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Resumo

Sistemas de recomendação sugerem itens que melhor atendem aos gostos e interesses

dos usuários. Eles são sistemas complexos e, frequentemente, são baseados em modelos

do tipo caixa preta. No entanto, sabe-se que entender as recomendações é essencial para

ajudar a construir a confiança e o envolvimento do usuário nesses sistemas. Portanto, as

explicações das recomendações são uma forma de atingir esse objetivo. Uma explicação é

uma informação exibida aos usuários, detalhando as motivações de porque um determinado

item foi recomendado. A explicação baseada em caso é um dos estilos de explicação

mais comumente usados em sistemas de recomendação. Essa abordagem é focada em

fornecer explicações na forma de itens que foram avaliados previamente, como, por exemplo,

em: "Porque você gostou de A, recomendamos B". Para medir a qualidade dos métodos

que geram explicações, podemos fazer avaliações online e offline. As avaliações online

requerem interação direta com os usuários e as avaliações offline requerem apenas dados

históricos, ou seja, extraídos anteriormente à recomendação e explicação. A avaliação

online pode tratar mais aspectos das explicações e produzir resultados mais completos,

por isso é incentivada, mas nem sempre os testes envolvendo usuários estão acessíveis. A

avaliação offline é frequentemente adotada pois elimina riscos de apresentar explicações

que podem afetar negativamente a experiência dos usuários, além de ser mais fácil de

implementar. Poucos trabalhos na literatura abordam métricas offline para medir a qualidade

dos métodos de explicação baseados em casos. Assim, este trabalho propõe cobrir esta

demanda por meio de uma nova métrica offline – ECT (Ease-of-interpretation Coverage

Triviality ) – para avaliar aspectos mais complexos dos métodos de explicação baseados em

casos. É composta por três submétricas, uma delas já existente (Coverage), e duas novas

(Ease-of-interpretation e Triviality). Experimentos foram conduzidos em cenários offline e

online para validar o poder discriminativo da métrica proposta ECT, e mostram que ela

apresenta uma correlação de 0,67 com o que os usuários consideram boas explicações

para suas recomendações.

Palavras-chave: Interpretabilidade. Sistemas de recomendação. Explicações de caixa preta.

Métrica de avaliação offline

vi



Abstract

Recommender systems suggest items that best fit the users’ interests and tastes. They

are complex systems, which are often designed as black-box models. However, it is well-

known that understanding recommendations is essential to help building users’ trust and

engagement in these systems, so explanations for recommendations are a way to achieve

this goal. An explanation is a piece of information displayed to users, explaining why a

particular item is recommended. The case-based explanation is one of the most commonly

used explanation styles in recommender systems. This approach is focused on providing

explanations in the form of previously liked items that are used to make the recommendation,

such as: “Because you liked A, we recommend B”. To measure the quality of methods that

generate explanations, we can conduct online and/or offline evaluations. Online evaluations

require direct interaction with users, and offline evaluations require just previously historic

data. Online evaluation can handle more aspects of the explanations and produces more

complete results, so it is encouraged, but tests involving users are not always accessible. In

many scenarios, offline evaluation is preferred because it will not affect user’s experience

through bad explanations, and it is also easier to implement than the online counterpart. Few

research projects approach offline metrics to measure the quality of case-based explanation

methods, so it is an ill-defined problem. Thus to cover this gap in the literature, we propose

a new offline metric – ECT (Ease-of-interpretation Coverage Triviality) – to evaluate more

complex aspects of case-based explanation methods. It is based on three sub metrics, one of

them has already been proposed: (Coverage), and two new metrics: (Ease-of-interpretation

and Triviality). Experiments were conducted in offline and online scenarios to validate the

discriminative power of the proposed metric ECT, and show that it presents a 0.67 correlation

with what users consider good explanations to their recommendations.

Keywords: Interpretability. Recommender systems. Black-box explanations. Offline evalua-

tion metric
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Üt Set of users who previously liked at least one item from TEt, and received

t as a recommendation. Üt ⊂ U
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1 Introduction

Recommender systems are tools that provide suggestions on items that are most

likely to be of interest to a particular user. The goal is helping users to find relevant and per-

sonalized content among a large amount of information (RESNICK et al., 1994; RESNICK;

VARIAN, 1997). Recommendations are related to various types of decision-making pro-

cesses. For example in real world applications: which items to buy (AMAZON, (accessed

October 19, 2020)), which music to listen (SPOTIFY, (accessed October 19, 2020)) or which

news to read (THE. . . , (accessed October 19, 2020)).

Item is the generic term used to describe what the system recommends to users.

Recommender systems typically focus on a specific item domain (for example, products,

movies, music, or news) and, consequently, their design and graphic interface are customized

to provide useful suggestions and effective for that specific domain. However, the most

successful central recommendation techniques are domain free, such as the ones based on

the matrix factorization method (KOREN; BELL; VOLINSKY, 2009).

Recommender systems are primarily aimed at individuals who do not have enough

personal experience or competence to deal with information overload. Such systems have

proven to be a valuable means of helping users make choices among a potentially over-

whelming number of alternative items that a website can offer, for example. Due to its

commercial application, there is an economic interest in developing research in the area.

The development of the full aspects of the recommender system is a multi-disciplinary

task. Involving specialists from various areas, such as Artificial Intelligence, Human-Computer

Interaction, Information Technology, Data Mining, Statistics, Adaptive User Interfaces, In-

formation Systems Decision Support, Marketing, and Consumer Behavior (RICCI et al.,

2010).

The state of the art in recommender systems are the models based on the collab-

orative filtering approach. The basic idea of this approach is that users who shared the

same interest in the past would have similar preferences in the future (JANNACH et al.,

2010). For instance, the user A and the user B highly rated the same movies in the past,

then A positively rates a movie that user B has not seen yet, so this movie should also be

recommended to the user B.

The collaborative filtering model that achieved the best results in recommending task

was the model based on latent factors. It seeks to predict the evaluations, characterizing

both users and items, in the form of numerical vectors in the same abstract space. These

vectors are factors inferred from user rating patterns (KOREN; BELL; VOLINSKY, 2009).
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The meaning of a latent factor is indirectly observed, instead of being provided by

the model. In the movie domain, for example, the meaning of an item latent factor can be

quantifications of well-defined aspects, such as the amount of action present in the movie,

children orientation content, or comedy vs drama genres. Those aspects can also be less

defined, such as depth in character development; exoticism of the film. Or even completely

uninterpretable. The user latent factors can measure how much a given user likes the aspect

represented by each one of the item latent factors.

The explanation is a piece of information displayed to users, detailing why a par-

ticular item is being recommended. Explanations for recommendations can be generated

from different information sources and be presented in different display styles (TINTAREV;

MASTHOFF, 2015), for example, a relevant user or item related to the recommendation, a

sentence, an image, or a set of reasoning rules. Additionally, there could exist many different

explanations for the same recommendation.

Explanations aid users make more precise decisions (BILGIC; MOONEY, 2005),

improve user acceptance of recommendations (HERLOCKER; KONSTAN; RIEDL, 2000),

and improve the trustability in the recommender system (SINHA; SWEARINGEN, 2002). In

this project, we exploit the case-based explanation style, which means previously liked items

are used to explain current recommendations.

In evaluating recommendation performance, the information about which items each

user liked is available in the test set, allowing the application of efficient metrics in this

evaluation. On the other hand, to evaluate the recommendation explanation performance,

we do not have the information about what is the best explanation, so the best we can do

are approximations by both online and offline evaluations (ZHANG; CHEN, 2018). Offline

evaluation is preferred because it does not affect user experience and it requires only

previously extracted data. However, a challenge here is evaluating the quality of case-based

explanation methods. We emphasize that few previous research investigations tackle the

problem of offline evaluation.

According to (TINTAREV; MASTHOFF, 2007a), the goals of the explanations are

to improve the following attributes of the recommender system: transparency, scrutability,

trustworthiness, effectiveness, persuasiveness, efficiency, and satisfaction. The increase in

these attributes can be a metric to evaluate the quality of the explanations (TINTAREV; MAS-

THOFF, 2007b). The ways to measure this increase rely on online evaluations like: A/B test

(ZHANG et al., 2014); Movieexplain (SYMEONIDIS; NANOPOULOS; MANOLOPOULOS,

2009), which is a prototype system where users can interact with the recommendations and

explanations, while their satisfaction in the given explanation style is evaluated; and analysis

of real users’ behavior in a controlled environment test (CHEN et al., 2018; WANG et al.,

2018).

The online approaches require participant recruiting and take a lot of time to be done.
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Additionally, they may harm user experience by providing useless and irrelevant explanations.

On contrary, they can handle more aspects of the explanation evaluation than the offline

counterpart and can produce more complete results. Thus, they are encouraged but are not

easily viable, particularly for research in academia (ZHANG; CHEN, 2018).

Usually, offline evaluation is easier to implement, but as mentioned before, few

research projects approach it for the case-based explanations (ZHANG; CHEN, 2018). There

are two offline methods to evaluate case-based explanations Explainability (ABDOLLAHI;

NASRAOUI, 2017) and Model Fidelity (PEAKE; WANG, 2018). Explainability is a metric

to evaluate recommendation explanations by calculating the probability of a recommended

item be explainable for a user. Model Fidelity is a metric that measures the percentage of

explainable items in the recommended items.

To cover the lack of offline metrics to measure the quality of case-based explanation

methods, ECT is being proposed, as a new offline metric to evaluate more complex aspects

of case-based explanation methods. It is composed of three sub-metrics, Coverage, Ease-of-

interpretation and Triviality. This contribution can be promising for fastening the explanation

evaluation process since it uses the widely available data instead of tests with users.

1.1 Project contributions

According to (TINTAREV; MASTHOFF, 2007b), if there is an increase of transparency,

scrutability, trustworthiness, effectiveness, persuasiveness, efficiency, or satisfaction caused

by explanations in the recommender system, this increase can be a metric to evaluate the

quality of explanations. However, some aspects of these concepts are hard to quantify. In

this work, we focus easy-of-interpretation, coverage, and triviality concepts to propose ECT,

which is a new offline metric to evaluate case-based explanation methods.

This new metric is inspired by the concepts aforementioned and attempts to properly

measure the quality of explanations in recommender systems. Specifically, each concept

is translated into a metric, and ECT is a combination of these metrics, namely: Triviality,

Ease-of-interpretation and Coverage.

Triviality attempts to quantify trustworthiness: if users perceive that there are good

recommendations followed by obvious explanations (like a new sequel from an already

seen movie franchise), they raise their confidence on the recommender system. Note that

a trivial explanation is related to how the user understands the explanation and it is a

desirable property by explanation algorithms. On contrary, a trivial recommendation refers

to an obvious list of recommended items, and needs to be avoided by recommendation

algorithms.

Ease-of-interpretation, in turn, works by penalizing large explanation sets, and han-
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dles one aspect of persuasiveness: too much information has negative effects on how users

can interpret the explanations (HERLOCKER; KONSTAN; RIEDL, 2000), and too much

persuasion may have reverse reactions if the item recommended by the system is found to

be unacceptable (TINTAREV; MASTHOFF, 2011). It also covers efficiency, once if users can

interpret the explanations quickly, they can make decisions early.

Coverage is used as proposed in (PEAKE; WANG, 2018) and measures how many

recommendations can be explained. It measures the effectiveness of the recommender

system since explanations could lead to more acceptability of the recommendation.

Experiments were conducted on real-world datasets by considering both offline and

online settings. First, were evaluated the scores assigned by ECT considering 3 representa-

tive recommendation methods, and 7 explanation methods. Next, was performed an online

evaluation with 104 users to calculate the correlation of the values assigned by ECT and

human perception on the quality of explanations. Results show there is a correlation of 0.67

between ECT and human evaluations.

In summary, this project has the following contributions:

• The introduction of the concept of Triviality and respective metric, which measures the

quality of explanation methods, considering it should be able to explain trivial items,

such as sequel of movies or neighbor establishments within the same category;

• The definition of the concept of Easy of Interpretation and respective metric, which

together with triviality and coverage compose a new combined metric, called ECT ;

• The evaluation of ECT in both offline and online experiments, showing it presents

a correlation of 0.67 with users’ opinion on the best explanations provided by the

recommender systems.

1.2 Text organization

This text is organized as follows. In Chapter 2, there is the background about recom-

mender systems and explanations, and also previous related work. The formalization and

explanation of the proposed evaluation metric are in Chapter 3. Chapter 4 shows both the

offline and online experiments. Future works are discussed in Chapter 5. Finally, conclusions

are presented in Chapter 6.
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2 Background and related work

2.1 Recommender systems

Recommender systems are techniques to provide suggestions of items that a given

user may be interested in. They are present in several domains of recommendation – for

example, song (SPOTIFY, (accessed October 19, 2020)); products (AMAZON, (accessed

October 19, 2020)); books (LIBRARYTHING, (accessed October 19, 2020)); movies (NET-

FLIX, (accessed October 19, 2020)). These systems are designed to be used, mainly, by

people who do not have sufficient time, personal experience or knowledge to handle the

information overload (RESNICK; VARIAN, 1997; RICCI et al., 2010).

A traditional approach to build recommendations is the collaborative filtering approach.

Specifically, considering the scenario where user A and user B have positively rated the

same movies in the past, and then A makes a positive rating for a movie that B has not yet

seen. Collaborative filtering-based methods follows the logic of presenting this film to user B

as well (JANNACH et al., 2010).

In the context of recommender systems, the state of the art refers to collaborative

filtering approaches(KHASMAKHI; BALAFAR; DERAKHSHI, 2019). As aforementioned, the

basic idea of this approach is that if users share the same interest in the past, they will also

have similar tastes in the future. By their ratings, users implicitly collaborate to search the

most promising items among a wide variety of items available.

Collaborative filtering-based methods have evolved from simple distance-based meth-

ods to more sophisticated model-based ones, including those based on matrix factorization

(KOREN; BELL; VOLINSKY, 2009) and deep learning (ZHANG et al., 2017). The collabora-

tive filtering models that reach the best results are based on latent factors (KOREN; BELL;

VOLINSKY, 2009). The latent factors approach is a vectorized way to represent users and

items in abstract vector spaces, and each dimension of those vectors is related to a concept,

the meaning of this concept is not easy to guess, it could even be abstract or undecipherable.

In item vectors, the dimensions represent how much that item has of these concepts, and in

users vectors, the dimensions measure how much interest the user has in these concepts.

In contrast with the first distance-based methods, where justifying a decision was

simply based on the closest neighbors, latent factor models represent users and items in

abstract vector spaces, where each dimension of these vectors is related to a concept.

The concepts represented in these models are not always easy to grasp, and hence these

models end up acting as black-boxes, given no explanations about how the recommendation

is made.
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Figure 1 illustrates a simple example of this approach. The X-axis represents the

men vs. women orientated content. And the Y-axis represents reality vs. fantasy genre. So,

as more to the right the movie is, the greater the proportion of men within its fan base, and

as further down the movie is, the greater its quantity of fantasy elements. As for users, the

more to the right he is, the greater his preference for men orientated movies, and the further

down he is, the greater his preference for films with more fantasy elements. And vice versa.

Figure 1 – Simplified example of the latent factors approach

The best technique for obtaining latent factors is the factoring of the rating matrix

(KOREN; BELL; VOLINSKY, 2009). Given all users’ ratings about the movies, this technique

finds k factors for each user and each movie, and k is a parameter (usually between 20

to 100). This technique works by assigning random initial values to all factors. Then the

iterative algorithm gradient descent is used to update these factors until the error converges

to an acceptable value. Figure 2 exemplifies this technique, with matrix A representing the

evaluations that users made about some movies. Each rating is a score from 1 to 5, and

from them, the latent factors of users and movies are obtained. In this example k = 3.

Formalizing this process, we have that the Equation 1 represents the prediction

of the evaluations that the users u ∈ U would make on the item i ∈ I. The Equation 2

represents the set Ru of the N items that had the highest rating predictions, and that will be
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Figure 2 – Matrix factorization example

recommended to the user u.

p(u, i) = LITi LUu. (1)

Ru = {r1,r2,...,rN |∀r ∈ I ∧ p(u, rn) ≥ p(u, rn+1)} . (2)

Because both user and item factors are latent, the factoring technique does not

provide the factor meaning. Discover the factors meaning are a difficult problem, which

requires manual analysis of each value found. Some factors may be uninterpretable, and

therefore impossible to label. Therefore, the labeling of latent factors is not part of the scope

of the recommender system projects.

2.2 Explaining recommendations

The explanation is a piece of information presented to users, detailing why the

decision model made a choice. In the recommender systems scenario, the explanation

describes why a particular item is recommended to the user. Also, could exist many different

explanations for the same recommendation.

Methods for machine learning explanation can either be model-intrinsic or model-

agnostic (Post hoc) (MOLNAR, 2019). This criterion differs about who the interpretability

is achieved: by restricting the complexity of the machine learning model (intrinsic) or by

applying methods that analyze the model after training (agnostic).

The model-intrinsic approach refers to machine learning models that can be con-

sidered interpretable due to their simple structure, such as short decision trees or sparse

linear models. Or some complex approaches that the explanation generation is part of the

model training, for example, in recommender systems literature (LIU et al., 2019) propose a



Chapter 2. Background and related work 8

recommendation method that generates recommendations and explanations via influence

function at the same training process.

The model agnostic approach, or post hoc interpretability, allows the decision mech-

anism to be a black box, like in the state of the art algorithms in recommendations systems

(KHASMAKHI; BALAFAR; DERAKHSHI, 2019). And the explanation model generates ex-

planations after the decision mechanism’s training when the decision has been made.

Permutation feature importance is, for example, a post hoc interpretation method. In recom-

mendations systems literature, (PEAKE; WANG, 2018) propose a post hoc interpretable

approach that mine association rules among items in the recommender systems, and then

provide the items in the rule as explanations.

The philosophy of these two approaches runs deep in our observation about human

cognitive psychology. Sometimes we make decisions by careful, rational reasoning, so we

can explain why we make those decisions. However, in other cases, we make decisions first

and then seek explanations to support or justify ourselves.

Also, there are two others features related to explanations in recommender systems,

the explanation attributes and explanation styles. The explanation attributes represent the

benefits explanations provide to recommender systems, and they can be considered the

criteria to measure which explanation is good. The explanation styles represents the form of

the explanation and how it will be displayed. Those two features are describe in the next two

subsections.

2.2.1 Explanation attributes

In (TAIE, 2013), there is a list of explanation attributes that represent benefits that

explanations provide to the recommender system. Explaining the recommendations aid

users make more precise decisions (BILGIC; MOONEY, 2005), improve user acceptance of

recommendations (HERLOCKER; KONSTAN; RIEDL, 2000), and improve the trustability in

the recommender system (SINHA; SWEARINGEN, 2002). So, some attributes can also be

considered as criteria that measure if the quality of the explanation is good.

Some of these attributes may require certain overlapping and trade-offs. For example,

personalized explanations may lead to greater satisfaction but not necessarily increase

effectiveness, and also, transparency does not necessarily aid trust.

On the other hand, some attributes of explanations may lead to achieving the same

goal. For example, transparency, trust, and satisfaction could be determined by measuring

understandability.

These attributes are shown in Figure 3 and described bellow.
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Figure 3 – Explanation attributes/benefits.

2.2.1.1 Transparency

Transparency intends to show how recommendations were made, giving an overview

of how an item was recommended, or covering the broad concepts of the system. However,

it may not describe how the logical and the calculation behind the recommender system

really works.

In some cases, transparency can be challenging to make, such as: the difficulty

of explaining the algorithms, the needy for protection of the business secrets, and more

freedom to designing the explanations. If a recommendation does not show how the item

was selected, then it is not transparent.

2.2.1.2 Validity

The explanations may be a way to allow users to validate the recommendations. It

could happen by giving them a comparison of the requested and offered features used in

the process. Even though validity is similar to transparency, it is not necessarily related.

2.2.1.3 Scrutability

Scrutability is the ability to enable users to tell if the system is right or wrong. It works

together with transparency, allowing users to correct reasoning made by the system. Users

will trust more if the system provides both explanations showing the transparency of its

behavior and a mechanism to handle mistakes about the recommendations. It was not a

task for the users to correct wrong recommendations on their own, but a guide to give extra

help in the solution process.

2.2.1.4 Trust

In some aspects, trust-building can be handled as a way to simplify the decision-

making process. The trust that users have in a recommender system can be increased using
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explanations because it aids users to understand how the system works, it is usually related

to transparency. Users intend to reuse trustworthy recommender systems, but it also relies

on the accuracy of the recommendations.

2.2.1.5 Relevance

Explanations can be used to show the purpose of the additional information provided

by users, and why is it important. This is true in the case of conversational recommender

systems, where customers keep interacting with the system in order to refine their profiles.

2.2.1.6 Persuasiveness

Persuasiveness is the ability to convince users to accept the item. Explanations

could improve users’ acceptance of the recommendation and consecutively to the system.

However, an overload of persuasion may have an inverse effect if the recommended item

was considered unacceptable.

Persuasiveness can be calculated by the difference between a previous rating and a

post rating using an explanation interface. Or, it can be measured as the difference between

sales from a system with an explanation interface, and from a system without that facility.

2.2.1.7 Comprehensibility

Comprehensibility can be defined as the capacity of the explanations to relating

user’s knowledge to the knowledge used by the recommender systems. The systems can not

naturally be sure about the knowledge of their users without the help of the other methods.

2.2.1.8 Effectiveness

Effectiveness means using explanations to help users make good decisions about

what item to select. It is closely related to the accuracy, precision, and recall of the recom-

mender algorithm. One of the advantages of effectiveness is it can introduce a whole bunch

of items to new users, and they can understand the full range of available options.

Effectiveness can be calculated as the number of users who still like an item they

have bought after consuming it. Another way to measure it is to count the number of users

who, after receiving explanations, chosen items more fitted to their expectations, then the

number of users who were not using systems with explanation facilities.

2.2.1.9 Efficiency

Efficiency means how quickly a task can be performed. Explanations can improve

the users’ spending time in the choice of the right item. Efficiency, in the evaluation of

conversational recommender systems, can be measured as the total interaction time or the
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number of interactions needed to find useful items. In other systems, it is measured as the

number of inspected explanations until good items are found.

2.2.1.10 Satisfaction

Satisfaction occurs when explanations can make users more satisfied with the overall

system. It can be measured either directly by asking users if they enjoyed the system or

indirectly by measuring their frequency of use.

2.2.1.11 Education

Education occurs when explanations are used to help users better know the product

domain by providing them with deep knowledge about that specific domain.

2.2.2 Explanation styles

The explanation styles represents the form of the explanation and how it will be

displayed, for example, it could be: textual sentences about the content of the recommended

item; list of related items; demographic information about the user and so on. In (TINTAREV;

MASTHOFF, 2011), there is a list of the most commonly used explanation styles; they are

showed in Figure 4 and described bellow.

The style is influenced by the underlying algorithm of the recommender engine, even

though those explanations do not necessarily reflect the underlying algorithm

Figure 4 – Explanation styles.

2.2.2.1 Collaborative-based style explanations

In collaborative-based style explanations, the explanations are gathered using the

user’s ratings of an item to find users with similar preferences. This style is known as

Neighbor Style Explanation (NSE) since similar users represent the neighborhood, and
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the explanations are founded from neighbor’s ratings. The most well-known usage of this

explanation style is in the format of "Customers Who Bought This Item Also Bought...", like

in Amazon.com.

2.2.2.2 Content-based style explanations

Content-based style the explanations are generated by levering the similarity between

the items using their properties. For example: "Book B was recommended because you

owned Book A with share the same genre and author". Other types of explanation from this

style include Keyword Style Explanation (KSE) and Tag Style Explanation (TSE) with both

properties: Tag preference, which is the user’s sentiment toward a tag, and Tag relevance,

which is the extent to which a tag describes an item.

2.2.2.3 Knowledge and utility-based style explanations

The input to the system, in this case, is the description of users’ necessities and

interests. Then the recommender algorithm recommends items based on these needs, and

the explanations are the need levered. For example: "Beer was recommended because you

said you are single and you have a high budget."

In some cases, there will be an overlap between three types of explanation styles:

the knowledge-based style, the content-based style and the case-based style explanations.

2.2.2.4 Demographic style explanations

The input, to the recommender algorithm, is the user’s demographic information. So,

the algorithm identifies users that are demographically similar to the first one.

This type of explanation style is commonly used by recommender systems for com-

mercial websites, due to the sensitivity of demographic information revealed. For example:

"We recommend for you shaving cream because you are a male aged 18-32".

2.2.2.5 Case-based explanation

There is one of them that we are interested in, the case-based style of explanations.

In this approach, the focus is to provide previous liked items as explanations. An example

is: "Because you have selected or rated well A and B, we recommend C". For case-based

explanation, there is no dataset with the exact information about which explanation is better

than others. Hence, there are no metrics to evaluate the explanation methods as the ones

that evaluate the recommendations. Also, few papers approach this problem, so offline

evaluating case-based explanations is an ill-defined problem.
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For a given recommendation, each previous liked item, by the user of the recommen-

dation, has a score value as an explanation to the recommendation. So, the top-N scored

previous liked items compose the explanation set associated with this recommendation.

Formalizing, let I be the set of items, U the set of users, R ⊂ I the set of all

recommendations, and Ru ⊂ R the set of all recommended items provided to user u.

Additionally, let Îu ⊂ I refers to the set of items previously liked by user u, i.e., items in

training data for user u. The case-based explanation for a recommendation r ∈ Ru provided

to user u ∈ U is defined as Eu,r ⊂ Îu, it is a list of top-N items sorted according to the

scores assigned by a function f(u,e,r) : R|U |×|I|×|I| → R.

The score is assigned to all items previously liked by user u, and the items with

highest scores are used as explanations assuming |Eu,r| = N . More formally, the case-based

explanation is defined as:

Eu,r =
{
e1,e2,...,eN

∣∣∣∀e ∈ Îu ∧ f(u, en, r) ≥ f(u, en+1, r)
}
. (3)

Further, different explanation methods instantiate different score functions f(u, e, r),

in Chapter 4 the score value calculated by several different explanation methods is explored

and compared.

2.2.3 Evaluating explanation

The goals of explanations are to improve the following attributes of the recommender

system: transparency, scrutability, trustworthiness, effectiveness, persuasiveness, efficiency,

and satisfaction (TINTAREV; MASTHOFF, 2007a). Any increase in these attributes can be a

metric to evaluate the quality of explanations (TINTAREV; MASTHOFF, 2007b), but these

properties are subjective and identifying changes on them is difficult.

In evaluating recommendation performance, the information about which items each

user liked is available in the test set, allowing the application of efficient metrics in this

evaluation. On the other hand, to evaluate the explanation method performance, we do not

always have this kind of information, what we can do are, both online and offline evaluations

(ZHANG; CHEN, 2018).

Online evaluations require direct interaction with users, and offline evaluations require

just previously extracted data. Online evaluation can handle more aspects of the explanations

and produces more complete results, so it is encouraged, but tests involving users are not

always accessible. Offline evaluation is preferred because it requires only previously extracted

data, but the problem is, to evaluate the quality of case-based explanation methods, few

research projects approach offline evaluation, so it is an ill-defined problem.

While online evaluations depending on real users are expensive and time consuming
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(ZHANG et al., 2014). In addition, it is not always straightforward to map subjective concepts

into objective metrics. For this reason, online evaluation approaches are highly encouraged

(ZHANG; CHEN, 2018), as they can handle more aspects of the explanation evaluation and

produce more complete results than objective offline evaluation metrics.

Concerning online evaluation approaches, (SYMEONIDIS; NANOPOULOS; MANOLOPOU-

LOS, 2009) introduced Movieexplain, a prototype system where users can interact with

the recommendations and explanations while their satisfaction in the given explanation

style is evaluated. The system considers both case-based and content-based explanations.

In another attempt, the authors in (CHEN et al., 2018; WANG et al., 2018) performed an

analysis of real users’ behavior in a controlled environment test.

The main drawback of online evaluations is that they may affect user experiences.

Hence, offline evaluation is critical to assess the quality of explanations in recommender

systems. However, offline evaluation is underexplored in the context of explanations for

recommender systems, including case-based explanations (ZHANG; CHEN, 2018). There

are two offline methods to evaluate case-based explanations: Explainability (ABDOLLAHI;

NASRAOUI, 2017) and Model FIdelity (PEAKE; WANG, 2018).

Explainability (ABDOLLAHI; NASRAOUI, 2017) is a metric to evaluate recommen-

dation explanations based on the probability of a recommended item be explainable for a

user by using either user or item neighborhood. If this probability is greater than a threshold,

the item is explainable for the user. Leveraging Explainability there are two other metrics:

Explainability precision and Explainability recall. Explainability precision is the proportion of

items in the recommendation set with probability to be explainable greater than the threshold

relative to the number of recommended items for each user. Explainability recall, in turn,

is the proportion of explainable items in recommended items relative to the number of all

explainable items for a user.

The second metric, Model Fidelity (PEAKE; WANG, 2018), is a generic metric to

evaluate explanation methods by measuring the percentage of explainable items among the

recommended items, regardless of any quality aspect of the explanations.

There is not a study comparing these two metrics, but Model Fidelity is comparable

to Explainability precision. The differences between them are:

• Explainability precision is not a generic metric, it works only with the probability of a

recommended item be explainable for a user. But it has the threshold as a feature

to ensure a certain level of explanation quality since the threshold can exclude bad

explanations.

• Model Fidelity is a generic metric, it can be used with any explanation method. But it

does not have a feature to ensure explanation quality since it does not have a threshold

on itself. This metric needs a third party method to generate the explanations and then
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just calculate the percentage of explainable items. Ensuring the explanation quality is

the job of the third party explanation method.

The metric ECT has the advantages from both Model Fidelity and Explainability.

ECT is a generic metric and has more complex features to measure explanation quality.
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3 Proposed evaluation method

The Explainability and Model Fidelity offline metrics were previously proposed for

case-based explanation, and focus on how many recommendations provided by the system

can be explained, but they have limitations. Explainability is not a generic metric and Model

Fidelity ignores the quality of the explanations. In order to fill this gap, this chapter introduces

two new metrics, named Ease of interpretation and Triviality. These two metrics are then

combined with model fidelity (PEAKE; WANG, 2018), which here was renamed to Coverage

to better reflect its objective. The harmonic mean of these three metrics is ECT, which can

simultaneously handle different aspects of case-based explanations.

3.1 Ease-of-interpretation

Ease-of-interpretation handles one aspect of persuasiveness but also efficiency in

recommender systems. Interpretation is a complex and subjective concept, which varies

from one user to another. Its complexity does not make it feasible to measure all of its

aspects. However, according to the users’ test results in (HERLOCKER; KONSTAN; RIEDL,

2000), too much information has negative effects on how users interpret explanations. Based

on that, the only aspect we can measure about ease of interpretation is the amount of

information provided to the user. In case-based, the provided explanations are previous liked

items. As more items are provisioned in the explanation, more difficult it is to interpret it

(harming the persuasiveness) and more time is necessary to interpret it (harming efficiency).

This behavior is captured by the following equation.

EI(x) =
1

1 + exp(x− η − 1)
, (4)

where x is the number of items provided in explanation (|Eu,r|), and η is a constant that

represents the maximum number of items in an explanation users can easily interpret.

Users have different levels of interest and disponibility to interpret the recommen-

dations, so η varies for each user. However, we need only one value of η for the whole

evaluation, so we must generalize and find a universal value. The constant η should also vary

for different recommendations domain. For example: In explanations of recommendations for

a web store, or movie explanation recommendations, η could have a small value, because

those users do not have enough time to ponder about the relation between the recommended

item and several items presented in the explanation. On the other hand, for explanations in

medical diagnosis recommender systems, η could have a high value, because users of this

kind of systems are specialists and analyzing the relationship between recommendations

and explanations is part of their jobs.
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The η constant could also be interpreted as "how many items in the explanation, can

my system present?". For example, in applications for web pages and cellphones, there is

a limited space to display explanations. Then, we could set a limit on how many items are

presented, and the value of η could be defined to penalize explanations that exceed this

maximum capacity.

The rule is, as more items in the explanation, more the metric penalizes it. But it has

light penalization if x ≤ η because the amount of items in the explanation doesn’t exceed the

threshold η of how many items users can easily interpret. And heavy penalization if x > η,

because the threshold was trespassed. If x ≤ η then EI(x) will follow a logarithmic decay, if

x > η EI(x) will follow a exponential decay. Figure 5 shows that the sigmoid function shape

in Equation 4 follow that rule, the first segment (x ≤ η) looks like a logarithmic decay and

the second segment (x > η) looks like an exponential decay. Figure 6 presents Equation 4

varying the value of x for several values of η.

Figure 5 – Sigmoid function shape in Equation 4.

Figure 6 – EI(x) varying the value of x for several values of η.



Chapter 3. Proposed evaluation method 18

We emphasize that in Equation 4, if x = 0, EI(x) will be higher than if x = 1, for

each value of η. At first glance, it could be illogical that an explanation with no items has a

higher score than an explanation with at least one. It happens because this metric measures

how easy the explanation is to interpret, so an explanation with zero items demands zero

effort to be interpreted. In this scenario, an explanation with zero items will score high in this

sub-metric but will score nothing in the other two sub-metrics, measuring the score of all

three sub-metrics the explanation with zero items will get a poor ECT value.

Before calculating EI(x), the value of η must be defined, leveraging the recommen-

dation domain, the user’s profile, and the presentation constraints.

Equation 4 measures a single explanation, to calculate the Ease-of-interpretation

(EoI) metric for the whole explanation method, we need to calculate EI(x) for all users

u ∈ U and all recommendations made to that user Ru, as defined in Equation 5. Eu,r is the

case-based explanation for a recommendation r ∈ Ru provided to user u ∈ U , as it was

defined in Section 2.2.2.5.

Ease_of_interpretation(U,R,E) =
1

|U |
∑
u∈U

[
1

|Ru|
∑
r∈Ru

EI(|Eu,r|)

]
, (5)

{Ease_of_interpretation(U,R,E) ∈ R|0 ≤ Ease_of_interpretation(U,R,E) ≤ 1}

3.1.1 Example of Ease-of-interpretation

Figure 7 is a simple example to illustrate the functioning of Ease-of-interpretation.

There are 3 different users, each of them liked different films. And they are all receiving the

same item as a recommendation. Two explanations methods are generating explanations (A

and B) for the recommendation.

In this case, method B has a higher Ease-of-interpretation value than method A,

since Algorithm B provided fewer items among its explanations.

3.2 Coverage

This metric is the Model Fidelity proposed by (PEAKE; WANG, 2018), and was

renamed to adapt to a broader context. In its original definition, Model Fidelity is a model-

free metric, and it measures how many of the provided recommendations can be explainable.

Hence, in this context this metric is the coverage of the explainable recommendations above

all recommendations.

Coverage (Cvr ) is a generic metric and works for any explanation method. It mea-

sures how many recommendations given to a user u can be explained, regardless of how

good the explanation is.
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Figure 7 – Example of Ease-of-interpretation

Coverage is defined in Equation 6 where, for each user in u ∈ U , it calculates the

proportion of recommendations that can be explained averaged over all users. Eu,r is the

case-based explanation for a recommendation r ∈ Ru provided to user u ∈ U , as it was

defined in Section 2.2.2.5.

Coverage(U,R,E) =
1

|U |
∑
u∈U

 1

|Ru|
∑
r∈Ru

1, if |Eu,r| > 0

0, otherwise

 , (6)

{Coverage(U,R,E) ∈ R|0 ≤ Coverage(U,R,E) ≤ 1}

3.2.1 Example of Coverage

Figure 8 is a simple example to illustrate the functioning of Coverage. There are 3

different users, each of them liked different films. And they are all receiving the same item as

a recommendation. Two explanations methods are generating explanations (A and B) for the

recommendation.

Method A received the highest score in Coverage because it generates an explanation

for all recommendations. Method B, on the other hand, failed to generate an explanation to

the recommendation of user 2, so it was penalized.

3.3 Triviality

Triviality is proposed to quantify a piece of trustworthiness in the recommender

system. If the users perceive that there are good recommendations followed by obvious

explanations (like a new sequel from an already seen movie franchise), they can get more

confidence about the recommender system.
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Figure 8 – Example of Coverage

In order to introduce triviality, we first define the concept of trivial set. A trivial set TEi

contains a set of trivial explanations for an item i, where TEi ⊂ I. For example, in movie

recommendation, we know that the movies Matrix 1 and Matrix 2 are trivial explanations for

a Matrix 3 recommendation. Hence, the trivial set TEi for item i = Matrix 3 is TEi ={Matrix

1, Matrix 2}. We define T ⊂ I as the set of all items i that have a trivial explanation set TEi,

where |TEi| > 0.

Triviality (Trv ) measures if the explanation method can provide items from the trivial

set as explanations for the recommendation of items in T and is defined in Equation 7. Üi

represents the set of users who liked at least one item in TEi and were recommended i.

The idea of this metric is to penalize explanation methods that do not provide the trivial

explanations to the trivial items.

An important observation about the set up of the trivial set, it must be hidden for the

explanation method. Otherwise, ECT could be easily overfitted. For instance, an algorithm

could adopt the following mechanism: it explains with trivial items when there exists (through

memorization or simple heuristics) and explains with a random item when there is no trivial

explanation. This kind of problem already exists in the machine learning world; if the training

algorithm knows the test set, it could overfit the training process just to score high in any

chosen metric. In any of those cases, it will be subject to Goodhart’s Law: "When a measure

becomes a target, it ceases to be a good measure." (STRATHERN, 1997)

Finally, notice that, for case-based explanation, there is no dataset with the exact

information about which explanation is better than others. Hence, again, Triviality is an

approximation metric that checks whether the explanation methods are providing correct

explanations to the simplest cases.

Triviality(U, T,E) =
1

|T |
∑
t∈T

 1

|Üt|

∑
u∈Üt

1, if |Eu,t ∩ TEt| > 0

0, otherwise

 , (7)
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{Triviality(U, T,E) ∈ R|0 ≤ Triviality(U, T,E) ≤ 1}

To get the trivial sets is the most challenging aspect of applying this metric. In Session

4.6, we describe the trivial sets that we got in two distinct recommendation domains.

3.3.1 Example of Triviality

Figure 9 is a simple example to illustrate the functioning of Triviality. There are 3

different users, each of them liked different films. And they are all receiving the same item as

a recommendation. Two explanations methods are generating explanations (A and B) for the

recommendation.

Triviality is evaluated for each item that has a trivial set. Here we are evaluating only

the item Matrix 3, which has a trivial set. So the first step is to select all users who received

Matrix 3 as a recommendation and who have previously liked Matrix 2 or Matrix 1. Although

all users received Matrix 3 as a recommendation, only users 1 and 3 have already liked

Matrix 1 or 2. Therefore, only these two users have been selected.

Method A reaches the maximum value in Triviality because in all cases it provided

Matrix 1 or 2 in the explanation set. Method B was penalized because it did not provide

Matrix 1 in the explanation of the recommendation for User 1.

Figure 9 – Example of Triviality

3.4 ECT

ECT is the combination of the Ease-of-interpretation, Coverage, and Triviality metrics,

and is being proposed to evaluate the quality of an explanation method, rather than the

quality of a single explanation.
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(a) All previously liked items
are provided as explana-
tions (Eu,r = Îu). The
higher is |Eu,r|, the lower
is Ease-of-interpretation.

(b) Only the items in the set of
trivial explanations are pro-
visioned as explanations
(Eu,r = TEr). Coverage
decreases because just a
few items have a set of triv-
ial explanations.

(c) Only one item, chosen ran-
domly, is provided as the
explanation(|Eu,r| = 1).
The lower is |Eu,r|, the
lower is the chance of a
trivial explanation be pro-
visioned. Hence the lower
is Triviality.

Figure 10 – The three components of ECT are conflicting and require a level of balance
between them. Each image represents a case of an extreme explanation method.
In all of these cases, one sub-metric is completely injured.

Each one of the three presented sub-metrics can handle an aspect of evaluating

case-based explanations. Ease-of-interpretation measures the effort require to interpret

the explanations; Coverage measures how many recommendations can be explained; and

Triviality measures if the explanation methods are solving, at least, the most simple cases.

The three components of ECT works as counterweights to each other, similar to

the relation between precision and recall in evaluating recommendations (BERRY, 1955). If

we aim to maximize just one sub-metric, the two others could be decreased, so a balance

between Ease-of-interpretation, Coverage, and Triviality is desirable. Situations like that are

illustrated in Figure 10, where each image represents an example of a weird explanation

method that one sub-metric is exploited and the other two are neglected.

By these counterweights, the ECT metric can cover several aspects of evaluating

the quality of case-based explanations and can provide a most complex evaluation.

A balance between Ease-of-interpretation, Coverage, and Triviality is desirable, so

the value of ECT is the harmonic mean between Ease-of-interpretation, Coverage, and

Triviality. Formally:

EoI ← Ease_of_interpretation(U,R,E),

Cvr ← Coverage(U,R,E),

T rv ← Triviality(U, T,E),

ECT (U,R,E, T ) =
3× EoI × Cvr × Trv

EoI × Cvr + EoI × Trv + Cvr × Trv
,

(8)
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{ECT (U,R,E, T ) ∈ R|0 ≤ ECT (U,R,E, T ) ≤ 1}

3.5 ECT relation with explanation attributes

According to (TINTAREV; MASTHOFF, 2007b), if there is an increase of transparency,

scrutability, trustworthiness, effectiveness, persuasiveness, efficiency, or satisfaction caused

by explanations in the recommender system, this increase can be a metric to evaluate the

quality of explanations. However, some aspects of these concepts are hard to quantify. This

work focus in easy-of-interpretation, coverage, and triviality concepts to propose ECT, which

is a new offline metric to evaluate case-based explanation methods. This new metric is

inspired by the concepts aforementioned and attempts to properly measure the quality of

explanations in recommender systems. Specifically, each concept is translated in a metric,

and ECT is a combination of these metrics, namely: Triviality, Ease-of-interpretation and

Coverage 1.

Ease-of-interpretation works by penalizing large explanation sets, and handles one

aspect of persuasiveness: too much information has negative effects on how users can

interpret the explanations (HERLOCKER; KONSTAN; RIEDL, 2000), and too much persua-

sion may have reverse reactions if the item recommended by the system is found to be

unacceptable (TINTAREV; MASTHOFF, 2011). It also covers efficiency, once if users can

interpret the explanations quickly, they can make decisions early. Coverage, in turn, is used

as proposed in (PEAKE; WANG, 2018) and measures how many recommendations can be

explained. It measures the effectiveness of the recommender system since explanations

could lead to more acceptability of the recommendation. Finally, Triviality attempts to quantify

trustworthiness: if the users perceive that there are good recommendations followed by

obvious explanations (like a new sequel from an already seen movie franchise), they raise

their confidence on the recommender system. Note that a trivial explanation is related to how

the user understands the explanation and it is a desirable property by explanation algorithms.

On contrary, a trivial recommendation refers to an obvious list of recommended items, and

needs to be avoided by recommendation algorithms.

To summarize, Table 1 shows the relation between the three metrics that compose

ECT and the explanation attributes presented in Section 2.2.1. Each row of this table has

the explanation attributes that inspired the metric in the columns.

1 The same names for concepts and metrics were interchangeably used to avoid confusion.
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Table 1 – Relation between the metrics and the explanation attributes

Ease-of-interpretation Coverage Triviality
Transparency

Validity
Scrutability

Trust "
Relevance

Persuasiveness "
Comprehensibility

Effectiveness "

Efficiency "
Satisfaction
Education
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4 Experiments

In order to evaluate the proposed metrics, an offline and an online evaluation were

performed. Offline experiments were proposed to show how ECT works, using it to compare

several case-based explanation methods, and these results were used further in online

evaluation. Online experiments were proposed to show the correlation between ECT and

real users’ preferences about the quality of the explanations methods.

Basically, 3 datasets were used, which were given as input to 3 recommenders (see

Section 4.2). Each of the selected recommenders returned the top-5 items for each user in

the dataset. The number 5 was chosen to not overflow the users in the experiments with real

users.

Next, 7 explanation methods were used to explain the results of the top-5 items, then

ECT was used to compare the quality of these methods. Two types of experiments were

used: fixed explanation set size and thresholding score.

The ECT has two parameters: the value of η for Ease-of-interpretation and the trivial

sets. How to chosen those parameters and all other details about the experiments are

presented in this section.

4.1 Datasets

To avoid any dataset bias, the data from two distinct domains of recommendation

were used, MovieLens (movie recommendation) and Yelp (business recommendation).

Both MovieLens and Yelp datasets contain only explicit feedback, a rating between 1 and 5.

However, the recommender models, used in the experiments, work only for implicit feedbacks,

so we converted the explicit to implicit data by thresholding the ratings such that, ratings

greater than 3 are considered a view or a like. This preprocessing is in line with the standard

procedures in the literature (PEAKE; WANG, 2018; Heckel et al., 2017; KOREN, 2009).

The statistics of the datasets are presented in Table 2.

Table 2 – Dataset Summary

Dataset # users # items # ratings

ML 100K 943 1,682 100,000
ML 1M 6,040 3,706 1,000,209

Yelp Madison 32,662 3,494 104,637
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4.1.1 MovieLens

The MovielLens dataset (HARPER; KONSTAN, 2015) is a common movie dataset,

used in several recommender systems projects, which contains the users’ ratings about the

movies. The data are available on the website 1.

In this research, two versions of MovieLens dataset were used: 100K and 1M. The

difference between them is the number of ratings, the label of the dataset is the number of

ratings that it has. Increasing the number of ratings, consequently increases the number of

users and items.

4.1.2 Yelp

Yelp is an enterprise that owns software to connect people with local businesses.

Besides the connections, the company also provides a way to users rate the businesses.

Those ratings are a subset of the Yelp dataset 2, which has a lot of other kinds of data. In

this research, only the ratings from the city of Madison were used, because the amount of

ratings in this city is equivalent to MovieLens 100k.

Yelp is a sparse dataset, in Table 2 shows that this dataset has the same number

of rates as ML100K, but also has far more users. This sparsity had an impact on the

experiments on public datasets in Section 4.7.

4.2 Recommender models

Recommender systems are based on the relationship between users and items, with

no information about both, the only needed data are the interactions between them. There

are two types of data to represent these interactions: explicit and implicit feedback. Explicit

is a rating score. Implicit information is not trivial to define, such as a click, view, or purchase.

Regardless of this disadvantage, our recommender models should be designed to work,

mainly, with implicit feedback data, because they are more abundant than explicit data. More

data usually means a better model. So implicit feedback is a way to go.

In the experiments, three implicit feedback based recommenders were used: Bayesian

Personalized Ranking from Implicit Feedback (BPR) (RENDLE et al., 2009); Probabilistic Ma-

trix Factorization (PMF) (SALAKHUTDINOV; MNIH, 2007) and Collaborative Metric Learning

(CML) (HSIEH et al., 2017).

The data was split in these proportions for all datasets: train = 72%; validation =

8%; test = 20%. Notice that a cross-validation procedure was not considered due to its

posterior evaluation by real users. All methods were executed using OpenRec (YANG
1 https://grouplens.org/datasets/movielens/
2 https://www.yelp.com/dataset/
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et al., 2018) with the following parameters: 50 latent factors for both users and items(

dim_user_embed = 50; dim_item_embed = 50); num_negatives = 500; num_process =

5; pos_ratio = 0.2.

4.3 Explanation methods

The function f(u, e, r) in Equation 3 defines the score value for a previous liked item

as an explanation to the recommendation, and it is a generic function. As was mentioned in

Chapter 2.2.2.5, explanation methods differ on the way they calculate this score value, and

this section describes seven ways to instantiate it, and these instances were run among all

datasets and all recommender models.

4.3.1 Apriori

The Apriori is a well-known algorithm (AGRAWAL; SRIKANT, 1994) to mine associa-

tion rules between items over transactions. Each rule is composed of two different sets of

items A and B, {A→ B}, where A,B ⊆ I. A is called antecedent or left-hand-side and B

consequent or right-hand-side. There are three indicators to measure the association rule:

confidence, lift, and support.

The associated rules mined by the Apriori algorithm was used to get case-based

recommendations explanations in (PEAKE; WANG, 2018). In this approach, the transactions

are the top-D scored items of each user. The set of items A represents the previous liked

items, and B represents the recommendations. In each rule, these sets have only one

element, so the rules are in the form of explanation→ recommendation.

In (PEAKE; WANG, 2018), Apriori was executed for all users, and the transactions

are the top-D scored items for each one of the top-K similar users to a given user. So the

transactions are a matrix with dimension K ×D. In our experiments, we used two values for

K: K = 10 and K = |U |, in the second case, the transaction of all users are considered,

and there are no neighbors.

The output rules were ranked using a combination of the three indicators usually

considered to measure the quality of an association rule: confidence, lift, and support. A

simple arithmetic mean of these three indicators was used to generate the function f(u, e, r)

for an association rule of the form AR : e→ r (see Equation 9), which when ordered was

used as an explanation method. In (PEAKE; WANG, 2018) the authors use these metrics

separately and produce different explanation scores for each. As here our goal is not to

propose a good explanation method but to learn how to evaluate them, so the three metrics

were averaged. The average could be replaced by many different weighted combinations of
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the three.

Apriori(K, u, e, r) =

confidenceu,K(AR) + liftu,K(AR) + supportu,K(AR)

3
.

(9)

f(u, e, r) = Apriori(K = 10, u, e, r),

f(u, e, r) = Apriori(K = |U |, u, e, r).
(10)

To run this method was used Apyori 3, a Python API which implements the Apriori

algorithm, and it was used D = 30.

4.3.2 Distance metrics

All recommender model in Section 4.2 uses the latent factors approach (KOREN;

BELL; VOLINSKY, 2009). It is a vectorized way to represent entities in abstract vector spaces.

Due to this kind of representation, some mathematical operations can be done in real-world

objects. In recommender systems, vectors represent users and items, and each dimension

of these vectors is related to a concept. In item vectors, the dimensions represent how much

that item has of these concepts. Thus, the distance between two item latent factor vectors

can be used to calculate the similarity between the items. As close as the latent factors

vectors get, more similar are the items. So, in this case, the similarity between two items can

be defined as the inverse of the distance between their respective latent factors vector.

f(u, e, r) =
1

Distance (LIe, LIr))
. (11)

Many different distance metrics can be used to generate the score. Four of them

were used, namely the Euclidean, Manhattan, cosine and Chebyshev distances, defined in

Equation 12 to Equation 15.

4.3.2.1 Euclidean distance

Distance(a, b) =

√√√√ n∑
i=1

(ai − bi)2. (12)

4.3.2.2 Manhattan distance

Distance(a, b) =
n∑

i=1

|ai − bi|. (13)

3 https://pypi.org/project/apyori/
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4.3.2.3 Cosine distance

Distance(a, b) = 1−
∑n

i=1 aibi√∑n
i=1 a

2
i

√∑n
i=1 b

2
i

. (14)

4.3.2.4 Chebyshev distance

Distance(a, b) = max(|ai − bi|). (15)

4.3.3 Explainability

Abdollahi and Nasraoui (ABDOLLAHI; NASRAOUI, 2017) proposed a metric to eval-

uate recommendation explanations called Explainability. Although it evaluates explaniability

it could be easily used to offer explanations to users. It uses either the user or item neigh-

borhood to calculate the probability that a recommended item is explainable to a user. The

probability Pruser(u, e) of a previous liked item e be used as an explanation for user u, is

defined in Equation 16. Su is the set of neighbors of a user u, and Ûe ⊂ U represents the

set of users who liked item e.

Pruser(u, e) =
|Su ∩ Ûe|
|Su|

. (16)

This approach was extended to calculate, using the user’s neighbors, the probability

Pritem(e, r) of a previous liked item e be used as an explanation for the recommended item r.

Pritem(e, r) =
|Ûr ∩ Ûe|
|Ûr|

. (17)

In the experiments was used |Su| = 30.

The mean of these two equations was used to be f(u, e, r). So the metric to eval-

uate recommendation explanations in (ABDOLLAHI; NASRAOUI, 2017) was turned to an

explanation method.

f(u, e, r) =
Pruser(u, e) + Pritem(e, r)

2
. (18)

4.4 Experiment types

Two types of experiments was made, and the difference between them is in the size

of the explanation set(|Eu,r|) from Equation 3.
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4.4.1 Fixing explanation set size

In this type of experiment, 4 explanations set Eu,r were generated, fixing its size,

using |Eu,r| = [1,2,3,4]. The maximum value is chosen to be 4 because of the value of η in

Section 4.5.

4.4.2 Thresholding score

In this type of experiment, instead of fixing the value for |Eu,r| a threshold was set

for f(u, e, r) and then Eur = {∀e ∈ Eu,r|f(u, e, r) > threshold}. The threshold was defined

as the mean plus standard deviation from all values of f(u, e, r). This approach has the

advantage of automatically setting the size of the explanation.

4.5 Choosing the value of η for Ease-of-interpretation

As described in Section 3.1, choosing a value for the constant η is essential to

calculate the Ease-of-interpretation. The constant η represents how many items provided as

explanations the users can interpret. It is an uncertain concept and, as explained in Section

3.1, it varies by recommendation domain and for each user. This a complex problem and

demands a complete study about it, all we can do is search for benchmarks.

Hingston reported some experiments with users (HINGSTON, 2006), in two of them,

there are how many items were provided as explanations, 7 in one experiment, and 3 in

another. In LibraryThing web site (LIBRARYTHING, (accessed October 19, 2020)), 4 items

are provided as explanations in the book recommendation domain. So, to simplify, η = 4

were used for all experiments, because 4 is close to the mean of these values, and it is the

number of items used in LibraryThing, a real application, but further experimentation with

higher values are left to future work.

4.6 Trivial sets

As was mentioned in Section 3.3, to be able to use Triviality, it’s needed to get

some set of items that are previously known as trivial explanations for a specific item, and

this is the most challenging aspect of implementing this metric. Two distinct domains of

recommendations were used in the experiments, so a way to get trivial items among both

scenarios was founded. Table 3 shows statistics of the datasets, including their number of

trivial sets and their mean size.
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Table 3 – Trivial sets dimensions.

Dataset # items # trivial sets mean trivial sets size

ML 100K 1,682 109 1.91
ML 1M 3,706 2,691 3.26

Yelp Madison 3,494 933 6.18

4.6.1 Movie recommendation

In the movie domain, were considered movies from the same franchise as trivial

explanations for all other movies from that franchise. For example, the trivial set for Star

Wars 1 is a set containing all other Star Wars.

The Movie Database (TMDb) 4 is a popular, user-editable database for content

information about movies and TV shows. Using TMDb is possible to get an aggregation of

movies by franchises. The TMDb data is available to get via API, but there is a Kaggle page

where a file containing the data for more than 45.000 movies can be downloaded. 5

4.6.2 Business recommendation

In addition to the ratings, the Yelp dataset contains information about the business

latitude, longitude, and categories. So, one establishment is in the trivial set of another one if

they are closer than half a mile from each other and they have, at least, four categories in

common.

4.7 Offline evaluation

To show how the proposed evaluation method works, it was used to compare several

case-based explanation methods. To achieve this, the two types of experiments were run

among three public datasets. In Algorithm 1, there is detailed information about each step

followed in these experiments.

4.7.1 Fixing explanation set size

Figure 11 shows the result of ECT when fixing the explanation set size. Notice that,

for all datasets, the value of ECT tends to increase as we make the size of the explanation

set higher. For all datasets and explanation methods, there is a point where the values of the

metric stabilize and from its values start to decrease.

According to ECT, the score calculated by the cosine distance was the best explana-

tion method. For ML100K (Figure 11(a)) and ML1M (Figure 11(b)), the results obtained by
4 https://www.themoviedb.org/
5 https://www.kaggle.com/rounakbanik/the-movies-dataset
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Algorithm 1 Offline evaluation steps
Generating recommendations and explanations

1: for each dataset in Section 4.1 do
2: for each recommender model in Section 4.2 do
3: train the recommender model
4: generate 5 recommendations for each user
5: for each explanation method in Section 4.3 do
6: for each experiment type in Section 4.4 do
7: generate Eu,r for all recommendations, using

the instance of function f(u, e, r) from the
explanation method, and the size of Eu,r from
the experiment type

8: calculate ECT (U,R,E, T ), using the value of η from
Section 4.5 and the trivial sets from Section 4.6

Presenting the results
9: for each experiment type in Section 4.4 do

10: for each dataset in Section 4.1 do
11: for each explanation method in Section 4.3 do
12: show mean(ECT (U,R,E, T )) among all recommender

models in Section 4.2

the Euclidean and Manhattan distances are very close to the ones obtained by the cosine.

However, Chebyshev was significantly worse, probably because it is much simpler than the

others.

For Yelp (Figure 11(c)), except for Apriori_K@|U|, all explanation methods got similar

results. This dataset is sparser than MovieLens, and the sparsity could be a reason for this

result. Regarding the Apriori explanation method, in the ML100K and ML1M Apriori_K@10

got a better result than Apriori_K@|U|, but in Yelp the opposite happened. The Apriori_K@|U|

run among the transactions of all users instead of using a set of neighbors like Apriori_K@10.

In the sparse Yelp dataset, limiting the number of neighbors increases the value of ECT.

Figure 12 shows the value of the three metrics that compose ECT when |Eu,r| varies

for the Cosine explanation method. Notice that in both versions of MovieLens Coverage is

always 1. This happens because, for these datasets, all users have at least 20 ratings, so an

explanation is always available. This does not occur in Yelp, which has a Coverage value of

0.613. The Yelp dataset is sparse and has several users in a cold start condition. However,

notice that Coverage impacts Ease-of-interpretation, as many cases of recommendation

with explanation size 0 may appear. For the Movielens datasets, as |Eu,r| increases, Ease-

of-interpretation decreases, as expected. Triviality increases as the size of the explanation

increases.
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Figure 11 – Comparison of all evaluated explanations methods using ECT while fixing
explanation set size.

4.7.2 Thresholding score

Figure 13 shows these same results when we replaced a fixed set size by a threshold

applied to the function f(u, e, r), and Table 4 shows the threshold and the mean size among

all explanation sets. Notice that for the Movilens datasets the average explanation size is,

in general, much higher than 4. For Yelp we have the opposite: the average number of

explanation size is smaller than 1 (recall this is related to the sparsity of the dataset).

Different from the experiments with fixed explanation sizes, for Yelp (Figure 13(c)),

as users have few ratings and a small set of previously liked items (mean of 2.14 and

median of 1.00), the threshold leads to several recommendations without any explanation,
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Figure 12 – Values of all metrics reached by Cosine in fixing explanation set size experiment.

Figure 13 – Comparison of all evaluated explanations methods using ECT, in thresholding
score experiment

generating extremely high values for Ease-of-interpretation for all explanation methods, but

low value for Triviality and Coverage (consequently ECT ) for Apriori_K@10, Apriori_K@|U|,
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Table 4 – The threshold for f(u, e, r) and the mean size among all explanation sets for each
explanation method in thresholding score experiment

ML100K ML1M YELP
Explanation method threshold |Eu,r| threshold |Eu,r| threshold |Eu,r|

Apriori_K@10 3.446 1.890 4.426 3.000 2.996 0.281
Apriori_K@|U| 1.626 2.979 0.766 3.549 1.189 0.063

Chebyshev 1.608 6.160 1.979 9.689 2.127 0.221
Cosine 1.441 6.047 1.713 8.693 1.032 1.092

Euclidean 0.521 6.196 0.651 9.766 0.683 0.214
Manhattan 0.103 4.487 0.119 8.481 0.123 0.163

Explainability 0.340 6.519 0.308 10.315 0.314 0.486

Chebyshev, Euclidean, and Manhattan. Only Cosine and Explainability reached average

values for Triviality and Coverage in Yelp.

4.7.3 Comparing experiment types

Two types of experiments were done according to Section 4.4, and comparing the

results generated when using a fixed explanation size (Figure 11) against those where a

threshold was used (Figure 13), the latter has lower value of ECT. Table 5 illustrates why

this behavior occurs using the cosine distance as the explanation method in the ML100K

and Yelp datasets.

4.7.3.1 Fixed explanation set size

Table 5 (a) and (c) show images about the behavior of the fixed explanation set size

experiment in ML100K and Yelp.

By fixing the size of Eu,r with non zero values, Coverage is always 1 in ML100K,

because all users have at least 20 ratings, so an explanation is always available. This does

not occur in Yelp, which has a Coverage value of 0.613, because it is sparse and has several

users in a cold start condition, so it is not guaranteed that at least one explanation will be

available for every user.

Increasing |Eu,r|, Ease-of-interpretation decreases, as the more items are provi-

sioned as explanations, the more work will be required to interpret them. On the other hand,

Triviality increases, as the more items are provisioned as explanations, the more are the

chances that a trivial explanation is among them.

In Yelp, the decrease of Ease-of-interpretation has a non-zero limit, different to

ML100K where it tends to zero. This happens because Yelp has a mean of 2.14 and a

median of 1.00 ratings per user (recall that was used η = 4 for all experiments). So, the

mean amount of ratings per user is lower than η, causing the non-zero bottom limit.
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4.7.3.2 Thresholding score

Table 5 (b) and (d) show images about the behavior of the Thresholding score

experiment in ML100K and Yelp. The higher the threshold, the fewer liked items e will have

f(u, e, r) > threshold, and the value of |Eu,r| will be lower, and vice versa.

Increasing the threshold, Ease-of-interpretation increases because |Eu,r| decreases;

Coverage decreases because the number recommendations which have at least one expla-

nation reduces; Triviality decreases because the smaller |Eu,r| the lower the chances of a

trivial explanation be provisioned.

Table 5 – Comparing the experiment types and datasets, using Cosine as explanation
method.

Fixed explanation set size Thresholding score
ML100K

(a) (b)

Yelp Madison

(c) (d)
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4.8 Online Evaluation

4.8.1 Experiment setup

Experiments were proposed to show the correlation between ECT and real users’

preferences about the quality of the explanations methods. The same two experiments did

in offline evaluations were done with real users: fixing explanation set size and thresholding

score.

The first step is to create the participants’ profiles in the MovieLens 1M dataset by

asking them to mark some movies they liked on the item list, then generate 5 personalized

recommendations for them. We varied the recommendation models among the participants;

the used models were the same described in Section 4.2. Then, for each recommenda-

tion, 4 sets of case-based explanations were provided, each one generated by one of the

following explanation methods: Apriori_K@10, Apriori_K@|U|, Cosine, and Explainability.

The participants were asked to rank the explanations. If the participants haven’t seen the

recommended movie or one of the movies in the explanation set, they were instructed to

read the synopses of the movie.

From all explanations methods in Section 4.3, were chosen to be used just four of

them: Apriori_K@10, Apriori_K@|U|, Cosine, and Explainability. All distance metrics perform

closely in the public dataset experiment, as we can see in Figure 11. So to not overload the

participants with too many explanations to be evaluated, the only explanation method based

on distance metrics used was Cosine.

In the experiments in offline evaluations, were used two different types of recom-

mendation domains: movie and business. It had been decided that the experiment with real

users were run only for movie recommendation because it is easier to find people who watch

movies than people who attend certain business establishments.

The MovieLens 1M dataset was used because it has a good amount of items

and ratings, as we can see in Table 2, and because this dataset has a particularity; the

newest movies are from the year 2000. Our goal is to evaluate the explanations, not the

recommendations, to achieve that, the participant must have minimum knowledge about

those movies, so it is a great advantage the movies being old, because there is a high

chance that the participant has already seen them. As mentioned, the participants were

instructed to read the movie synopses if they haven’t seen it before.

All kind of experiment involving real users is challenging to be done, but those two, in

particular, are toughest, because they demand two interactions with the participants: the first

one to get their previous liked items to build their profiles in the dataset, and the second to

ask them to rank the explanations. For this cause, we were not able to broadcast them on the

internet to reach a vast amount of people, so we had to post on personal social media asking
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Table 6 – How the participants were distributed among the experiments and the recommen-
dation models

Experiment Recommender Model # participants

Fixed size explanations
PMF 24
BPR 22

UCML 23

Thresholding score
BPR 15

UCML 20

for participants, and people approach us willing to participate, and all communication was

made via social media. The participation of each person was made individually, including

the presentation of the project, clarification of doubts, and the running of the experiment.

A total of 104 participants took part of the experiment, being 47 men and 57 women

between 19 and 47 years-old, with experience with the recommendation domain (movies).

They had already used at least one movie recommender system, and had no experience

with machine learning. This part of the experiment lasted two months, as it took a long time

to deal with the 104 people individually.

Table 6 shows how the participants were distributed among the experiments and the

recommendation models. Note that the PMF algorithm was not used for the experiment with

thresholding score, as it demanded more than three days to run between the first and the

second human interaction. We feared we would lose participant in this meantime, and for

that reason only BRR and UCML were considered.

For every participant, was made 5 recommendations, and 4 explanations were

generated for each recommendation. The participants must provide one rank of the most

suitable explanations for each recommendation. So, there was a necessity to aggregate the

participants’ ranks, to compare them with the rank generated by ECT. A total of 5 different

methods to aggregate the ranks were used. There is a short description of them in Section

4.8.2.

So, 5 aggregated ranks were compared with the rank generated by ECT, and for

those comparations was used the Kendall tau-b correlation coefficient (KENDALL, 1962)

(DANIEL, 1990), it is a statistic metric used to measure the similarity of the orderings between

two ranks. The coefficient must be in the range [-1, 1], and if the two rankings are the same,

the coefficient has value 1. If one ranking is the opposite of the other, the coefficient has

value -1. If the two rankings are independent, then we would expect the coefficient to be

approximately zero. The final result about the performance of the ECT metric is the mean of

all 5 Kendall tau-b correlation coefficient.

In Algorithm 2, there is detailed information about each step followed in these

experiments.
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Algorithm 2 Online evaluation steps
Generating recommendations and explanations

1: Create the participants’ profiles in the MovieLens 1M dataset by asking them to mark
some movies they liked on the item list.

2: for each recommender model in Section 4.2 do
3: train the recommender model
4: for each participant acconrding to Table 6 do
5: generate 5 personalized recommendations to the participant
6: for each recommendation made for the the participant do
7: for each experiment type in Section 4.4 do
8: for each explanation method used in this experiment do
9: generate Eu,r for the recommendation, using the instance of function

f(u, e, r) from the explanation method, and the size of Eu,r from
the experiment type

10: ask the participant to rank each explanation group Eu,r for the
recommendation

Presenting the results
11: for each experiment type in Section 4.4 do
12: for each aggregation method in Section 4.8.2 do
13: using all ranks provided by the participants, compute the aggregated rank

using the aggregation method
14: calculate the Kendall tau-b correlation coefficient between the aggregated rank

and the rank generated by ECT

4.8.2 Rank aggregation methods

4.8.2.1 Borda count

Borda count (EMERSON, 2013) is a system in which works assigning a point value

to each position in the rank. The explanation methods are scored by summing how many

points it has in each rank provided by the participants. The aggregated rank is given by

ordering, decreasingly, the explanation methods by their scores.

4.8.2.2 Condorcet method

In the condorcet method (VALOGNES; GEHRLEIN, 2001), an explanation method

won another competitor if it is ranked more often in a higher position than the competitor.

The aggregated rank is given by ordering, decreasingly, the explanation methods by their

numbers of wins.

4.8.2.3 Instant-runoff voting

Instant-runoff voting or Ranked Choice Voting (FARRELL, 2011), (FAIRVOTE. . . , ), is

an election system, it simulates a series of runoff elections, and can be used to aggregate

ranks. If no explanation method is the first choice of more than half of the participants, then all
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votes cast for the explanation method with the lowest number of first choices are redistributed

to the remaining, based on who is ranked next on each rank. When an explanation method

receives a majority, it is removed from the system, and it is inserted in the aggregated rank.

The process is repeated until the aggregated rank is fulfilled. If this does not result in any

explanation method receiving a majority, further rounds of redistribution occur.

4.8.2.4 Schulze method

The Schulze method (SCHULZE, 2018) is an electoral system and can also be used

to create a sorted list of winners; in other words, to aggregate ranks. For every pair of two

explanation methods, they are compared, ignoring all others, generating a full set of pairwise

preferences. Then, each explanation method is represented as a node in a directed graph,

and then the strongest paths among each other have to be identified. The strength of the

path between two nodes is the strength of its weakest link. An explanation method wins

another if its strongest path is greater than its opponents’ strongest path. The aggregated

rank is given by ordering, decreasingly, the explanation methods by their numbers of wins.

4.8.2.5 Single transferable vote

Single transferable vote (ROWE, 1975) is a multiple winners voting system that can

be used to aggregate ranks. Votes are totaled, counting only the first position in each ranked

provided by the participants, and a quota (the minimum number of votes required to win)

is derived. If the top voted explanation method achieves the quota, it is inserted in the

aggregated rank. Any surplus vote is transferred to other explanation methods, in proportion

to its occurrence in the next position in the ranks. The quota is recalculated. And this process

continues until enough explanation methods exceed the quota to fill the aggregated rank.

4.8.3 Results

Table 7 shows, the ranking of the explanation methods according to the offline

experiments for all metrics that compose ECT and ECT itself. And the ranks according to

online evaluation of real users aggregated by the five different aggregated methods.

The ranks from the offline experiments were compared with the ranks generated by

the online evaluation using the Kendall tau-b correlation coefficient (DANIEL, 1990). Kendall

tau measures the similarity of the orderings between two ranks. The coefficient is in the

range [-1, 1], and returns 1 if two rankings are identical or -1 if they are in reverse order. If

the two rankings are independent, we expect its value to be approximately zero. The results

are in Table 8.

ECT and all aggregated ranks generated from the users opinions agree that the

overall winner among all explanations methods is the cosine distance when fixed-size
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Table 7 – Comparison of the ranks generated by offline and online evaluation.

Fixed-size explanation experiment

Rank
Position

1st 2nd 3rd 4th

Offline Evaluation
Ease-of-interpretation Apriori_K@|U| Apriori_K@10 Cosine Explainability

Coverage Cosine Explainability Apriori_K@10 Apriori_K@|U|
Triviality Cosine Apriori_K@|U| Explainability Apriori_K@10

ECT Cosine Apriori_K@|U| Explainability Apriori_K@10

Online Evaluation
Borda Cosine Explainability Apriori_K@|U| Apriori_K@10

IRV Cosine Explainability Apriori_K@10 Apriori_K@|U|
Condorcet Cosine Apriori_K@|U| Explainability Apriori_K@10

STV Cosine Explainability Apriori_K@10 Apriori_K@|U|
Schulze Cosine Apriori_K@|U| Explainability Apriori_K@10

Thresholding score experiment

Rank
Position

1st 2nd 3rd 4th

Offline Evaluation
Ease-of-interpretation Apriori_K@|U| Apriori_K@10 Cosine Explainability

Coverage Explainability Cosine Apriori_K@10 Apriori_K@|U|
Triviality Cosine Explainability Apriori_K@|U| Apriori_K@10

ECT Cosine Apriori_K@|U| Explainability Apriori_K@10

Online Evaluation
Borda Cosine Apriori_K@|U| Apriori_K@10 Explainability

IRV Cosine Apriori_K@|U| Explainability Apriori_K@10
Condorcet Apriori_K@|U| Cosine Apriori_K@10 Explainability

STV Cosine Apriori_K@|U| Explainability Apriori_K@10
Schulze Apriori_K@|U| Cosine Apriori_K@10 Explainability

explanation is used. For the thresholding score experiment, the cosine distance also got the

first position according to ECT and it has, undoubtedly, the best performance among the

aggregated ranks. In these two experiments, the rank generated by ECT is the same and

the mean of the Kendall coefficient is 0.67. The major differences are on the aggregated

ranks, where they have pairs of identical ranks: IRV / STV and Condorcet / Schulze; it is

caused by some inherent properties of the rank aggregation methods.

Recall that the Explainability metric (ABDOLLAHI; NASRAOUI, 2017) was previously

proposed in the literature with the same purpose of ECT. It is divided into two parts:

Explainability precision and Explainability recall, as discussed earlier. Model fidelity (PEAKE;

WANG, 2018) (or, in our case, Coverage) is a generalization of Explainability precision.

Hence, its correlation to the users’ online evaluation can also be comparable, which is on

average 0.53 for fixed-size explanation and 0.33 for the thresholding score scenario, while

ECT got 0.67.
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Table 8 – Kendall tau-b correlation coefficient between the ranks generated by offline and
online evaluation.

Kendall tau-b correlation coefficient

Fixed-size explanation experiment
Ease-of-interpretation Coverage Triviality ECT

Borda 0.33 0.00 0.67 0.67
IRV 0.00 1.00 0.33 0.33

Condorcet 0.00 0.33 1.00 1.00
STV 0.00 1.00 0.33 0.33

Schulze 0.00 0.33 1.00 1.00
Mean 0.07 0.53 0.67 0.67

Thresholding score experiment
Ease-of-interpretation Coverage Triviality ECT

Borda -0.33 0.33 0.33 0.67
IRV 0.00 0.00 0.67 1.00

Condorcet -0.67 0.67 0.00 0.33
STV 0.00 0.00 0.67 1.00

Schulze -0.67 0.67 0.00 0.33
Mean -0.33 0.33 0.33 0.67
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5 Future works

An important characteristic to be considered in recommender systems is recency;

it is the preference by the users’ recent ratings to make predictions more time accurate. In

some recommendation domains, the recent ratings reflect users’ future preferences more

than older ones, for example, news recommendation, where items typically have short shelf

lives. After all, few sports fans will be interested in the past breaking scores of one week ago.

Some works incorporate recency in recommender systems (DING; LI; ORLOWSKA,

2006), (CAMPOS; RUBIO; CANTADOR, 2014). So, it could be helpful if, somehow, ECT

could leverage recency to evaluate a case-based explanation. But the toughest challenge in

this proposal is to elaborate experiments with real users to validate it. To conduct this kind

of experiment is necessary previous access to the participants’ historical of rated or liked

items along time, but it is nearly impossible to ask them, for example, to remember exactly

when they saw all movies that they liked. The only viable way to get this information is by

an already running system, which has already had the historical data and can interact with

users via A/B testing. A system like that isn’t available yet for us.

Also, ECT has two dependencies, the choosing for the value of η used in Ease-of-

interpretation, and the trivial sets used in Triviality. So, other future works are: to research for

methods to get the value of η in different contexts; to develop methods to define trivial sets

in other recommendation domains; and to explore new ways to combine the three metrics

that compose ECT, giving them different weights according to the context they are inserted.
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6 Conclusion

In this project, we propose a new metric to evaluate the quality of explanations in

recommender systems. This metric is a combination of a previous proposed metric (i.e.,

Coverage), and two new metrics (i.e., Ease-to-interpretation and Triviality). We conduct

extensive evaluation to address our goal, i.e., we conduct online and offline experiments with

real recommender systems and datasets to validate our proposed metric.

There are few offline evaluation approaches to measure the quality of case-based

explanation methods, and they mainly focus on how many recommendations given by a

system can be explained, leaving the explanation quality aside. In this direction, we proposed

ECT, an offline evaluation metric that accounts for both the quality and the coverage of the

explanation method. ECT is composed of three metrics, two of them also proposed in this

research project: Easy-of-interpretation and Triviality.

In Section 4.7 shows some experiments to exemplify how ECT can be used, involv-

ing 3 public datasets, 3 recommendation methods and 7 explanation methods. In these

experiment, according to ECT, the inverse of the cosine distance is the best explanation

method among all evaluated methods described in Section 4.3. This result is confirmed by

the experiments with real users in Section 4.8, the majority of the participants also ranked

the inverse of the cosine distance as the best option. This agreement between ECT and

real users’ choice is one positive qualification for this proposed metric.

One more substantial proof of the effectiveness of ECT, is the correlation between

it and the real users’ choices about the best explanation method. The experiments with

real users in Section 4.8 results in a correlation of 0.667, in the range [-1, 1], measured

by Kendall tau-b correlation coefficient. ECT is an offline metric, which means, easy to

implement, and cheap to calculate. So, considering the tradeoff between calculating cost

and total reproduction of users’ real choices, a correlation like that is desirable. We consider

ECT one step forward better offline evaluation methods.
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