current CG, CGj ← target CG.
2: let Pj be the P matrix of CGj’s Lyapunov function.
3: if should switch controllers earlier then
4: while ξ(k) ̸∈ LV (Pj) do
5: calculate g(k)
6: execute controller
7: end while
8: change current controller and model to CGj’s ones
9: reset integrators

10: end if
11: while x(k) ̸∈ Xi ∩ Xj or ξ̂(k) ̸∈ LV (Pj) do
12: calculate g(k)
13: execute controller
14: end while
15: change to CGj

16: reset integrators if not already done
17: change r(k) to next way-point
18: restart algorithm

CGi is the currently active CG and CG2 is the next CG in the path. Pj is next CG’s

Lyapunov function’s P matrix. should switch controllers earlier tests whether a

hybrid from CGi to CGj is allowed. If it is, the supervisor checks if the system’s state is

inside next mode’s controller’s region of attraction. While it is not, the current controller

is executed, alogside its CG unit. Once the system enters the next mode’s controller’s
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region of attraction, the controller and internal linearized model are switched, taking

the necessary measures to guarantee continuity of signals, specially control signal, such

as resetting integrators. This controller is executed until the system’s state enters the

current and next mode’s constraint’s intersection, when the full mode switch occurs. The

reference r′(k) is set to the next waypoint’s coordinates and the algorithm is restarted.

3.3 Practical Implementation Aspects

When implementing the techniques described in this thesis, some details need atten-

tion. For example, it is easy to say “minimize f(x) | x ∈ X ”, however it is not so simple

(and sometimes even impossible) to implement the set membership check x ∈ X . De-

scribing the set and finding a way to test membership numerically can be challenging.

That is one reason why we choose convex sets: we know how to implement membership

tests and use it in common optimization frameworks.

This chapter will discuss how to represent the constraints and region of attraction and

provide some insight into how to implement the models of the command governor with a

supervisor structure, and the problems faced when estimating the region of attraction.

3.3.1 Polytope representations

A convex polytope can approximate any convex region. A convex polytope is a com-

pact convex set with a finite number of extreme points such that, for any two distinct

points (a, b) belonging to the region, a closed segment with endpoints (a, b) is entirely con-

tained within the region (Grünbaum, 1967). In other words, it is a convex hull of a finite

number of points, called vertices. This representation is called the “V-representation”

in R2 and is not useful to test membership. However, it is straightforward to sample

points from the desired region’s border to create a V-representation of a polytope ap-

proximating it and then convert it to the H-Representation, which can be used to easily

test set membership. It is also useful for plotting. The Figure 3.3 illustrates a region in

its V-representation, where the red dots are the vertices, and all blue dots are inside the

region. The set of vertices is

{(0.02,0.71),(0.31,0.02),(0.82,0.04),(0.87,0.13),(0.99,0.88),(0.60,0.98),(0.38,0.97),(0.04,0.88),(0.02,0.82)} .
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Figure 3.3 – Visualization of the V-representation of a set. The red dots are the vertices,
which can be obtained by sampling the border of the set. The blue dots are
considered to be inside the region, however it is not easy to test this with
the V-representation.

A more useful representation of such regions is the “H-representation”. In such a

representation, the intersection of a finite number of half-spaces describes the region. A

half-space is one of the two parts in which a hyper-plane divides an affine space. Since

half-spaces are linear inequalities, the H-representation becomes the matrix inequality

Ax ≤ b, (3.4)

where A is a matrix of coefficients, x is a point in space and b is a vector of real numbers.

The number of rows in A and b is the same as the number of half-spaces defining the

region. All points satisfying the inequality are inside the region, making it easy to test set

membership. Figure 3.4 shows the half-spaces that compose the H-representation of the

same convex polytope presented in Figure 3.3. Equation 3.5 shows the inequation that

describes the region. The selected side is not shown for each half-space but is the one in
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which intersections with the other selected halves make the convex region in the middle.
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Figure 3.4 – Visualization of the H-representation of a set. The set is defined as the
intersection of many half-hyperplanes. Only the lines that define the half-
hyperplanes are represented, to facilitate visualization. The easiest way to
get this representation is by transforming from the V-representation using
one of the available algorithms. However, it is easy to test for membership
using this representation.

Given a generic shape, it is easy to sample points and build a V-representation of the

polytope, however we need the H-representation to easily test for set membership. There-

fore, we need a way from transforming the V-representation into the H-representation.
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3.3. Practical Implementation Aspects

Unfortunately, this is not straightforward, but some algorithms allow us to enumerate the

facets given the vertices. Some problems of such algorithms are the time needed to find

the facets of many vertices and how to find facets in higher-order spaces. However, good

algorithms can be used for the conversion, especially if the computation is done offline,

not presenting a time limitation to the computation (Avis et al., 1997; Graham & Frances

Yao, 1983; Lee, 1983; McCallum & Avis, 1979).

Particular regions can be easily described in a way that it is easy to include in opti-

mization problems. The ellipsoid is one such region, as it is described as x⊤Px ≤ 1 so

that any point x that satisfies the inequality is inside the region. Any region described by

polynomials can be expressed in a matrix form and can quickly test membership. Such

regions should use their inequation directly instead of a polytope approximation. We do

that to the Region of Attraction, and it is how we implemented the check to verify if the

state is inside it.

3.3.2 Internal Models

To switch modes and controllers of a system the way we propose, one must pay at-

tention to the controller’s internal states and the control signal’s continuity. Also, since

every CG unit has its controller and model, the destination CG must be updated to a

valid state before switching. There are many ways to do so, and we will present some.

One way is to run all CGs in parallel. The optimization problem of the inactive units

does not need to run with complete constraints. It can be relaxed only to contain the

region constraint on the virtual reference; also, the observer can be ignored. It is necessary

to find the virtual reference, which will be close to the constraint region’s border, which

is closest to the real system’s state. Notice that, in this case, we are not looking for a

virtual reference closest to the real reference but to the real system’s state. By doing so,

the internal model’s and the controller’s states will always be valid.

However, this approach can be resource-intensive, as it still computes the optimization

problem at every sample. It is also possible to run the observer and update the internal

model’s states without checking for constraint violations, but this does not solve the

controller’s state problem. Another technique needs to be combined to find them.

Another way of guaranteeing valid states is to compute the states before changing

mode. Two ways of computing the states are: by inverting the system and controller
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3.3. Practical Implementation Aspects

equations and by simulation. The first approach has a very low computational resource

impact but may not be possible or yield approximations due to uncertainties. For systems

with integrators, for example, there will be infinitely many results. Another problem is

that even though the system has only one steady-state solution, it can have many transient

ones.

The simulation becomes interesting, even though it is more computationally intensive,

as it can calculate a state that better matches the current transitory characteristics of

the real system. It can also find the model’s and controller’s states at once, guaranteeing

that there is no mismatch. To use the simulation approach, execute the simulation right

before changing modes, using the internal controller and model, and setting the reference

to the real system’s current state. This yields a valid steady-state model’s and controller’s

state. However, this technique does not guarantee control signal continuity (which might

even be impossible on some systems) without adjustments.

3.3.3 Region of Attraction Estimation

The Lyapunov approach presented in Section 2.3 can easily estimate the region of

attraction. The presented approach makes use of a quadratic Lyapunov candidate, but

it is not necessary, as it is possible to find functions of any form. The function should

easily check if a point belongs to the region, as it will be done frequently. Quadratic

forms, such as the simple one presented or those generated by Sum Of Squares tech-

niques, are recommended since they can easily and computationally inexpensively check

set membership.

The region of attraction needs to be larger than the basin of attraction of the CG

and needs to intersect all mode’s regions of attraction to and from which it can switch.

Because of this, it is necessary to guarantee the intersection. However, LMIs usually try

to optimize the size of the region of attraction by making it as big as possible or as small

as possible. Since the exponential stability tries to minimize the size of the region of

attraction, we need a way to ensure a minimum region size.

Consider the region of attraction described by

x⊤Px ≤ 1, (3.6)

where x is the point that should be inside the region of attraction. Note that, numerically,

a number smaller than 1 may be necessary to make the problem feasible.
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3.3. Practical Implementation Aspects

If the LMI is written in terms of P , it can be used directly to force the region to be

big enough to contain the point x. If the LMI is written in terms of P−1, simply applying

Schur’s complement yields a valid LMI:P−1 x

x⊤ 1

 ≻ 0, (3.7)

You need to add one of such LMIs to your optimization problem for each mode that

is allowed to switch from or to the current mode. The point x does not need to be the

same for two modes that intersect, as placing the points some distance apart creates a

larger region of intersection, which gives a margin for errors.

To illustrate the choice of x, consider the switched system composed of three modes

shown in Figure 3.5a. The stars represent each mode’s linearization point, the filled

ellipses its constraints regions, the unfilled circles the regions of attractions and the black

dots the points used in the LMIs to ensure the RoA’s size. Note the intersection region

formed in the middle, displayed in yellow.

Now compare it with the same system, but only one point used for all systems, depicted

in Figure 3.5b. See how smaller is the intersection of regions of attraction and constraints

(in yellow). The proposed technique will be much more efficient in the first case, since it

will result in an earlier switch.

(a) Choosing different x for each RoA (b) Choosing the same x for all RoA

Figure 3.5 – Different RoA’s intesections. The intersection in 3.5a is larger, so a hybrid
switch can be activated earlier.
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Chapter 4
Results

This chapter presents both simulations and experimental results that show the tech-

nique working and compares it with dwell-time implementations.

For all simulations and experiments in this chapter, the controller is designed to ensure

null steady-state error for piecewise constant references at each mode i, and thus the

integral action is applied over the tracking error (Lopes et al., 2020)

e(k) = r(k)− y(k), (4.1)

where r(k) is the desired output of the system. The proportional action comes from the

system’s state deviation with respect to the equilibrium point. Figure 4.1 depicts the

topology of the considered controller.

Σ z−1 KI Σ System

KP

r(k) e(k)
∫
e(k) u(k) sat(u(k))

x(k)

y(k)

−

Figure 4.1 – PI-like controller. The states are fedback proportionally and the output error
is integrated to obtain reference tracking.

By defining an augmented state vector

ξ(k) =

[
x(k)⊤ v(k)⊤

]⊤
,
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where v(k) ∈ Rnu is the vector of added integrators, the closed-loop system shown in

Figure 4.1 can be rewritten as

ξ(k + 1) = Aiξ(k) + Biu(k),

yk = Ciξ(k) +Diu(k),
(4.2)

where Ai =

 Ai 0

−Ci I

, Bi =

Bi

Di

, Ci =
[
Ci 0

]
, Di =

[
D⊤

i 0
]⊤

.

The design of each controller gain Ki ∈ Rnu×(n+p) may use tandard LMI based tech-

niques, such as, for instance, pole placement (Yu, 2013), LPV design (Briat, 2014), or

robust control (Boyd et al., 1994). The exponential stability and saturation LMI’s de-

scribed below were used.

Note that the constrained output can also be expressed in terms of the augmented

state ξ(k), taking into account the state of the integrator, i.e., c(k) in (2.14) can be given

by

c(k) = Eiξ(k) + Fiu(k), (4.3)

with the mode-dependent matrices Ei and Fi with adequate dimensions.

There are various ways to measure stability, with the asymptotic stability being the

most common. However, other definitions might yield better results. One of such sta-

bility criteria is exponential stability, which guarantees fast convergence to the origin.

A system is said to be exponentially stable if its states decay is upper-bounded by an

exponential (Hespanha, 2018):

∥x(t)∥ ≤ Ce−λ(t−t0) ∥x(0)∥ . (4.4)

Squaring both sides of the equation and expanding the norms we get

x(t)Tx(t) ≤ C2e−2λ(t−t0)x(0)Tx(0). (4.5)

Using Taylor’s series approximation to discretize the equation with C = 1 and letting the

constant λ absorb the constant 2 yields

x(k + 1)Tx(k + 1) ≤ (1− λ)x(k)Tx(k). (4.6)

Inserting the matrix P between both vectors does not affect the innequality. Replacing

x(k + 1) = (A+BK)x(k) results in

x(k)T [(A+BK)TP (A+BK)− (I − λI)P ]x(k) ≺ 0. (4.7)
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4.1. Simulations

Applying the Schur complement we obtain (I − λI)P (A+BK)TP

P (A+BK) P

 ≻ 0 (4.8)

Pre- and post-multiplying by
[
P−1 0
0 P−1

]
and making W = P−1 and Z = KP−1, we obtain

our LMI, which can be used with the following optimization procedure:

min
W,Z

Trace(W )

s. t.

W (I − λI) (AW +BZ)T

AW +BZ W

 ≻ 0. (4.9)

Considering (4.2) under input saturation, even though the input constraints are usually

included in the set C and are handled by the optimization machinery, at this point, we

explicitly consider them, by using a saturating allowance approach (Tarbouriech et al.,

2011). In such a case, we assume decentralized saturation function, sat (u(k)), instead of

u(k) as the input signal in (4.2), where ū is the saturation value and

sat (u) = sign(Uℓ)min{|u(ℓ)|, ū(ℓ)}, ℓ = 1, . . . ,m,

where u(ℓ) means the ℓ-th entry of u. An estimate of the region of attraction can be

computed by solving a suitable optimization procedure for each mode, such as (Klug et

al., 2015):

min
Pi,Gi,Si

Trace(Pi)

s. t.

A⊤
i PiAi − Pi −BiSi +G⊤

i

⋆ −2Si

 < 0 (4.10)

−Pi (Ki −Gi)
⊤

⋆ −u2

 < 0

with Gi ∈ Rnu×na , Si ∈ Rnu×nu is a positive diagonal matrix, for ℓ = 1, . . . ,m.

4.1 Simulations

This section presents three MIMO-systems simulations using both region of attraction

techniques described in Algorithm 2 (with and without early controller switching). The
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4.1. Simulations

level-system presented models a physical system present in our laboratory, the unstable

system is purely theoretical, and the Cessna 182 was taken from an article for comparison.

4.1.1 Level Control System

Consider an interactive tank system as indicated in Figure 4.2. It consists of two

coupled tanks, namely T1 and T2, that are feed by two with controlled outflows u1 and

u2, measured in cm3 s−1. The levels of each tank, h1 and h2 (cm), are the control objective

variables.

q1 q2

R12

u1 u2

h1

h2

R1 R2

Figure 4.2 – System of Coupled Tanks. Two pumps input water into the system, and the
water can flow out of the system through each tank. The water can also flow
from one tank to another, making the state of one affect the state of the
other. The control objective are the water levels of both tanks. The solid
and dashed lines representing the water levels illustate two configurations,
one with h1 > h2 and the contrary.

The output flow of the T1 and T2 are denoted by q1 and q2 (cm3 s−1), respectively, and

the flow between them is noted by q12 (cm3 s−1). Both tanks have the same cross-section

area, denoted as A (cm2), as well as the cross-section areas of the restrictions in the

outputs of the tanks, a (cm2); g (cm s−2) is the gravity acceleration. By using Bernoulli’s

equations, we have:
ḣ1(t) =

u1(t)− q1(t)± q12
A

,

ḣ2(t) =
u2(t)− q2(t)∓ q12

A
,

(4.11)

where the flows are given by q1(t) = a
√

2gh1(t), q2(t) = a
√

2gh2(t), and q12(t) =

a
√

2g |h2(t)− h1(t)|.
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4.1. Simulations

This is a nonlinear and switching system, as the model changes depending on the

height of the tanks’ water column. At each mode, h1 > h2 or h1 ≤ h2, equation (4.11)

can be linearized around an equilibrium operational point (xeq, ueq) by using Jacobian

matrices. In what follows, we use a = 5.9 cm2, A = 961π cm2, and g = 980.665 cm s−2.

Two operational conditions with x(k) =

[
h1(k) h2(k)

]⊤
, chosen so one tank is nearly

full, are such that:

x1
eq =

 57.5

43.61

, u1
eq =

 744

2960

, x2
eq =

43.61
57.5

, u2
eq =

2960
744

,
yielding two operational modes, each of them corresponding to a CG. After the lineariza-

tion, we discretized the continuous-time model using a sample time of 5 s and Euler

equations to get discrete-time model given by (2.14) with matrices:

A1 =

 0.92 0.053

0.053 0.91

 , A2 =

 0.91 0.053

0.053 0.92


B1 =

 0.0016 4.5× 10−5

4.5× 10−5 0.0016

 , B2 =

 0.0016 4.5× 10−5

4.5× 10−5 0.0016

 ,

C1 = C2 =

1 0

0 1

 ,

and number of modes s = 2. Using Lyapunov’s approach (Chen, 2012; Hespanha, 2018),

on the system augmented with 2 integrators (one for each state), we got the following

controller:

K1 =

−875.384 −9.217 −297.447 7.982

−8.505 −849.853 8.514 −279.434

 ,

K2 =

−849.853 −8.505 −279.434 8.514

−9.217 −875.384 7.982 −297.447

 ,

for the operational modes 1 and 2.

We simulated our approaches described by Algorithm 2 to switch between the CGs

1 and 2. In both cases the system starts in x(0) = [ 43.61 57.5 ]⊤. The references are

r = [ 57.5 43.61 ]⊤, for 0 ≤ k ≤ 10 ∪ 50 ≤ k ≤ ∞, and r = [ 43.61 57.5 ]⊤, for 11 ≤ k ≤ 49.
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4.1. Simulations

Therefore, the system must perform a closed path. Note that the references are the

system’s two equilibrium points, so the systems starts in mode 1, moves to mode 2 and

goes back to mode 1.

The regions of attraction were estimated using the optimization procedure presented

in Section 2.3. The following inequalities define each mode’s regions of attraction:

LV1(x) = x⊤

4.766× 10−3 1.431× 10−8

1.431× 10−8 4.766× 10−3

x ≤ 1 (4.12)

LV2(x) = x⊤

4.766× 10−3 1.185× 10−8

1.185× 10−8 4.766× 10−3

x ≤ 1 (4.13)

The constraint regions are, in this case, also defined as ellipses, given by the following

inequalities:

C1(x) =
(x1 − 50.55)2

8.6812
+

(x2 − 43.61)2

1.0852
≤ 1 (4.14)

C2(x) =
(x1 − 43.61)2

1.0852
+

(x2 − 50.55)2

8.6812
≤ 1 (4.15)

where x = [ x1 x2 ]⊤.

Since the system is linearized around two different operation points, there are three

bases (the equilibrium points of each linearized model), and the states need to be converted

between them. The first is the basis of the non-linear system, called “global”. The second

and third are those of the linearized systems. The constraints are written on the global

basis and the regions of attraction in the respective mode’s basis. Care must be taken to

convert between the basis for set membership tests.

Fig. 4.4 shows the path taken by the closed-loop system over the space of the system’s

state. The trajectory marked with red-dashed line concerns the results achieved without

early-switch, and the solid-blue line is related to ones with early-switch. The shadow

regions concern the constraints of each mode. Also, Fig. 4.4 shows the borders of the

estimates of the regions of attraction, RoA, for each mode, with dot-dashed lines.

It is clear that the path taken under each algorithm’s variation (with and without

early controller switch) are almost the same. The respective control signals are given in

Fig. 4.3, showing faster convergence and smaller signal amplitude in the hybrid switch.
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Figure 4.3 – Control signals for Example 1. Solid lines are the hybrid switch and dashed
lines are the normal switch. Dashed-dotted lines are saturations.
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Figure 4.4 – States trajectory for Example 1. The filled ellipses are each mode’s con-
straints. The dashed-dotted circles are each controller’s Region of Attrac-
tion. The dashed blue red line is the state path of the normal switch and
the solid blue line the state path of the hybrid switch.
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4.1.2 Unstable System

Consider the unstable switching system with matrices

A1 =

1 0.003

0 1

 , A2 =

1 0.0074

0 1.1

 ,

B1 =

0.0005 1.2× 10−6

0 0.0008

 , B2 =

0.0019 3.6× 10−5

0 0.011

 ,

C1 = C2 =

1 0

0 1

 ,

and operational points

x1
eq =

1
1

 , u1
eq =

−2
−5
4

 , x2
eq =

−1
1

 , u2
eq =

 −30
19

−10

 .

The sample-period was 0.1 s, and controller gains are given by:

K1 =

−2.669× 103 −1.993 −6.741× 102 1.010

3.582× 10−4 −1.669× 103 −3.103× 10−4 −4.210× 102

 ,

K2 =

 −7.034× 102 −1.268 −1.769× 102 6.097× 10−1

−3.903× 10−6 −1.370× 102 −1.292× 10−5 −3.202× 101

 .

With the same procedures and considerations of the previous example, including the

used color codes, we simulated the unstable system. Figure 4.5 shows the same system

trajectory for both methods.

The second method shows better performance under control signal restrictions. Fig-

ure 4.6 reveals a difference in the control signals, where the first method, displayed in

red dashed-line and green dashed-line, have higher control signal outputs than the second

method, shown by blue solid-line and orange solid-line. Both methods results in the same

settling time, but with much lower control effort with the strategy of early switching.
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Figure 4.5 – States trajectory for Example 2. The filled ellipses are each mode’s con-
straints. The dashed-dotted circles are each controller’s Region of Attrac-
tion. The dashed blue red line is the state path of the normal switch and
the solid blue line the state path of the hybrid switch.
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Figure 4.6 – Control signals for Example 2. Solid lines are the hybrid switch and dashed
lines are the normal switch. Dashed-dotted lines are saturations.
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4.1.3 Cessna 182

Franzè et al. (2017) present a Cessna 182 aircraft model, which they used to simulate a

dwell-time. They describe the model, the operation points they chose, and the constraints

applied to it. We used the same system changing only the switch technique to compare

the performance. The proposed technique took 6 s to converge, whereas the dwell-time

technique took over 20 s.

Figure 4.7 shows both actuators’ control signals, which are kept mostly invariant,

except at the mode transitions, where the integrator reset created a discontinuity. Fig-

ure 4.8 shows each state. In both figures, the solid black lines at the plot’s top and bottom

are the signal’s constraints. The last state (x4) is the output, and its plot also shows the

reference and command governor’s output.
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Figure 4.7 – Cessna 192 control signals.
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Figure 4.8 – Cessna 182 states. The colored backgrounds show the active mode. In the
last plot, the dashed black line is the reference set by the supervisor, the
dashed orange line is the reference generated by the Command Governor,
the solid blue line is the state and the solid black lines are the saturation
values.

4.2 Experimental Results

Consider an interactive tank system as indicated in Figure 4.10. It describes the

physical system present at the System Analysis Laboratory of CEFET-MG campus V,

shown in Figure 4.9. It consists of two coupled tanks, T1 and T2, that are fed by a pump

with controlled flow u(t), measured in cm3 s−1. The levels of each tank, h1 and h2 (cm),

are the control objective variables, and are measured directly (e Sousa et al., 2018; Franco

et al., 2016; Lopes et al., 2020).

Both tanks have the same cross-section area, denoted as A (cm2), however, there is a
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Figure 4.9 – System of coupled tanks with four 200L tanks. There are two pumps that
can be configured through the pipes to fill any of the tanks. Tank T3 has a
rigid body with a non-linear shape inside it. The water flow between tanks
is also configurable.

solid inside T1 that makes its area non-linear and adds uncertainties to its model. The

cross-section area of T1 becomes

A1(h1(t)) =
3r

5

(
2.7r − cos(2.5π((h1(t)− 8)× 10−2 − µ))

σ
√
2π

e−
((h1(t)−8)×10−2−µ2)2

2σ2

)
, (4.16)

where µ = 0.4, σ = 0.55 and r = 0.31. The cross-section area of T2 is 0.31 m2.

By using Bernoulli’s equations, the system’s dynamics can be described by:

ḣ1(t) =
R12(h1(t), h2(t))×Kb × u(t)− h1(t) + h2(t)

A1(h1(t))×R12(h1(t), h2(t))

ḣ2(t) =
h1(t)− h2(t)

R12(h1(t), h2(t))× A2

− qo(h2(t))

A2

,

(4.17)

where R12(h1(t), h2(t)) = (0.412(h1(t−h2(t))+11.488)×10−3 and qo(h2(t)) = 11.941h2(t)+

787.586. A frequency inverter controls the pump through the percentage of maximum flow,

and this value can be converted to flow by qi = 13.201ut + 220.085. Applying this before
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Figure 4.10 – Diagram of the third and fourth tanks, showing the non-linear body. The
water flows from the pump into the tank three, then move to tank four and
goes back to the reservoir.

inputing in Equation (4.17) results in u(t) becoming this percentual value instead of the

flow directly.

We chose four operation points to cover a significant portion of the available h1 range

(0 to 70 cm), which is the output of the system. The points and their respective linearized

and discretized (with a sampling time of 5 s) systems are

 x⊤
eq ueq

A B


1

=


19.5 5 15

0.91 0.14 0.028

0.085 0.9 0.0013

 ,

 x⊤
eq ueq

A B


2

=


27.5 11.6 20

0.94 0.19 0.04

0.084 0.9 0.0018

 ,

 x⊤
eq ueq

A B


3

=


37.3 17.8 25

1.1 0.47 0.1

0.086 0.92 0.0042

 ,

 x⊤
eq ueq

A B


4

=


47.4 24.9 30

0.49 0.96 0.22

0.053 0.95 0.0096

 .

To develop the controllers we applied the LMI described in the Section 2.3 - Region

of Attraction to the integral-augmented system. The augmented state is the integral of

the output, h1. The points forced to be inside the region of attraction are the previous’

and next’s operation point. It creates an intersection that allows the early switching of

controllers, which speeds up convergence. The following controllers were obtained:
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K1 =

[
−12.884 −97.540 −13.975

]
, (4.18)

K2 =

[
−10.054 −73.777 −10.523

]
, (4.19)

K3 =

[
−5.840 −31.622 −4.148

]
, (4.20)

K4 =

[
−1.832 −21.527 −4.177

]
. (4.21)

To calculate each of the described modes’ dwell-time, we applied the technique de-

scribed by Franzè et al. (2017). We then ran both approaches — the dwell-time and the

proposed one — on the physical system. Figures 4.11 and 4.12 show the result of the

experiments, where the colored backgrounds represent the different modes, M1 to M4,

the two states (x1 and x2) are plotted alongside their respective real (r1,2) and virtual

(g1,2) references.

The proposed technique has a faster overall convergence, entering the final mode after

215 seconds while the dwell-time approach takes 340 seconds. This can easily be seen by

comparing the width of the regions with different background colors, as the red, orange

and yellow regions are much shorter on the proposed technique. The proposed approach

also shows no overshoot, since it does not give the system enough time to converge to

the waypoints and keeps it always moving towards the reference, as shown by the states’

trajectories, which are always moving torwards the reference in the proposed technique,

but starts to converge to the mode’s operation point on the dwell-time technique. Because

of that, it also has a smaller control effort, producing smaller control signal variation, seen

in the last plot, where the control signal constantly saturates in the dwell-time approach,

but does not saturate and has a smaller variation in the proposed technique.

The last mode should also have an overshoot on the proposed technique, since it

is part of the closed-loop dynamics. However, the command governor’s optimization

problem generated virtual references that slowly guided the system to the real reference,

making it take longer than necessary to converge. The behaviour was present on every

test repetition, just like the dwell-time approach’s overshoots.
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Figure 4.11 – This Figure shows the states and control signal of the system running with
the dwell-time rule. The first two plots show the system states as well as the
reference set by the supervisor and command governors and the third plot
shows the control signal. All plots have colored backgrounds displaying the
active mode, and the last plot also shows the time that each mode remained
active. The states show overflows on first, second and fourth modes, which
is expected from the system, and the control signal saturates four times and
presents a large variation, going from 100% to 0%.
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Figure 4.12 – This Figure show the states and control signals of the Region of Attraction-
based switching rule. It has the same structure as Figure 4.11. The overall
convergence is visibly faster than the dwell-time alternative. Also, the states
do not present overshoots, since the system is not given enough time to
converge to the waypoints. The control signal has a smaler variation in
amplitude only saturates at the begining.
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Chapter 5
Final Considerations

Switched systems usually lose stability under arbitrary switching, requiring the devel-

opment of switching rules that keep the system stable after the switch. A class of switching

rules denominated slow-switching guarantees stability by not switching between modes

too fast. Most of such techniques try to determine the minimum amount of time the

system needs to remain on a mode before switching to remain stable.

Command Governors enforces constraints on dynamic systems. When used with

switched systems, it enforces constraints on each mode, aggravating the stability problem.

Now the system is not allowed to switch from any state, only from a subset inside the

constraints’ intersection. The design of slow-switching rules must take this into account

to avoid violating constraints.

In this work, we studied switched systems’ constraints enforcement through Command

Governors. The switched systems’ stability problem, usually solved using dwell time, was

reviewed under a new light, resulting in the proposed Region of Attraction-based switching

rule, something not found in literature. The rule, shown in Algorithm 2, guarantees the

system stability after mode switches by only allowing the switch if the system’s states

remain inside the controller’s Region of Attraction and are inside constraints’ intersection.

On the same algorithm, we can switch the controller earlier while keeping the con-

straints, which we call a hybrid change. It allows for faster convergence when the next

controller performs better than the current one. However, if that is undesirable, the switch

can happen at once on the constraints’ intersection, still having all stability guarantees

from the Region of Attraction.

The presented technique allows faster overall convergence of constrained switched
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systems while ensuring stability after switches. It is based on well-consolidated concepts

and builds on them to provide stability to constrained switched systems. Although it was

not designed to be used without a Command Governor, the rule can be further extended

to guarantee stability in that case as well.

The major problem with the technique is that it is hard to apply it to existing con-

trollers since their region of attraction might not satisfy the necessary criteria of size and

intersections. Because of this, the main advantage of the Command Governor is lost and

new controllers will most probably need to be synthetized.

On Chapter 4 we apply the technique on different simulated systems as well as a real

one. The simulations illustrate how the proposed rule works and compares it with results

from an article. The experimental result shows the convergence time gain when compared

to the dwell-time technique as well as the better control signal trajectory. The simplicity

of the algorithm does not put a burden in the hardware implementation and the design

requires the estimation of the Region of Attraction where other slow-switch techniques

require the estimation of the dwell-time.

This work resulted in the publication of an article at Congresso Brasileiro de Au-

tomática — CBA in November 2020 (e Sousa et al., 2020). An extended version, including

the experimental results obtained, is being prepared to be submitted to a journal.

5.1 Perspectives

This work only deals with LTI systems. Future research can extend the technique to

models with uncertainties, varying the region of attraction or modifying the switching rule

to accommodate them. In this case, the designer must pay attention to the possibility of

the system becoming unstable if the switch happens when the system is not inside the

region of attraction due to model mismatch, possibly leading to instability.

On those lines, switched systems composed of LPV subsystems also need special at-

tention. In this case, the Region of Attraction can also become a function of the states,

and special attention might be necessary to ensure there are intersections.

Last but not least, the extension of the proposed rule to non-command governor

schemes also needs consideration. The Command Governor plays a role in not letting the

system destabilize, so it becomes necessary in the proposed schema.
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