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Abstract

In this work, we propose new conditions for the synthesis of parameter-dependent
state feedback controllers that guarantee the local asymptotic and input-to-
state stability of linear parameter varying (LPV) discrete-time systems with
magnitude and rate saturating actuators and subject to energy bounded dis-
turbances. Moreover, the closed-loop system has an ensured exponential sta-
bility performance. A nonlinear first-order model models the magnitude and
rate saturation of the actuators. Therefore, the saturations of the actuator are
represented in terms of dead-zone nonlinearity type, with the application of
the generalized sector condition. The design conditions are proposed through
a parameter-dependent candidate Lyapunov function in terms of a finite set
of linear matrix inequalities (LMIs) and provide regional stabilization in the
sense of polyquadratic stability, allowing an estimate of the region of initial
conditions yielding trajectories with guaranteed convergence to the origin. Ad-
ditionally, different convex optimization procedures are formulated according
to the control objective. For instance, it is possible to maximize the set of
initial admissible conditions, maximize the energy disturbance tolerance, or
even minimize the ℓ2-gain of the admissible perturbations. Finally, numerical
examples are presented to demonstrate the efficiency of the proposed methods,
and a real-time nonlinear level control illustrates its potentialities for practical
applications.

Key-words: Linear parameter varying (LPV) systems. Magnitude and rate
saturating actuators. Discrete-time systems. Regional polyquadratic stabi-
lization. Input-to-State Stability.
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Chapter 1
Introduction

This work presents new conditions for the design of state feedback linear parameter

varying (LPV) controllers for discrete-time systems under magnitude and rate saturating

actuators. The regional stabilization is ensured through a parameter-dependent Lyapunov

function candidate, and a design convex condition formulated thought a set of linear

matrix inequalities (LMIs). The saturating actuators in magnitude and rate are present

in many engineering applications, and may cause performance losses and even instability

in control systems.

The main problem addressed in this work is the stability and controller design of

systems with actuators’ saturation in magnitude and rate. Therefore, in this chapter, the

main idea is to briefly show the relevance of considering rate saturation on the controller

design stage. A literature review concerning with the main topics covered in this work is

presented. Lastly, the main objectives of this work and the text organization are listed at

the end of this chapter. The ideas presented here and the mathematical tools used will

be formally described in detail in the next chapter.

1.1 Problem Formulation

This section presents the relevance of considering the presence of rate saturation in

actuators, in addition to magnitude saturation. Some consequences of such limitations are

illustrated by an LPV system example, demonstrating the importance of considering the

maximum limit of the actuator’s rate of change in the controllers’ design in closed-loop

systems.

1.1.1 Magnitude and rate saturation effects

Magnitude and rate saturations may occur in actuators due to finite power and security

reasons. The magnitude limitation may degenerate performance, leads to spurious equi-

librium points, and even yields unstable behavior (Tarbouriech et al., 2011, pp. 5). On the

1



1.1. Problem Formulation

other hand, the relevance of addressing rate saturation is well known in several sensitive

applications, such as aerospace systems (Tarbouriech et al., 2016). Berg et al. (1996) have

demonstrated the stability losses due to the phase delay caused by rate-limited actuators.

One of the consequences is induced oscillations, for instance, the pilot-induced oscillation

(PIO), which has occurred in the YF-22 and JAS 39 fighters aircraft crashes (Klyde et al.,

1997) and some commercial transport aircraft (Duda, 1997). This phenomenon can hap-

pen because of the delayed actuator response from rate limitations. Consequently, the

pilot can apply commands more aggressively since the aircraft does not respond to cockpit

controls as expected. Thus, the aircraft responds with an action essentially opposite to

the desired command, which can lead to oscillatory movements that even result in the

aircraft’s instability (Acosta et al., 2014).

To illustrate the effects of magnitude and rate saturation on a system, a controller is

firstly designed for an LPV system presenting only magnitude saturation. Then, the same

designed controller is used in a system that also has rate limitations.

Assume discrete-time linear parameter varying (LPV) systems given by:

xk+1 = A(αk)xk + B(αk)sat (uk) , (1.1)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control signal vector, the linear

parameter-dependent matrices A(αk) ∈ R
n×n and B(αk) ∈ R

n×nu belong to a polytopic

domain given by the convex combination of N known vertices:

[

A(αk) B(αk)
]

=
N
∑

i=1

αk(i)

[

Ai Bi

]

, (1.2)

and αk ∈ P is the time-varying vector of parameters belonging to the unitary simplex:

P=
{

αk∈R
N :

N
∑

i=1

αk(i) = 1, αk(i) ≥ 0, i = 1, . . . ,N
}

, (1.3)

which is assumed to be online available (Briat, 2015, pp. 10).

The control signal uk is limited in magnitude, and sat (uk) is the decentralized satu-

ration function, i.e., the rth actuator’s output yields

sat (uk)(r) = sign(uk(r))min (|uk(r)|,ρ(r)), (1.4)

for r = 1, . . . ,nu, where ρ(r) is the maximum symmetrical value of the control signal that

each actuator r can apply, and the sign function returns the sign of the control signal.

Example 1.1 (Magnitude saturation) Consider a discrete-time LPV system with n = 2,

N = 2 and nu = 1 adapted from (Bertolin et al., 2018) given by the matrices

A1 = 0.45

[

−1 −1
−4 0

]

, A2 = 0.45

[

3 3
−2 1

]

, B1 = B2 =

[

1
0

]

, (1.5)

2



1.1. Problem Formulation

with ρ = 1. The control law is given by

uk = K(αk)xk, (1.6)

where K(αk) ∈ R
nu×n, and belong to a polytopic domain given by the convex combination

of N known vertices:

K(αk) =
N
∑

i=1

αk(i)Ki. (1.7)

According to (Figueiredo, 2020, Corollary 4.1), a state feedback LPV controller gain

under (1.6)–(1.7) that stabilizes the system is defined by the gain vectors

K1 =
[

0.8839 0.2701
]

, K2 = −
[

0.5847 0.8768
]

. (1.8)

With a initial condition x0 =
[

−0.2925 −0.9017
]

, Figure 1.1 shows the closed-loop

system states trajectories in the phase plan. Notably, the state trajectories converge to-

wards the origin, as expected, despite the magnitude saturating actuator. Therefore, the

designed controller guarantees the stability of the closed-loop system for this specific ini-

tial condition and actuator’s magnitude saturation. See (Figueiredo, 2020) for initial

conditions that may diverge in the presence of magnitude saturation. The control signal

is shown in the top plot of Figure 1.2, and the bottom plot shows the variation of the

parameters αk.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1k

x
2
k

Figure 1.1: State trajectories of closed-loop system with magnitude saturation.

Suppose that additionally to the actuator’s magnitude saturation, the actuator’s out-

put is subject to rate constraint. In such a case, system (1.1) is rewritten as:

xk+1 = A(αk)xk + B(αk)φk(uk), (1.9)

3
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Figure 1.2: Control signal (top) and varying parameters (bottom).

where φk(uk) ∈ R
nu is the actuator’s output. Therefore, φk(uk) must handle both mag-

nitude and rate saturating aspects of the actuator. By using the discrete-time version of

the position-type feedback model with speed limitation (PTFMSL) presented in Figure

1.3, whose dynamics is given by:

+

++

−

uk(r) φk(r)
Λrr Ts

satM (w)(r) satR (w)(r)
φk+1(r)

z−1

ρM(r) ρR(r)

−ρM(r) −ρR(r)

Figure 1.3: Diagram of first-order nonlinear system used to model magnitude and rate
saturation.

x̄k+1(r) = x̄k(r) + TssatR (ΛsatM (uk)− Λx̄k)(r) , (1.10)

φk(uk) = x̄k, (1.11)

for r = 1, . . . ,nu, where x̄k ∈ R
nu is the actuators’ state, Λ ∈ R

nu×nu is a diagonal matrix

composed by the actuators’ poles, Ts is the sampling period of the actuator, and for a signal

w ∈ R
nu the symmetric saturation functions concerning the magnitude and rate are given

by satM (w)(r) = sign(w(r))min(|w(r)|,ρM(r)) and satR (w)(r) = sign(w(r))min(|w(r)|,ρR(r)),
respectively, with ρM ∈ R

nu and ρR ∈ R
nu denoting the respective symmetrical bounds.

As the modulus of Λrr goes to ∞, the output signal of the proposed model fits better a

static rate saturation (Tyan & Bernstein, 1997).

The state feedback control law that may use the state of the actuator to stabilize the

system (1.9)-(1.11) is given as follows:

uk = K(αk)xk + K̄(αk)x̄k = K̂(αk)zk, (1.12)

4



1.1. Problem Formulation

whereK(αk) ∈ R
nu×n, K̄(αk) ∈ R

nu×nu , K̂(αk) =
[

K(αk) K̄(αk)
]

, and zk =
[

x⊤k x̄⊤k
]⊤ ∈

R
n+nu is an augmented state vector including the plant and actuator states. Observe

that, whenever the actuator’s states are not available for feedback, K̄(αk) = 0 is required

∀αk ∈ P .

Example 1.2 (Magnitude and rate saturation) Considering the same system (1.5), with

ρM = 1, ρR = 1, Ts = 1, Λ = 10. The gain vectors are the same used in Example 1.1,

Equation (1.8). Since the actuator’s state is not used in the feedback, we have K̄1 = K̄2 =

0, yielding:

K̂1 =
[

0.8839 0.2701 0
]

, K̂2 = −
[

0.5847 0.8768 0
]

.

Figure 1.4 shows the closed-loop system states trajectories in (1.1) (magenta line) and

(1.9)-(1.11) (blue line) in the phase plan cut at x̄ = 0, with the same initial condition

used in Example 1.1, i.e, z0 =
[

x0 x̄
]

=
[

−0.2925 −0.9017 0
]

, and the same variation

of parameters αk given in Figure 1.2. With the addition of rate bounds, the controller

cannot guarantee the system’s asymptotic stability and presents unstable behavior, one of

the consequences of rate saturation.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1k

x
2
k

Figure 1.4: State trajectories of the closed-loop system with only magnitude saturation
(magenta) and with magnitude and rate saturation (blue).

The actuator’s output is shown in Figure 1.5 and it is possible to notice that the

controller’s efforts are insufficient to take the trajectory to the origin. Therefore, due to

the actuator constraints’ nonlinearities, global closed-loop stability cannot be ensured in

general.

Thus, it is necessary to determine the region of attraction RA ⊆ R
n+nu of all initial

conditions such that the corresponding trajectories of the closed-loop system converge to
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Figure 1.5: Actuator’s output subject to magnitude and rate saturation.

the origin. Once RA can be non-convex, open, and even unbounded in some directions

(Gomes da Silva Jr. & Tarbouriech, 2005), an estimate RE ⊆ RA is computed as large as

possible.

1.2 Literature Review

The stability analysis and controller synthesis of linear parameter varying (LPV) sys-

tems have been extensively investigated in control systems. The main reason is that LPV

models can accurately represent the dynamics of a broad class of processes, where param-

eters may change over time (or with the operating conditions). Moreover, LPV models

can capture nonlinear dynamics while maintaining a relatively simple mathematical rep-

resentation in terms of a family of linear models (Rugh & Shamma, 2000). A particular

case is the quasi -LPV systems, in which the variant parameters are calculated in functions

that depend on the system states, unlike pure LPV systems, in which the parameters are

measured in real-time from exogenous signals (Sename et al., 2013, pp. 5).

A wide range of modeling and control applications utilize the LPV framework due to its

ability to describe systems with variable and nonlinear operating conditions. The practical

applications vary from advances in medicine to industrial engineering implementations.

Tasoujian et al. (2020) have used an LPV representation to describe the mean arterial

blood pressure response to drug injections for blood pressure control. In (Colmegna et al.,

2021) the authors have proposed using a switched LPV controller for automatic glucose

control for patients with type 1 diabetes. Morato et al. (2019) have presented an LPV

model predictive control system for semi-active vehicle suspensions, and in (Vafamand

et al., 2019) the authors have addressed the speed control of electric vehicles. Other

several automotive applications can be found in (Sename et al., 2013). Yang et al. (2020)

have applied anti-disturbance control of a switched LPV system in an aircraft engine. A

last example of LPV systems application is the case presented in (Quadros et al., 2020),

where fault tolerant control is exemplified in a level control system.

The Lyapunov stability theory is an important tool in the stability investigations and

controller designs for LPV systems, allowing convex formulations in terms of linear matrix
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inequalities (LMIs). The advantage of using LMIs is the efficiency of numerical resolutions

and the guarantee of optimal solutions (Boyd et al., 1994). The first mention of LPV sys-

tems was made by Shamma & Athans (1990) investigating the analysis and synthesis of

gain-scheduled controllers. The challenges of using gain-scheduled controllers for LPV sys-

tems were addressed by Shamma & Athans (1992), where a restriction to slow parameter

variation is pointed to ensure closed-loop stability, and it is suggested the development of

the control design methodologies for LPV systems to overcome these limitations. There-

fore, several studies about this class of systems emerged, as presented by the surveys (Leith

& Leithead, 2000; Rugh & Shamma, 2000) that present the state-of-the-art about gain-

scheduling control in the 2000s. Since then, several works addressing the LPV systems

framework based on different Lyapunov functions have been published in the literature. In

(Geromel et al., 1991), the robust stability and state feedback control are proposed using

quadratic Lyapunov functions with a parameter-independent matrix to continuous and

discrete-time systems. In such an approach, the controller is constant, i.e., the controller

parameters are time-invariant. Therefore, the controller design adopts a robust controller

design, ensuring the closed-loop stability of uncertain polytopic systems. In order to find

less conservative solutions, some authors have proposed the use of parameter-dependent

Lyapunov functions. In (Daafouz & Bernussou, 2001), the authors propose the robust

polyquadratic stability of discrete-time systems with arbitrary parameter variation inside

a polytope, finding an affine parameter-dependent Lyapunov function. Considering piece-

wise Lyapunov matrices, Leite & Peres (2004) address the robust stabilization of linear

discrete-time systems with uncertain parameters. Some other important contributions to

the literature in this context can be found in (Montagner et al., 2006; Oliveira & Peres,

2009; De Caigny et al., 2009) and references therein. Pursuing more relaxed conditions

of performance and stability, the development of controllers with varying parameters was

suggested. Based on this, De Caigny et al. (2012) proposed synthesizing gain-scheduled

dynamic output feedback controllers for discrete-time LPV systems assuming that the

plant and the controller matrices can have a homogeneous polynomial dependence on the

scheduling parameters. In (Sato, 2015), the gain-scheduled state feedback control is de-

signed considering the uncertainty of the scheduling parameters. Recently, the relevance

of LPV systems has received attention from a survey of results that have been certified by

experiments and high-fidelity simulations (Hoffmann & Werner, 2015) and some special

issues (Edwards et al., 2014; Zhang et al., 2020).

Although LPV models are quite general, some nonlinearities often found in physical

systems may be handled without using LPV modeling to ensure stability and performance.

Saturating actuators are of particular interest due to physical restrictions (such as limited

energy available) and security constraints in actuators and processes, leading to bounds
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on magnitude. Moreover, actuators are also limited in their output signals’ rate of change

(or speed). Thus, they cannot respond immediately to a sudden change in the control

signal. Especially in more energetic designs, if these limitations are not considered in

the synthesis stage, the magnitude and rate saturation can cause loss of performance,

presence of multiple equilibrium points, limit-cycles, and even instability in closed-loop

systems (Tarbouriech et al., 2011, pp. 14). Some examples of saturating elements present

in control systems are motors, heaters or coolers, hydraulic valves, and sensors. In practice,

usually, any component has a physical limitation, which is mathematically modeled by

the nonlinear saturation function.

There are three main approaches to model the presence of magnitude saturation in

control systems in the literature. The first one is based on modeling saturation as a dead

zone nonlinearity and is called generalized sector condition, proposed by Gomes da Silva

Jr. & Tarbouriech (2005). The second approach describes the saturated system in a poly-

topic model and presents three types of particular models. The so-called polytopic model I

was introduced by Molchanov & Pyatnitskii (1989), the polytopic model II was suggested

by Hu & Lin (2001) and the model III originally proposed in (Alamo et al., 2006). These

denominations are found in (Tarbouriech et al., 2011, pp. 33) where the reader can find

more details. The main disadvantage of the polytopic approach is the numerical complex-

ity increasing in optimization procedures, which becomes even more critical in uncertain

systems and LPV. The third approach for saturating systems is derived from model pre-

dictive control (MPC), in which, from the system’s model, the future instants outputs and

the control law are calculated through an optimization procedure at every instant (Wang,

2009). Some works about stability analysis and controller synthesis in systems that present

magnitude saturation stand out in the literature, such as (Hu & Lin, 2001; Tarbouriech

et al., 2011; Zaccarian & Teel, 2011), and therein references. LPV systems under mag-

nitude saturating actuators have found attention in the recent literature. Palmeira et al.

(2018) address the problem of aperiodic sampled-data control of LPV systems under input

saturation. Figueiredo et al. (2021) use homogeneous polynomial parameter-dependent

functions for synthesizing rational parameter-dependent state feedback gain controllers

to stabilize discrete-time LPV systems subject to saturating actuators. de Souza et al.

(2021) investigate the regional asymptotic stability of discrete-time LPV systems subject

to saturating actuators through event-triggered dynamic output-feedback control.

However, in addition to saturation in magnitude, actuators can also have limits on the

rate of change. As briefly discussed in 1.1.1, the need to consider the effects of magnitude

and rate saturation in controller design is evident. From here, a specific literature review

on saturation in magnitude and rate, the main subject of this work, is shown. Searches

were made through the Scopus and Google Scholar platforms, with the keywords: mag-
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nitude and rate saturation, nested saturation, rate constraints, among other synonyms.

Thus, the most relevant and current works on this subject were found, and the references

therein. From this review, we can say that saturating actuators in magnitude and rate

can be handled by two main methods (Baiomy & Kikuuwe, 2020). In the first one, a con-

troller is designed embedding the nonlinear actuator model in the designed controller such

that the control signal do not violate the magnitude and rate limits of the actuator. This

approach has been presented in (Kapila & Haddad, 1998) and (Kapila et al., 1999) for

continuous-time systems and in (Pan & Kapila, 2001) for discrete-time systems, using the

classic sector condition Tarbouriech et al. (2011) to describe the saturation nonlinearity

phenomenon. In (Gomes da Silva Jr. et al., 2008), the authors propose a synthesis method

for a dynamic cascade controller with saturating integrators and two static anti-windup

compensators for discrete-time systems using the generalized sector condition (Gomes da

Silva Jr. & Tarbouriech, 2005). They also consider the region of attraction’s size, seeking

to guarantee the local asymptotic stability of the closed-loop system. In (Bender & Gomes

da Silva Jr., 2012), a similar approach is used to ensure the internal and external stability

of continuous systems subject to L2 disturbances. In (Baiomy & Kikuuwe, 2020), sliding

mode type controllers are proposed for both continuous and discrete-time systems. Also

see (Galeani et al., 2008; Forni et al., 2012), in the context of continuous-time systems,

where anti-windup action is designed to handle rate saturation.

In the second method, called position-type feedback model with speed limitation, a first-

order system with a saturating input signal (describing the magnitude saturation) and

the rate saturation modeled as the actuator state’s constraint is employed, leading to a

particular case of nested saturations (Tarbouriech et al., 2006). In (Tyan & Bernstein,

1997), a dynamic compensator is designed to deal with independent magnitude and rate

saturation. A semi-global stabilization is proposed in (Lin, 1997) and a local one in (Gomes

da Silva Jr. et al., 2003). More general conditions of systems presenting nested saturations

are given in (Bateman & Lin, 2003) (continuous-time) and (Bateman & Lin, 2002; Zhou,

2013) (discrete-time). Besides, the polytopic model of the saturating signals is employed.

In the continuous-time systems, nested saturations are addressed in (Tarbouriech et al.,

2006) by using the generalized sector condition. More recently, Palmeira et al. (2016)

addresses the stability analysis of rate-saturating sampled-data control, and Flores (2019)

discusses the reference tracking of LPV systems. Both works are based on Tarbouriech

et al. (2006) and give synthesis conditions considering magnitude and rate saturations.

However, none of the aforementioned works concerns with LPV discrete-time systems and

thus, cannot be used to stabilize them.
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1.3 Goals

The main objective of this work is to develop new conditions for the synthesis of

parameter-dependent state feedback controllers that guarantee the asymptotic and input-

to-state stability of LPV linear discrete-time systems with saturation in magnitude and

rate of change for a set of initial conditions and limited energy input disturbances.

To complement the main objective of this project, some specific goals are also pur-

sued. To allow the controllers to have a certain specified performance, it is proposed

to consider an ensured exponential stability performance at the controller design phase.

Also, to obtain the largest estimates of regions of attraction in the considered problems,

it is necessary to develop convex optimization procedures for different design objectives.

Finally, to demonstrate the efficiency of the proposed methodology is expected to apply

the synthesis conditions in real systems and numerical examples.

1.4 Text organization

This thesis is divided into five chapters. This chapter contains an introduction to the

problem addressed, a literature review about the main topics, the objectives, and the

organization of the document. Next, the second chapter presents the main fundamen-

tal mathematical tools for developing and understanding the main results of this work.

The third chapter presents conditions to design state feedback controllers for discrete-time

LPV systems subject to magnitude and rate saturation, and energy bounded disturbances.

Then, some optimization procedures are presented, such as minimization of the L2-gain,

maximization of the set of admissible initial states, and maximum tolerance to distur-

bance. Finally, numerical examples are presented to consolidate the proposed approach.

In the fourth chapter, an experimental result of a level control in a nonlinear system is

presented, using the conditions proposed in this work. Finally, the last chapter presents

the conclusion and proposals for future works.
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Chapter 2
Mathematical fundamentals

This chapter presents some fundamental mathematical tools for developing and un-

derstanding the main results of this work. For a better reader’s understanding of the

mathematical developments made in the following chapters, the concepts of discrete-time

LPV systems, stability in the Lyapunov sense, input-to-state stability, and actuators sat-

uration are presented.

2.1 Discrete-time LPV systems

Consider the following discrete-time linear parameter varying (LPV) system

xk+1 = A(αk)xk +B(αk)uk, (2.1)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control signal vector, the matrices

A(αk) ∈ R
n×n and B(αk) ∈ R

n×nu depend linearly on the time-varying parameter vector

αk. More specifically, these matrices belong to a polytopic domain given by the convex

combination of N known vertices:

M(αk) =
N
∑

i=1

αk(i)Mi, (2.2)

withM replacing matricesA andB, where αk ∈ P is the time-varying vector of parameters

belonging to the unitary simplex:

P=
{

αk∈R
N :

N
∑

i=1

αk(i) = 1,αk(i) ≥ 0, i = 1, . . . ,N
}

, (2.3)

which is assumed to be online available (Briat, 2015, pp. 10).

2.2 Stability in the Lyapunov sense

The stability of a system in relation to its equilibrium point can be characterized

by its internal energy. If the system’s equilibrium point energy tends to zero when the
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time approaches infinity, then it is said to be asymptotically stable. Throughout the

text, when the expression that a system is stable is used, it means that the equilibrium

point is stable. Lyapunov’s method uses a scalar function representing the amount of

energy in the system in relation to its equilibrium point. If this function V (xk) is always

positive, radially unbounded, null only at the equilibrium point, and with strictly negative

variations for V (xk) 6= 0 and null for V (xk) = 0, the system trajectories converge towards

the origin, i.e., the system is asymptotically stable, and it is called a Lyapunov function

(Khalil, 2002, pp. 114). The procedure for certifying the Lyapunov asymptotic stability

of a linear discrete-time system is illustrated as follows.

Consider the discrete-time parameter-dependent system given by (2.1) and analyzing

the autonomous configuration, i.e., with uk = 0, for an initial condition x0 6= 0. The

stability can be demonstrated using special comparison functions, where the bounds of

Lyapunov functions are known as class K functions. This kind of functions are defined in

the range [0,a) → [0,∞) and are strictly increasing.

Lemma 2.1 (Adapted from (Khalil, 2002)) If there exists V (xk), being this a Lyapunov

function, and being κ1, κ2, and κ3 class K functions, ∀k > 0, if the conditions

κ1(‖xk‖) ≤ V (xk) ≤ κ2(‖xk‖), (2.4)

and

∆V (xk)≤−κ3(‖xk‖), (2.5)

are fulfilled for all xk ∈ R
n, then system (2.1) is asymptotically stable.

Therefore, it is necessary to define a candidate Lyapunov function that satisfies Lemma

2.1. One of the most used candidate Lyapunov functions is the quadratic function defined

as

V (xk) = x⊤k Pxk, (2.6)

where P ∈ R
n×n (Boyd et al., 1994). To guarantee the positivity of V (xk), the matrix P

must be symmetric and positive definite (P = P⊤ > 0), i.e., all eigenvalues of P must

be real and greater than zero. For the function V (xk) to be decreasing, the temporal

variation ∆V (xk) must be negative along the trajectories of the system.

However, the quadratic function is quite restrictive for time-varying systems such as

system (2.1). This happens because the conditions formulated from this function are

defined only on the polytope vertices, so the results using this type of function are very

conservative. So, an alternative is to use time-varying parameter-dependent functions,

making the function more general, decreasing conservatism. Daafouz & Bernussou (2001)

proposed the polyquadratic stability using a parameter-dependent Lyapunov function,
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which are quadratic on the system state and depend in a polytopic way on the uncertain

parameter, and it can be described as:

V (xk,αk) = x⊤k P (αk)xk, (2.7)

P (αk) =
N
∑

i=1

αk(i)Pi > 0. (2.8)

The following theorem provides a solution through LMIs to the polyquadratic stability

problem of system (2.1):

Lemma 2.2 Consider the discrete-time system given by (2.1) and analyzing the autonomous

configuration. If there are positive definite symmetric matrices Pi ∈ R
n×n such that the

LMIs
[

Pi A⊤
i Pj

⋆ Pj

]

> 0. (2.9)

are satisfied, for all i, j = 1, . . . ,N , so the system (2.1) is asymptotically stable.

Proof: Assuming the feasibility of (2.9), multiply by αk(i), αk+1(j), αk ∈ P , sum it up for

i,j = 1, . . . ,N , then,
[

P (αk) A(αk)
⊤P (αk+1)

⋆ P (αk+1)

]

> 0.

By applying Schur’s complement (see Appendix A.1), it is possible to get

A(αk)
⊤P (αk+1)A(αk)− P (αk) < 0.

Pre- and post-multiplying the resulting inequality by x⊤k and xk, respectively, and replac-

ing xk+1 = A(αk)xk on it, results in

x⊤k+1P (αk+1)xk+1 − x⊤k P (αk)xk < 0,

that is equal to,

∆V (xk,αk) < 0.

Therefore, the conditions given in (2.9) implies the positivity of the Lyapunov function

given in (2.7)–(2.8) and the negativity of the temporal variation ∆V (xk,αk) with class K
functions given by β1‖xk‖2 ≤ V (xk,αk) ≤ β2‖xk‖2, and ∆V (xk,αk)≤−β3‖xk‖2, where

β1 = min
i=1,...,N

eig(Pi),

β2 = max
i=1,...,N

eig(Pi),

and there exists a sufficiently small β3 > 0, following the Lemma 2.1, it is concluded that

the system (2.1) is asymptotically stable.

The system is said to be polyquadratically stable, according to the following definition:
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Definition 2.1 ((Daafouz & Bernussou, 2001)) System (2.1) is said polyquadratically sta-

ble, if there exists a parameter-dependent quadratic Lyapunov function (2.7)–(2.8) that

satisfies Lemma 2.1.

Therefore, the following level set can be associated with the system:

LV(c) = {xk ∈ R
n : V (xk,αk) ≤ c, ∀αk ∈ P} , (2.10)

where 0 < c <∞, where if c = 1, the set is denoted by LV . Thus, the level set LV(c) can

be calculated by the following lemma, adapted from (Jungers & Castelan, 2011, Lemma

4):

Lemma 2.3 If (2.7)–(2.8) is a Lyapunov function for the system (2.1) then the level set

(2.10) can be computed using the finite dimensional condition

LV(c) =
⋂

αk∈P

E(P (αk),c) =
N
⋂

i=1

E(Pi,c), (2.11)

where E(Pi,c) are ellipsoidal sets defined by

E(Pi,c) = {xk ∈ R
n : x⊤k Pixk ≤ c}, (2.12)

for i = 1, . . . ,N .

This proof is presented in the Appendix A.2. The main advantage of this result is that

the level set LV(c) can be calculated through a finite number of ellipsoidal sets defined by

Pi, i = 1, . . . ,N , thus, it is not necessary to solve an infinite dimensional problem related

to αk.

When V (xk,αk) is a Lyapunov function, then ∆V (xk,αk) < 0 means that when the

system trajectory crosses the level set LV(c), it moves inward and never leaves it again. In

such a case, the level set LV(c) is a contractive set. Notice that as c decreases, the level set

shrinks towards the origin. Therefore, when ∆V (xk,αk) < 0 the system trajectory enters

LV(c) which shrinks towards the origin as time increases, resulting in the convergence of

the trajectories towards the origin. In cases where global stability cannot be determined,

a region that contains initial conditions of converging trajectories can be estimated with

the aid of LV(c). The presence of saturation in actuators is one of these cases of interest.

Due to its nonlinear behavior, it is relevant to investigate whether there is a neighborhood

around the origin where asymptotic stability is guaranteed. Based on this, the definition

of region of attraction emerges.

Definition 2.2 (Tarbouriech et al. (2011)) The region of attraction RA of any system

xk+1 = f(xk) is defined as set of all initial conditions x0 whose respective trajectories

converge asymptotically towards the origin. In other words, if x0 ∈ RA then xk → 0 when

k → ∞.
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Analytically, determining the system’s region of attraction RA is often a difficult or,

in some cases, a impossible task. However, it is possible to determine an estimate of the

region of attraction RE ⊆ RA, that is, to determine regions in the state space in which

the asymptotic convergence of the system trajectories is guaranteed. In the following

chapters, methods of designing controllers and estimating attraction regions RE that

certify the asymptotic stability of initial conditions are proposed.

2.3 Input-to-State Stability

Consider a discrete-time LPV system subject to external disturbances, such that

xk+1 = A(αk)xk + B(αk)uk + Bw(αk)ωk, (2.13)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control signal vector, the linear

parameter-dependent matrices A(αk) ∈ R
n×n, B(αk) ∈ R

n×nu , and Bw(αk) ∈ R
n×nw

belong to a polytopic domain given by (2.2), with M replaced by A, B, or Bw, and with

αk ∈ P .

In a control system subject to disturbance signals, state trajectories cannot be expected

to converge to the origin as time increases, while disturbances are not null. Therefore, it is

necessary to design the controller to reduce the disturbance’s influence on the system. In

this case, the idea is to guarantee that any trajectories of xk are bounded for disturbances

ωk also bounded (Sontag, 1999). This work is interested in energy-limited perturbations,

i.e., it is considered that the signal ωk has ℓ2-norm smaller than a certain quantity δ−1,

with δ > 0. Therefore, the vector ωk ∈ R
nw is composed by quadratically summable

perturbation signals, ωk ∈ W where:

W = {ωk ∈ R
nw : ‖ωk‖22 ≤ δ−1}, (2.14)

with ‖ωk‖22 =
∑

∞

k=0 ω
⊤
k ωk and δ−1 ∈ R+ represents the maximum energy of the distur-

bance signals.

To ensure that the system (2.13) trajectories are limited, the function

Jk = ∆V (xk,αk)− ω⊤

k ωk,

being V (xk,αk) > 0 a candidate Lyapunov function, then

k
∑

i=0

Jk = V (xk,αk)− V (x0,α0)−
k

∑

i=0

ω⊤

i ωi.

If V (xk,αk) > 0 is a Lyapunov function, the following sets can be associated with it:

R0 =
{

x0 ∈ R
n : V (xk,αk) ≤ β−1, ∀αk ∈ P

}

,
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RA =
{

xk ∈ R
n : V (xk,αk) ≤ µ−1, ∀αk ∈ P

}

,

with µ−1 = β−1 + δ−1, where R0 is the set of initial conditions whose trajectories do not

leave the region RA for any ωk ∈ W . Therefore, if Jk < 0, then ∆V (xk,αk) < ω⊤
k ωk,

meaning that for non null disturbances signals, the energy function V (xk,αk) is allowed to

increase by an amount depending on ωk energy. The system is said input-to-state stable

(ISS) when

1. for the system without disturbance, i.e., with ωk = 0, ∀k ≥ 0, the set LV(µ
−1) ⊆ RA

is a region of initial conditions that ensures the asymptotic stability of the origin;

2. for ωk 6= 0 with ωk ∈ W , the trajectories of the closed-loop system do not leave the

set LV(µ
−1) ⊆ RA for every initial state belonging to the set LV(β

−1) ⊆ R0, with

β−1 = µ−1 − δ−1.

Note that, in case 2, when the maximum allowed disturbance energy (δ−1) tends to infinity,

the set LV(β
−1) ≡ LV(µ

−1).

x1

x2

R0

RA

xk0
xk1

Figure 2.1: An initial condition belonging to R0 is subject to a disturbance signal that
starts to act at the instant k0. The state trajectory does not leave the region RA. Thus,
when ωk = 0 for k ≥ k1, the state converges asymptotically toward the origin, demon-
strating the input-to-state stability.

In Figure 2.1, the input-to-state stability is illustrated. It is assumed that at instant

k0 the disturbance signal ωk starts to act, and the initial condition belongs to R0. In

16



2.3. Input-to-State Stability

this case, the trajectory remains inside the region RA for any ωk ∈ W . Considering

that the disturbance vanishes in k1, it is guaranteed that the system trajectories converge

asymptotically to the origin when k → ∞.

Therefore, from the input-to-state stability, the control design objective can be seen

as projecting a signal uk in (2.13) to tolerate the highest possible value of disturbance

energy δ−1 or to maximize the estimate of the region R0 for a given disturbance energy

value.

2.3.1 ℓ2-gain

Consider a discrete-time LPV system subject to external disturbances, such that

xk+1 = A(αk)xk + B(αk)uk + Bw(αk)ωk,

yk = C(αk)xk,
(2.15)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control signal vector, ωk ∈ R
nw is the

vector of supposed quadratically summable perturbation signals belonging to (2.14), yk ∈
R

ny is the measurable output signal, the linear parameter-dependent matrices A(αk) ∈
R

n×n, B(αk) ∈ R
n×nu , Bw(αk) ∈ R

n×nw and C(αk) ∈ R
ny×n belong to a polytopic domain

given by (2.2) with αk ∈ P .

Considering

J̃k = ∆V (xk,αk)− ω⊤

k ωk + γ−1y⊤k yk,

∀k > 0, being V (xk,αk) > 0 a candidate Lyapunov function, then

k
∑

i=0

J̃k = V (xk,αk)− V (x0,α0)−
k

∑

i=0

ω⊤

i ωi + γ−1

k
∑

i=0

y⊤i yi.

So, if J̃k < 0, it follows that:

1. for the system without disturbance, i.e., with ωk = 0, ∀k ≥ 0, then ∆V (xk,αk) <

−γ−1y⊤k yk ≤ 0, which guarantees that the set LV(µ
−1) ⊆ RA is a region of initial

conditions that ensures the asymptotic stability of the origin;

2. (a) for ωk 6= 0 with ωk ∈ W , the trajectories of the closed-loop system do not leave

the set LV(µ
−1) ⊆ RA for every initial state belonging to the set LV(β

−1) ⊆ R0,

with β−1 = µ−1 − δ−1;

(b) for ωk 6= 0 with ωk ∈ W , for k → ∞, ‖yk‖22 ≤ γ(‖ωk‖22 + V (x0,α0)). Then, if

x0 = 0, it follows that ‖yk‖22 < γ‖ωk‖22, i.e., γ is a bound factor for ℓ2-gain.

See that if there is no concern about the ℓ2-gain in the problem, it can be treated as the

previous case presented in Section 2.3.
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In this case, a problem of interest added to the one presented before Section 2.3.1 is

to design the control signal uk to minimize the relation between the signals yk and ωk,

that is, minimizing the gain ℓ2.

2.4 Saturating Actuators

In this section, the development to treat the stabilization of systems subject to satu-

rating actuators is shown. First, the mathematical tools considering magnitude saturation

are presented. Next, we consider the magnitude and rate saturation.

2.4.1 Magnitude Saturation

Consider the following discrete-time LPV system

xk+1 = A(αk)xk + B(αk)sat (uk) , (2.16)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control signal vector, the linear

parameter-dependent matrices A(αk) ∈ R
n×n and B(αk) ∈ R

n×nu belong to polytopic

domain given (2.2) with αk ∈ P .

The system has input magnitude bounds, given by ρ(r) ∈ R
nu , where the saturation

function is described as

sat (uk)(r) =











ρ(r), if uk(r) > ρ(r)

uk(r), if − ρ(r) ≤ uk(r) ≤ ρ(r)

−ρ(r), if uk(r) < −ρ(r)
(2.17)

where ρ(r) is the symmetrical magnitude bound for each saturating actuator and r =

1, . . . ,nu.

The control law applied in the system, considering a time-varying parameters depen-

dent controller, is given by

uk = K(αk)xk, (2.18)

where K(αk) ∈ R
nu×n, and belong to polytopic domain given by (2.2) with αk ∈ P . Note

that the control signal is limited in magnitude and the closed-loop system can be written

substituting (2.18) in (2.16), resulting in

xk+1 = A(αk)xk + B(αk)sat (K(αk)xk) . (2.19)

Hence, the control signal available in system (2.19) is shown in Figure 2.2, where the

nonlinear behavior of the saturation function can be observed.

Due to the actuator constraints’ nonlinearities, in general, global closed-loop stability

cannot be ensured. Thus, it is necessary to determine the region of attraction RA ⊆ R
n
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uk(r)

sat (uk)(r)

−ρ(r)

−ρ(r)

ρ(r)

ρ(r)

Figure 2.2: Saturation function.

of all initial conditions such that the corresponding trajectories of (2.19) converge to the

origin. Because RA can be non-convex, open, and even unbounded in some directions

(Tarbouriech et al., 2006), an estimate RE ⊆ RA is calculated as large as possible. In

the literature, this estimate is made through several approaches. Among them, the most

common are through ellipsoidal (Jungers & Castelan, 2011) and polyhedral (Olaru &

Niculescu, 2008) sets. Thus, the controller designed considering the saturation’s effect

guarantees the local asymptotic stability of the system (2.19).

There are different ways to treat the problem of saturation. A brief overview of

some methods is presented in Section 1.2, and more details can be found in Chapter 1

of Tarbouriech et al. (2011). In this work, saturation is treated through the generalized

sector condition (Gomes da Silva Jr. & Tarbouriech, 2005). In this method, the saturating

actuators are modeled as a dead-zone nonlinearity, illustrated in Figure 2.3, defined by

ψ(uk) = sat (uk)− uk, (2.20)

that is, ψ(uk) =
[

ψ1(uk), . . . ,ψnu
(uk)

]⊤
, where

ψ(uk)(r) =











uk(r) − ρ(r), if uk(r) > ρ(r)

0, if − ρ(r) ≤ uk(r) ≤ ρ(r)

uk(r) + ρ(r), if uk(r) < −ρ(r)
(2.21)

for all r = 1, . . . ,nu.

The nonlinearity ψ(uk) belongs locally to the sector as long as

− ρλ(r) =
−ρ(r)

1− λ(r)
≤ uk(r) ≤

ρ(r)
1− λ(r)

= ρλ(r), (2.22)
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uk(r)

ψ(uk(r))

λ(r)uk(r)

−ρλ(r) −ρ(r)
ρ(r) ρλ(r)

Figure 2.3: Dead-zone function.

where 0 ≤ λ(r) ≤ 1.

Replacing the dead-zone function (2.20) in (2.19), the closed-loop system can be writ-

ten as

xk+1 =
(

A(αk) + B(αk)K(αk)
)

xk + B(αk)ψ
(

K(αk)xk

)

. (2.23)

Therefore, the system can be seen as a Lur’e type system, which is characterized by having

a linear part and a memoryless nonlinearity satisfying a sector condition in its dynamics

(Tarbouriech et al., 2011, pp. 40). Then, the stability of the system with saturation can

be assured using the generalized sector condition.

Consider the signal uk − vk where the auxiliary signal vk = Gxk is used as a degree

of freedom in the controller design. Therefore, the set S(ρ) is defined such that uk − vk

belong to:

S(ρ) =
{

uk ∈ R
nu ,vk ∈ R

nu :
∣

∣uk(r) − vk(r)
∣

∣ ≤ ρ(r)

}

, (2.24)

for all r = ,1 . . . ,nu. Then, the following lemma presented by Gomes da Silva Jr. &

Tarbouriech (2005) can be stated:

Lemma 2.4 (Generalized sector condition) Consider the function ψ(uk) defined in (2.20).

If xk ∈ S(ρ), then the relation

ψ(uk)
⊤T

[

ψ(uk) + vk
]

≤ 0 (2.25)

is verified for any positive definite diagonal matrix T ∈ R
nu×nu.
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2.4. Saturating Actuators

Note that, for the system (2.23) stabilization, the gain matrix K(αk) is parameter-

dependent. Then, the extra degree of freedom signal vk = G(αk)xk can be considered

with a similar structure to the control signal uk, depending linearly on αk.

2.4.2 Magnitude and Rate Saturation

In addition to magnitude saturation, the signal rate of change saturation is a nonlin-

earity that can be critical, and its effects need to be considered in many applications, as

exemplified in Chapter 1. In this work, the actuator with magnitude and rate satura-

tion is modeled as a first-order system with saturations in the input signal (representing

the magnitude limitation) and the actuator state (describing the rate limitation). This

topology is known as position-feedback-type model with speed limitation, and its main ad-

vantage is to treat both types of saturation as magnitude limitations. It should also be

considered that saturations are nested, with the magnitude and rate saturation problem

being a particular case of nested saturation problems, as discussed in (Tarbouriech et al.,

2006).

Therefore, consider the following discrete-time LPV system:

xk+1 = A(αk)xk + B(αk)φk(uk), (2.26)

where the linear parameter-dependent matrices A(αk) ∈ R
n×n and B(αk) ∈ R

n×nu belong

to the polytopic domain given (2.2) with αk ∈ P , and each actuator saturating in mag-

nitude and rate is modeled as a discrete-time version of the position-type feedback model

with speed limitation presented in Figure 1.3, which is reproduced in Figure 2.4 for the

reader’s convenience. The output is given by φk(·) : Rnu → R
nu , whose dynamics is given

+

++

−

uk(r) φk(r)
Λrr Ts

satM (w)(r) satR (w)(r)
φk+1(r)

z−1

ρM(r) ρR(r)

−ρM(r) −ρR(r)

Figure 2.4: Diagram of first-order nonlinear system used to model magnitude and rate
saturation.

by:

x̄k+1(r) = x̄k(r) + TssatR (ΛsatM (uk)− Λx̄k)(r) , (2.27)

φk(uk) = x̄k, (2.28)

for r = 1, . . . ,nu, where x̄k ∈ R
nu is the actuators’ state, Λ ∈ R

nu×nu is a diagonal

matrix composed by the actuators’ poles, Ts is the sampling period of the actuator, and

the symmetric saturation functions concerning the magnitude and rate are described as
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2.4. Saturating Actuators

(2.17) indicated respectively by satM and satR, with ρM ∈ R
nu and ρR ∈ R

nu denoting the

respective symmetrical bounds.

The control law applied in the system, considering a time-varying parameters depen-

dent controller is given by

uk = K(αk)xk + K̄(αk)x̄k = K̂(αk)zk, (2.29)

whereK(αk) ∈ R
nu×n, K̄(αk) ∈ R

nu×nu , K̂(αk) =
[

K(αk) K̄(αk)
]

, and zk =
[

x⊤k x̄⊤k
]⊤ ∈

R
n+nu is an augmented state vector including the plant and actuator states. Observe

that, whenever the actuator’s states are not available for feedback, K̄(αk) = 0 is required

∀αk ∈ P . Therefore, the resulting closed-loop system is given by:

xk+1 = A(αk)xk +B(αk)φk

(

K̂(αk)zk
)

. (2.30)

Since the modeling of the actuators allows both saturations to be treated as magnitude

saturation, it is possible to use the generalized sector condition to guarantee the system’s

stability. The dead-zone functions are defined as

ψ1(zk) = ψMk = satM

(

K̂(αk)zk

)

− K̂(αk)zk, (2.31)

ψ2(zk,ψMk) = ψRk = satR

(

ΛsatM

(

K̂(αk)zk

)

−Λx̄k

)

−
(

ΛsatM

(

K̂(αk)zk

)

−Λx̄k

)

. (2.32)

Note that (2.31) can be replaced in (2.32), resulting in

ψRk = satR

(

(

Λ̂ + ΛK̂(αk)
)

zk + ΛψMk

)

−
(

(

Λ̂ + ΛK̂(αk)
)

zk + ΛψMk

)

.

where Λ̂ =
[

0 −Λ
]

.

Therefore, the following polyhedral sets are defined with the aid of parameter-dependent

matrices GM(αk), GR1(αk), GR2(αk) ∈ R
nu×(n+nu):

SM(ρM) =
{

zk ∈ R
n+nu :

∣

∣

∣

∣

(

(

K̂(αk)−GM(αk)
)

zk

)

(r)

∣

∣

∣

∣

≤ ρM(r)

}

, (2.33)

and

SR(ρR) =

{

zk ∈ R
n+nu ,ψMk ∈ R

nu :

∣

∣

∣

∣

∣

(

( [

Λ̂ + ΛK̂(αk) Λ
]

−GR(αk)
)

[

zk
ψMk

])

(r)

∣

∣

∣

∣

∣

≤ ρR(r)

}

,

(2.34)

for all r = 1, . . . ,nu with GR(αk) =
[

GR1(αk) GR2(αk)
]

.

Applying Lemma 2.4, in the dead-zone functions given in (2.31) and (2.32), if zk ∈
SM(ρM), zk and ψMk belong to SR(ρR), then the following inequalities are satisfied:

ψ⊤

MkTM(ψMk +GM(αk)zk) ≤ 0, (2.35)

ψ⊤

RkTR(ψRk +GR(αk)
[

z⊤k ψ⊤
Mk

]⊤
) ≤ 0, (2.36)

where TM and TR are diagonal positive definite matrices belonging to R
nu×nu .
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2.5 Final Considerations

In this chapter, the main theoretical concepts and essential mathematical tools nec-

essary for the development and understanding of this work were addressed, such as LPV

system definitions; stability in the sense of Lyapunov, more specifically using parameter-

dependent functions; input-to-state stability and ℓ2-gain estimation; and stabilization of

systems with saturating actuators.
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Chapter 3
ISS under magnitude and rate saturating

actuators

This chapter presents new convex conditions to design state-feedback LPV controllers

for discrete-time systems subject to magnitude and rate saturating actuators and energy

bounded disturbances. The input-to-state stability conditions are used to design con-

trollers ensuring the minimization of the ℓ2-gain between the disturbance input and the

controlled output. Furthermore, optimization procedures to maximize the estimate of the

region of attraction and the tolerance to disturbance are formulated. The efficacy of the

proposed methods is illustrated with numerical examples.

3.1 Problem Formulation

Consider the discrete-time system with time-varying parameters, subject to magnitude

and rate saturations, and energy-limited disturbances, described by:

xk+1 = A(αk)xk + B(αk)φk(uk) + Bw(αk)ωk,

yk = C(αk)xk,
(3.1)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control signal vector, yk ∈ R
ny is the

measurable output signal, ωk ∈ R
nw is an ℓ2 signal, i.e., ωk is a quadratically summable

perturbation signal belonging to

W = {ωk ∈ R
nw : ‖ωk‖22 ≤ δ−1}, (3.2)

with ‖ωk‖2 =
√

∑

∞

k=0 ω
⊤
k ωk and δ−1 ∈ R+ represents the maximum energy of the distur-

bance signals. The linear parameter-dependent matrices A(αk) ∈ R
n×n, B(αk) ∈ R

n×nu ,

Bw(αk) ∈ R
n×nw and C(αk) ∈ R

ny×n belong to a polytopic domain given by the convex

combination of N known vertices:

M(αk) =
N
∑

i=1

αk(i)Mi, (3.3)

24



3.1. Problem Formulation

with M replacing matrices A, B, Bw and C where αk ∈ P is the time-varying vector of

parameters, which is assumed to be online available (Briat, 2015, pp. 10) and belongs to

the unit simplex:

P=
{

αk∈R
N :

N
∑

i=1

αk(i) = 1,αk(i) ≥ 0, i = 1, . . . ,N
}

. (3.4)

The discrete-time version of the PTFMSL presented in Figure 1.3, which is reproduced

in Figure 3.1 for the reader’s convenience, is employed for each actuator, where the output

is given by φk(·) : Rnu → R
nu , whose dynamics is given by

+

++

−

uk(r) φk(r)
Λrr Ts

satM (w)(r) satR (w)(r)
φk+1(r)

z−1

ρM(r) ρR(r)

−ρM(r) −ρR(r)

Figure 3.1: Diagram of first-order nonlinear system used to model magnitude and rate
saturation.

x̄k+1(i) = x̄k(i) + TssatR (ΛsatM (uk)− Λx̄k)(i) , (3.5)

φk(uk) = x̄k, (3.6)

for i = 1, . . . ,nu, where x̄k ∈ R
nu is the actuators’ state, Λ ∈ R

nu×nu is a diagonal matrix

composed by the actuators’ poles, Ts is the sampling period of the actuator, and for a

signal w ∈ R
nu the symmetric saturation functions concerning the rate and magnitude

are given by

satR (w)(i) = sign(w(i))min(|w(i)|,ρR(i)), (3.7)

and

satM (w)(i) = sign(w(i))min(|w(i)|,ρM(i)), (3.8)

respectively, with ρR ∈ R
nu and ρM ∈ R

nu denoting the respective symmetrical bounds.

Considering a state feedback parameter-dependent control law that may use the state

of the actuator to stabilize system (3.1)–(3.6), given as

uk = K(αk)xk + K̄(αk)x̄k = K̂(αk)zk, (3.9)

where K(αk) ∈ R
nu×n, K̄(αk) ∈ R

nu×nu ,

K̂(αk) =
[

K(αk) K̄(αk)
]

,

and

zk =
[

x⊤k x̄⊤k
]⊤ ∈ R

n+nu
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is an augmented state vector including the plant and actuator states.

Therefore, the resulting closed-loop system (3.1)–(3.9), is given by:

xk+1 = A(αk)xk + B(αk)φk

(

K̂ (αk) zk

)

+Bw(αk)ωk,

yk = C(αk)xk.
(3.10)

Since the actuators are saturating, the resulting closed-loop system (3.10) is nonlinear.

Therefore, generally, global stability cannot be achieved for the cases where A(αk) is not

exponentially stable. Hence, it is necessary to determine the set of initial conditions

RA ⊆ R
n+nu that result in trajectories that converge asymptotically to the origin, being

called the region of attraction. In particular, considering the energy of ωk ∈ W with δ > 0,

the set of initial conditions R0 ⊆ RA must be determined to ensure that the closed-loop

trajectories do not leave the set RA. To guarantee regional stability in the presence of

energy-limited exogenous signals, the following definition (Sontag, 2008) is considered:

Definition 3.1 Consider a positive scalar δ and any sequence ωk ∈ W. The resulting

closed-loop system is said to be input-to-state stable (ISS) if for any initial state belonging

to R0 the resulting state trajectories remain bounded in RA for all k ≥ 0. Moreover, if

the disturbance is vanishing, then the state trajectories converge towards the origin.

Due to the difficulties in determining the region of attraction, such as non-convexity

and eventually not being limited in certain directions (see (Tarbouriech et al., 2011, pp.

14)), we search for an estimate RE ⊆ RA and RE0 ⊆ R0 as large as possible. Thus, one

of the problems investigated in this work is described as follows:

Problem 3.1 Given the discrete-time LPV system represented by (3.1)–(3.4), the actuator

dynamics in (3.5)–(3.6), and the control law (3.9), determine parameter-dependent state

feedback gains K(αk) and K̄(αk) and estimates RE0 ⊆ R0 and RE ⊆ RA such that the

resulting closed-loop system is ISS for all ωk ∈ W and αk ∈ P. In addition, the designed

controller must ensure a certain upper limit of the ℓ2-gain, denoted by γ, between the

disturbance signal ωk and the regulated output yk, such that

‖yk‖2 =
√
γ(‖ωk‖2 + b), (3.11)

where the bias term b due to the non-null initial conditions.

It is important to mention that based on Problem 3.1, some optimization procedures,

concerning the maximization of the region of attraction RA or the region R0, the max-

imization of the disturbance tolerance, or even the minimization of the ℓ2-gain, can be

developed and will be presented later.
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3.2 Auxiliary Results

Using the dead-zone functions to handle the actuators’ nonlinearities as described in

Section 2.4.2, repeated here for convenience

ψMk = satM (uk)− uk, (3.12)

ψRk = satR (ΛsatM (uk)−Λx̄k)−(ΛsatM (uk)−Λx̄k) , (3.13)

and using the control law (3.9), ψRk can be rewritten as

ψRk = satR

(

(

Λ̂ + ΛK̂(αk)
)

zk + ΛψMk

)

−
(

(

Λ̂ + ΛK̂(αk)
)

zk + ΛψMk

)

, (3.14)

where Λ̂ =
[

0 −Λ
]

. By taking (3.5)–(3.6), and (3.10), the resulting dynamics of the

augmented closed-loop system can be rewritten as:

zk+1 =
(

Â (αk) + B̄K̂ (αk)
)

zk +
[

B̄ B̂
]

[

ψMk

ψRk

]

+ B̂w(αk)ωk,

yk = Ĉ(αk)zk

(3.15)

with

Â(αk)=

[

A(αk) B(αk)
0 I− TsΛ

]

, B̄=

[

0

TsΛ

]

, B̂=

[

0

TsI

]

,

B̂w(αk)=

[

Bw(αk)
0

]

, Ĉ(αk)=

[

C(αk)
0

]⊤

.

(3.16)

Observe that (3.15) is expressed as a Lur’e type system (see section 2.4.1).

From Lemma 2.4 used to handle the nested saturation function, it yields to the follow-

ing polyhedral sets defined with the aid of parameter-dependent matrices GM(αk), GR1(αk),

GR2(αk) ∈ R
nu×(n+nu):

SM(ρM) =
{

zk ∈ R
n+nu :

∣

∣

∣

∣

(

(

K̂(αk)−GM(αk)
)

zk

)

(r)

∣

∣

∣

∣

≤ ρM(r)

}

, (3.17)

and

SR(ρR) =

{

zk ∈ R
n+nu ,ψMk ∈ R

nu :

∣

∣

∣

∣

∣

(

( [

Λ̂ + ΛK̂(αk) Λ
]

−GR(αk)
)

[

zk
ψMk

])

(r)

∣

∣

∣

∣

∣

≤ ρR(r)

}

,

(3.18)

for r = 1, . . . ,nu, with GR(αk) =
[

GR1(αk) GR2(αk)
]

. Therefore, SM(ρM) is the set of zk

where the modulus of the signal
(

K̂(αk)−GM(αk)
)

zk has a maximum value of ρM. Similarly,

SR(ρR) is the set of zk and ψMk regarding to the bound ρR. Then, if zk ∈ SM(ρM), zk and ψMk

belong to SR(ρR), as stated in Lemma 2.4, the following inequalities are verified:

ψ⊤

MkTM(ψMk +GM(αk)zk) ≤ 0, (3.19)
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ψ⊤

RkTR(ψRk +GR(αk)
[

z⊤k ψ⊤
Mk

]⊤
) ≤ 0, (3.20)

where TM and TR are positive definite diagonal matrices belonging to R
nu×nu .

From (3.15), the input-to-state stability can be investigated by using the Lyapunov

theory, with the following parameter-dependent candidate Lyapunov function V (·,·) :

R
n+nu × P → R

+:

V (zk,αk) = z⊤k P (αk)zk, (3.21)

with

P (αk) =
N
∑

i=1

αk(i)Pi > 0. (3.22)

If (3.21)–(3.22) fulfills the following conditions for zk ∈ RE ⊆ R
n+nu and class K

functions β1‖zk‖2, β2‖zk‖2, and β3‖zk‖2, βi > 0, i ∈ {1,2,3}:

β1‖zk‖2 ≤ V (zk,αk) ≤ β2‖zk‖2,
∆V (zk,αk) = V (zk+1,αk+1)− V (zk,αk) ≤ −β3‖zk‖2, (3.23)

for all allowed sequences of αk ∈ P , then it ensures the regional stability of the closed-loop

system, and the following level set can be associated:

LV(µ
−1) =

{

zk ∈ R
n+nu : V (zk,αk) ≤ µ−1, ∀αk ∈ P

}

, (3.24)

with 0 < µ <∞. Therefore, the level set is calculated using the Lemma 2.3 as

LV(µ
−1) =

⋂

αk∈P

E(P (αk),µ
−1) =

N
⋂

i=1

E(Pi,µ
−1), (3.25)

where E(Pi,µ
−1) are ellipsoidal sets defined by

E(Pi,µ
−1) = {zk ∈ R

n+nu : z⊤k Pizk ≤ µ−1}, (3.26)

for i = 1, . . . ,N . By this way, the level sets can be calculated through finite dimensions

conditions, providing the estimates of the region of attraction and the region of suitable

initial conditions of system (3.15), called respectively by RE ⊆ RA and RE0 ⊆ R0.

3.3 Main Results

This section presents a condition proposed in this work that provides a solution to

Problem 3.1, as shown in the following theorem:

Theorem 3.1 Consider the LPV discrete-time system under magnitude and rate saturat-

ing actuators given by (3.1)-(3.6), and the saturation limits ρM and ρR for the actuators’

magnitude and rate, respectively. Suppose that there exist symmetric and positive defi-

nite matrices P̃i ∈ R
(n+nu)×(n+nu), diagonal matrices LM, LR ∈ R

nu×nu, matrices Zi, XMi,
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XR1i ∈ R
nu×(n+nu), XR2i ∈ R

nu×nu, H̃ ∈ R
(n+nu)×(n+nu), for i, j = 1, . . . ,N , positive scalars

µ, δ and a positive scalar η < 1 such that, with matrices Âi, B̄, B̂, B̂wi, and Ĉi computed

as in (3.16), the following LMIs

















−(1− η)P̃i −H̃⊤Â⊤
i − Z⊤

i B̄
⊤ −X⊤

Mi −X⊤
R1i

0 H̃⊤Ĉ⊤
i

⋆ P̃j + H̃ + H̃⊤ −B̄LM −B̂LR −B̂wi 0

⋆ ⋆ −2LM −X⊤
R2i

0 0

⋆ ⋆ ⋆ −2LR 0 0

⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ −γI

















< 0, (3.27)

[

−P̃i Z⊤

i(r) −X⊤

Mi(r)

⋆ −µρ2
M(r)

]

≤ 0, (3.28)







−P̃i X⊤
Mi H̃⊤Λ̂⊤

(r) + (ΛZi)
⊤

(r) −X⊤

R1i(r)

⋆ −2LM LMΛ
⊤

(r) −X⊤

R2i(r)

⋆ ⋆ −µρ2
R(r)






≤ 0, (3.29)

and

δ − µ ≥ 0 (3.30)

are feasible for ∀r = 1, . . . ,nu. Then, the control gain matrices

K̂i = ZiH̃
−1,

where K̂i =
[

Ki K̄i

]

, yield the control law (3.9) that

1. for ωk 6= 0 with ωk ∈ W, the trajectories of the closed-loop system do not leave

the set RE = LV(µ
−1) ⊆ RA for every initial state belonging to the set RE0 =

LV(β
−1) ⊆ R0, with β

−1 = µ−1 − δ−1 for all k ≥ 0 and αk ∈ P;

2. ‖yk‖22 ≤ γ(‖ωk‖22 + V (z0,α0)) for k → ∞;

3. for ωk = 0, the set RE = LV(µ
−1) ⊆ RA is a region of asymptotic stability for the

system (3.15) for all k ≥ 0.

Also, the control law (3.9) ensures a certain performance level to the closed-loop system

measured by the Lyapunov function’s decay rate as ‖zk‖ ≤
√

β2

β1

(√
1− η

)k ‖z0‖, with

β1 = min
i=1,...,N

eig(H̃−⊤P̃iH̃
−1), β2 = max

i=1,...,N
eig(H̃−⊤P̃iH̃

−1), and a small enough β3 > 0,

for all initial conditions belonging to the estimated region of attraction RE .

Proof: The proof is divided into two steps: In the first one, the local input-to-state

stability and the ℓ2-gain for the closed-loop system are proved. In the second, it is shown

that with initial conditions in LV(µ
−1), the sets SM(ρM) and SR(ρR) are verified, ensuring

the generalized sector condition.
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Step 1: Admitting the feasibility of (3.27), then LM and LR are nonsingular. Also, from

the positivity of P̃i and block (2,2), then H̃ is regular. Perform the replacements: P̃i =

H̃⊤PiH̃, P̃j = H̃⊤PjH̃, Zi = K̂iH̃, LM = T−1
M
, LR = T−1

R
, XMi = GMiH̃, XR1i = GR1iH̃,

and XR2i = GR2iLM, resulting in

















−(1− η)H̃⊤PiH̃ −H̃⊤Â⊤
i − H̃⊤K̂⊤

i B̄
⊤ −H̃⊤G⊤

Mi −H̃⊤G⊤
R1i

0 H̃⊤Ĉ⊤
i

⋆ H̃⊤PjH̃ + H̃ + H̃⊤ −B̄T−1
M

−B̂T−1
R

−B̂wi 0

⋆ ⋆ −2T−1
M

−T−1
M
G⊤

R2i
0 0

⋆ ⋆ ⋆ −2T−1
R

0 0

⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ −γI

















< 0.

(3.31)

Pre- and post-multiplying (3.31) by diag
{

H,H,TM,TR,I,I
}

, where H = H̃−⊤, and its trans-

pose, yields

















−(1− η)Pi −Â⊤
i H

⊤ − K̂⊤
i B̄

⊤H⊤ −G⊤
MiT

⊤
M

−G⊤
R1i
T⊤
R

0 Ĉ⊤

⋆ Pj +H +H⊤ −HB̄ −HB̂ −HB̂w 0

⋆ ⋆ −2TM −G⊤
R2i
T⊤
R

0 0

⋆ ⋆ ⋆ −2TR 0 0

⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ −γI

















< 0. (3.32)

Next, multiplying (3.32) by αk(i), αk+1(j), αk ∈ P , and summing it for i,j = 1, . . . ,N ,
results in

















−(1− η)P (αk) Π1 −GM(αk)
⊤T⊤

M
−GR1(αk)

⊤T⊤
R

⋆ P (αk+1) +H +H⊤ −HB̄ −HB̂
⋆ ⋆ −2TM −GR2(αk)

⊤T⊤
R

⋆ ⋆ ⋆ −2TR
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

0 Ĉ(αk)
⊤

−HB̂w(αk) 0

0 0

0 0

−I 0

⋆ −γI

















< 0, (3.33)

with Π1 = −Â(αk)
⊤H⊤ − K̂(αk)

⊤B̄⊤H⊤. By applying the Schur’s complement in (3.33)
it is possible to get













−(1− η)Π2 Π1 −GM(αk)
⊤T⊤

M
−GR1(αk)

⊤T⊤
R

0

⋆ P (αk+1) +H +H⊤ −HB̄ −HB̂ −HB̂w(αk)
⋆ ⋆ −2TM −GR2(αk)

⊤T⊤
R

0

⋆ ⋆ ⋆ −2TR 0

⋆ ⋆ ⋆ ⋆ −I













< 0,

(3.34)
with Π2 = P (αk) + Ĉ(αk)

⊤γ−1Ĉ(αk).
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Pre- and post-multiplying (3.34) by ξ =
[

z⊤k z⊤k+1 ψ⊤
M

ψ⊤
R

ω⊤
k

]⊤
and its trans-

pose, respectively, considering ∆V (zk,αk) = z⊤k+1P (αk+1)zk+1− z⊤k P (αk)zk, and replacing

Ĉ(αk)zk for yk, thus

∆V (zk,αk) + ηV (zk,αk)− 2ψ⊤

MkTMψMk − 2ψ⊤

MkTMGM(αk)zk − 2ψ⊤

RkTRψRk − 2ψ⊤

RkTRGR1(αk)zk

− 2ψ⊤

RkTRGR2(αk)ψMk − ω⊤

k ωk + γ−1y⊤k yk < 0. (3.35)

Therefore, if (3.27) is verified and zk belongs to both SM(ρM) and SR(ρR), conditions
(3.19) and (3.20) are satisfied, then (3.35) yields β1 = min

i=1,...,N
eig(H̃−⊤P̃iH̃

−1), β2 =

max
i=1,...,N

eig(H̃−⊤P̃iH̃
−1), which with a small enough β3 > 0 and (3.23) ensures that

V (zk,αk) is radially unbounded and that ∆V (zk,αk) < −ηV (zk,αk) ≤ 0 is verified. Also,
the trajectories of the closed-loop system (3.15) under the control law (3.9) are bounded
for any disturbance satisfying (3.2), and, in addition, there is an upper bound for the
ℓ2-gain between the disturbance and the regulated output. Moreover, it ensures that

V (zk,αk) ≤ (1− η)kV (z0,α0),

and
β1‖zk‖2 ≤ β2(1− η)k‖z0‖2.

Then,

‖zk‖ ≤
√

β2
β1

(

√

1− η
)k

‖z0‖

can be written, ensuring the regional exponential convergence to the origin. This proof
step can also be obtained by using Finsler’s Lemma.
Step 2: It remains to demonstrate that the generalized sector conditions (3.19)-(3.20) are
in fact verified. The condition (3.28) ensures the inclusion of the contractive level set
given by the Lyapunov function in SM(ρM). Assuming the feasibility of (3.28), and doing
the variables’ change P̃i = H̃⊤PiH̃, Zi = K̂iH̃, and XMi = GMiH̃, yields

[

−H̃⊤PiH̃ H̃⊤K̂⊤

i(r) − H̃⊤G⊤

Mi(r)

⋆ −µρ2
M(r)

]

≤ 0. (3.36)

Moreover, pre- and post-multiplying (3.36) by diag
{

H̃−⊤,1
}

and its transpose, respec-
tively, resulting in

[

−Pi K̂⊤

i(r) −G⊤

Mi(r)

⋆ −µρ2
M(r)

]

≤ 0. (3.37)

From (3.37), multiply it by αk(i) and sum it up for i = 1, . . . ,N to get

[

−P (αk) K̂(αk)
⊤

(r) −GM(αk)
⊤

(r)

⋆ −µρ2
M(r)

]

≤ 0. (3.38)

By applying the Schur’s complement and pre- and post-multiplying by z⊤k and zk, it follows
that

z⊤k Θ
⊤

M
(µρ2

M(r))
−1ΘMzk − z⊤k P (αk)zk ≤ 0, (3.39)
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where ΘM = K̂(αk)(r) − GM(αk)(r) and r = 1, . . . ,nu. If z0 belongs to LV(µ
−1), it follows

that z⊤k P (αk)zk ≤ V (z0) ≤ µ−1, leading to ρ−2
M(r)|ΘMzk|2 ≤ µz⊤k P (αk)zk ≤ µV (z0) ≤ 1.

Thus, |ΘMzk|2 ≤ ρ2
M(r), satisfying SM(ρM) given in (3.17).

Lastly, the feasibility of (3.29) ensures the inclusion of the contractive level set given by
the Lyapunov function in SM(ρM)∩SR(ρR). Then, replacing following variables P̃i = H̃⊤PiH̃,
Zi = K̂iH̃, XMi = GMiH̃, XR1i = GR1iH̃, XR2i = GR2iT

−1
M

and LM = T−1
M

in (3.29), leads to







−H̃⊤PiH̃ H̃⊤G⊤
Mi H̃⊤Λ̂⊤

(r) + (ΛK̂iH̃)⊤(r) − H̃⊤G⊤

R1i(r)

⋆ −2T−1
M

T−1
M

Λ⊤

(r) − T−⊤
M

G⊤

R2i(r)

⋆ ⋆ −µρ2
R(r)






≤ 0. (3.40)

Next, pre- and post-multiplying (3.40) by diag
{

H̃−⊤,TM,1
}

and its transpose, respectively,
yields







−Pi G⊤
MiTM Λ̂⊤

(r) + (ΛK̂i)
⊤

(r) −G⊤

R1i(r)

⋆ −2TM Λ⊤

(r) −G⊤

R2i(r)

⋆ ⋆ −µρ2
R(r)






≤ 0. (3.41)

Multiply (3.41) by αk(i), and sum it up for i = 1, . . . ,N , then







−P (αk) GM(αk)
⊤TM Λ̂⊤

(r) + (ΛK̂(αk))
⊤

(r) −GR1(αk)
⊤

(r)

⋆ −2TM Λ⊤

(r) −GR2(αk)
⊤

(r)

⋆ ⋆ −µρ2
R(r)






≤ 0. (3.42)

By applying the Schur’s complement and pre- and post-multiplying by ζ⊤ = [z⊤k ψ⊤
Mk] and

its transpose, respectively, it follows that

ζ⊤
(

[

Θ⊤

R1(r)

Θ⊤

R2(r)

]

(µρ2
R(r))

−1
[

ΘR1(r) ΘR2(r)

]

−
[

P (αk) 0

0 0

]

)

ζ ≤ 0,

where ΘR1(r) = Λ̂(r)+ΛK̂(αk)(r)−GR1(αk)(r) and ΘR2(r) = Λ(r)−GR2(αk)(r) for r = 1, . . . ,nu.

Similar to the analysis above mentioned for equation (3.28), it can be concluded that

|ΘR1zk + ΘR2ψMk|2 ≤ ρ2
R(r) if z0 belongs to RE ≡ LV(µ

−1), thus, z0 belongs to both sets

SM(ρM) and SR(ρR), given in (3.17) and (3.18), respectively, which ensures the generalized

sector condition. Therefore, the convergence to the origin of any trajectory of the closed-

loop system (3.15) starting at LV(µ
−1) for ωk = 0 is verified, which concludes the proof.

Assume that system (3.15) is not subject to any external disturbance signal, i.e.,

ωk = 0 for all k ≥ 0. Then, the following corollary can be stated as a particularity of

Theorem 3.1.

Corollary 3.1 Consider the LPV discrete-time system under magnitude and rate satu-

rating actuators given by (3.15), and the saturation limits ρM and ρR for the actuators’

magnitude and rate, respectively. Suppose that there exist symmetric and positive defi-

nite matrices P̃i ∈ R
(n+nu)×(n+nu), diagonal matrices LM, LR ∈ R

nu×nu, matrices Zi, XMi,
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XR1i ∈ R
nu×(n+nu), XR2i ∈ R

nu×nu, H̃ ∈ R
(n+nu)×(n+nu), for i, j = 1, . . . ,N , and posi-

tive scalars µ and η < 1 such that, with matrices Âi, B̄, B̂, computed as in (3.16), the

following LMIs








−(1− η)P̃i −H̃⊤Â⊤
i − Z⊤

i B̄
⊤ −X⊤

Mi −X⊤
R1i

⋆ P̃j + H̃ + H̃⊤ −B̄LM −B̂LR

⋆ ⋆ −2LM −X⊤
R2i

⋆ ⋆ ⋆ −2LR









< 0, (3.43)

(3.28), and (3.29) are feasible for ∀r = 1, . . . ,nu. Then, the control gain matrices

K̂i = ZiH̃
−1,

where K̂i =
[

Ki K̄i

]

, yield the control law (3.9) that ensures that the closed-loop system

is asymptotically stable for all initial conditions belonging to RE = LV(µ
−1) ⊆ RA.

Using the regional polyquadratic stabilization conditions, it is also possible to find a

robust gain to ensure the stability of the system (3.1)–(3.6), as shown in the following

corollary.

Corollary 3.2 If Theorem 3.1 or the Corollary 3.1 are satisfied with Zi = Z, XMi = XM,

XR1i = XR1, and XR2i = XR2, then the control law uk = Kxk + K̄x̄k = K̂zk regionally

exponentially polyquadratically stabilizes the discrete-time system described in (3.1)–(3.6)

with K̂ = ZH̃−1.

The proof of both corollaries follows the same steps as the proof of Theorem 3.1, doing

the necessary changes.

Note that for Theorem 3.1, Corollary 3.1 and Corollary 3.2 it is possible to use a

quadratic candidate Lyapunov function that is time-varying parameter independent, i.e.,

V (zk) = z⊤k Pzk for the stabilization of system (3.1)–(3.6).

3.3.1 Optimization Procedures

The conditions to controllers synthesis and estimate the region of attraction presented

in Section 3.3 can be investigated through different optimization procedures. By convex

optimization procedures, it is possible to design controllers that pursue to maximize the

attraction region, maximize disturbance tolerance, or minimize the ℓ2-gain. Some of the

possibilities of this work interest are presented in the sequence.

Maximization of the estimation of the region of attraction (RE): Considering that no

disturbance is present, i.e., wk = 0 for all k ≥ 0, then the control design objective can be

maximizing the size of the estimated region of attraction, RE . So, with a positive definite

matrix Y ∈ R
n, an ellipsoidal set contained in LV(µ

−1) is defined as

E(Y,1) = {xk ∈ R
n; x⊤k Y xk ≤ 1} ⊆ LV(µ

−1), (3.44)
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leading to UPiU
⊤ − Y ≤ 0, i = 1, . . . ,N , where U =

[

In 0n×nu

]

. Therefore, (3.44) can

be rewritten as
[

−Y I

I U(P̃i + H̃ + H̃⊤)U⊤

]

≤ 0. (3.45)

Hence, it is possible to (indirectly) maximize the size of RE through the following convex

optimization procedure:

T1 :











min trace(Y )

subject to: LMIs (3.28), (3.29), (3.43), (3.45) and µ− 1 ≤ 0

i,j = 1, . . . ,N.

(3.46)

Maximization of the disturbance tolerance: The interest, in this case, is to determine

the control gain vectors that maximize the set of admissible perturbations ωk ∈ W for a

set of allowable initial states R0. A particular case of this optimization is for when the

system is in equilibrium, i.e., z0 = 0, which results in δ−1 = µ−1. Therefore, the following

convex optimization procedure maximizes the admissible disturbance energy:

T2 :











min µ

subject to: LMIs (3.27)–(3.30)

i,j = 1, . . . ,N.

(3.47)

Minimization of the ℓ2-gain: This optimization procedure investigates determining

the control gains that minimizes the ℓ2-gain between the disturbance signal αk and the

output yk, for a given disturbance energy limit, δ−1. Particularly, when the system is in

equilibrium, i.e., z0 = 0, δ−1 = µ−1. Thus, the following convex optimization procedure

minimizes the ℓ2-gain:

T3 :











min γ

subject to: LMIs (3.27)–(3.30)

i,j = 1, . . . ,N.

(3.48)

3.4 Numerical Examples

In this section, numerical examples are presented to illustrate the effectiveness of the

conditions proposed for the controllers’ synthesis.

3.4.1 Example 1

In this experiment, the objective is to compare the region of attraction obtained by de-

signing the state feedback gain between the robust controller and the parameter-dependent

controller. Furthermore, the influence of the use of quadratic and polyquadratic candidate
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Lyapunov functions is investigated in the size of the region of attraction. Consider the

LPV system (3.1) with the matrices adapted from (De Souza et al., 2019), as

A1 =

[

−0.48 0.71
0.66 1.23

]

, A2 =

[

−0.52 0.69
0.54 1.17

]

, B1 =

[

0.01
1.03

]

,

B2 =

[

−0.01
0.97

]

, Bw1 =

[

0.11
0.13

]

, Bw2 =

[

−0.01
0.07

]

,

(3.49)

with Λ = 10, the symmetric limits of magnitude and rate saturation given by ρM = 10 and

ρR = 1, respectively, and Ts = 1. Considering η = 0, and the system without disturbances,

the stabilization of the system with the control law (3.9) using the is investigated in four

cases:

1. Using the parameter-dependent gains, and a polyquadratic candidate Lyapunov

function using the Corollary 3.1;

2. Using the parameter-dependent gains, and a quadratic candidate Lyapunov function

using the Corollary 3.1;

3. Using the robust gain, i.e., K̂(αk) = K̂, for all k ≥ 0, with a polyquadratic candidate

Lyapunov function using the Corollary 3.2;

4. Using the robust gain, with a quadratic candidate Lyapunov function using the

Corollary 3.2.

Solving the optimization procedure T1 with those four situations, the Figure 3.2 shows

the cut of the estimates RE at x̄0 = 0. Using the LPV controller with a polyquadratic

candidate Lyapunov function (case 1), the optimization yields to the bigger estimated RE ,

once it is defined by the intersection of the ellipsoids E(P1) and E(P2) (solid and dashed

black lines, respectively), resulting in a larger region. Note that, in this example, the

robust controller with a polyquadratic candidate Lyapunov function allows an estimate

of the region of attraction as large as the one obtained with the robust controller with a

quadratic Lyapunov function.

Considering case 1, the optimization procedure T1 yields to designed control gain

vectors

K̂1 =
[

−0.0332 −0.0954 0.7895
]

, and K̂2 =
[

−0.0261 −0.0938 0.7894
]

. (3.50)

The matrices of the polyquadratic Lyapunov function obtained are

P1 =





0.0236 0.0698 0.1513
0.0698 0.2096 0.4537
0.1513 0.4537 0.9923



 ,
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Figure 3.2: Estimated regions of attraction for different approaches of controllers and
candidate Lyapunov functions. LPV controller (Corollary 3.1) with polyquadratic sta-
bilization (case 1), LPV controller (Corollary 3.1) with quadratic stabilization (case 2),
robust controller (Corollary 3.2) with polyquadratic stabilization (case 3) and robust con-
troller (Corollary 3.2) with quadratic stabilization (case 4).

and

P2 =





0.0250 0.0828 0.1784
0.0828 0.2788 0.5995
0.1784 0.5995 1.2991



 .

Note that the controller terms (K̄) for the actuator state (x̄) in (3.50) are positive and

considerably larger than the plant controller terms. Thus, with slight variations in the

actuator state, it acts more aggressively, aiming to address the saturation problem in the

rate of change.

Based on the projected gains and the estimated region of attraction found, Figure 3.3

presents some trajectory projections of states in the x̄ = 0 plan for the system (3.10).

As cited above, RE is defined by the intersection of the ellipsoids E(P1) and E(P2) (solid

and dashed black lines, respectively). Two initial conditions (blue points) are selected on

the edge of the intersection region, and the corresponding trajectories (in blue) converge

towards the origin, as expected. The red lines trajectories of the initial conditions not

belonging to the set (marked with a red ×) show unstable behaviors. Although the
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Figure 3.3: Estimate of the region of attraction (intersection of solid and dashed black
ellipsoids) and projections state trajectories. The red lines trajectories concern to initial
conditions that do not belong to the estimated region of attraction, and therefore, they
diverge. On the other hand, the blue lines trajectories with initial conditions close to the
set’s border, converge to the origin, demonstrating asymptotic stability.

stable trajectories leave the cut of the region, to illustrate that they do not leave RE , the

reader can observe the behavior of V (zk,αk) in Figure 3.4 which is always less than 1 and

monotonically decreasing.

For one of the selected stable initial conditions, z0 =
[

44.9426 −13.9497 0
]

, the

actuator’s output signal (x̄) over time is shown in the top plot of Figure 3.5. Note that,

as the bottom plot shows, the rate variation limit (ρR = 1) is achieved in the initial

samples. However, the system can still converge to the origin once the chosen initial

condition belongs to the region of attraction. Despite the occurrence of rate saturation in

the actuator, it does not reach the magnitude saturation limits.

Then, choosing an initial condition from outside the estimated region of attraction,

z0 =
[

−51.4268 7.8599 0
]

, the actuator output is presented in Figure 3.6 (red line). The

presences of magnitude and rate saturation in the signal’s behavior are notable. However,

by increasing the rate saturation bound to ρR = 10, allowing the system to have higher

dynamic freedom, it can converge to the origin (black line). Thus, it is clear that the
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Figure 3.4: Time-behavior of the Lyapunov function for the trajectories with initial state
belonging to E(P1) ∩ E(P2) illustrating that no trajectory leaves such region.
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Figure 3.5: Actuator’s output (top) and rate saturation (bottom).

dynamic restriction imposed by rate saturation led the system to instability.

As this is an LPV system, its dynamics change as a function of the variant parameter

αk. Figure 3.7 shows the values of αk used in the simulations.
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Figure 3.6: Actuator’s outputs during the simulations with ρR = 1 resulting in a unstable
behavior (red line) and with ρR = 10 (black line) with asymptotic stability.
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Figure 3.7: Time-varying parameters during the simulations.

3.4.2 Example 2

This example is presented to demonstrate the disturbance tolerance maximization

technique applied in LPV systems with saturating actuators. Furthermore, a simulation

of the states is performed, indicating that the maximum allowed perturbation does not

take the states out of the contractive region. Consider the following scalar LPV system

(3.1), with the matrices adapted from (de Souza et al., 2019) as

A = 2(1 + ρ), B = 1(1 + ρ), Bw = 0.1(1 + ρ), C = 0.1(1 + ρ),

where the uncertain parameter |ρ| ≤ 0.1, the actuator parameter Λ = 15, the symmetric

limits of magnitude and rate saturation given by ρM = 0.7 and ρR = 0.3, respectively, and

Ts = 1.
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Assuming a null initial condition, i.e., zk = 0, and applying optimization procedure

T2, given in (3.47), is obtained the value of µ = 0.82836, which leads to ‖ωk‖22 ≤ δ−1 =

µ−1 = 1.2072, and the gain vectors

K̂1 =
[

−0.1275 0.8738
]

, and K̂2 =
[

−0.1999 0.8227
]

.

The estimate of the region of attraction RE ⊆ RA, defined by the intersection of

the ellipsoidal sets E(P1,µ
−1) ∩ E(P2,µ

−1), given by the matrices of the polyquadratic

Lyapunov function

P1 =

[

66.6153 55.4132
55.4132 48.5171

]

,

and

P2 =

[

72.1382 59.9968
59.9968 52.3359

]

.

Therefore, considering the system (3.10), the closed-loop response was simulated for the

application of an energy disturbance vector with the form ωk =
[

1.0987 0
]

, i.e., with the

energy bound obtained by the optimization procedure. In Figure 3.8 state trajectory are

presented by the blue line, which converge to the equilibrium condition and remain in the

resulting RE region, defined by the intersection of the ellipsoids E(P1) and E(P2) (solid

and dashed black lines, respectively). Notably, the trajectory approaches the limiting edge

of the region of attraction, which denotes the low conservatism of the proposal. When

applying a perturbation vector with energy 55% greater than the energy bound obtained

by the optimization procedure, i.e., ωk =
[

1.7030 0
]

, yields to the unstable trajectory

presented by the magenta line.

Figure 3.9 shows the actuator’s output during the simulation for the stable case. It is

noticed that the applied disturbance leads the actuator to the limit of the variation rate,

keeping the system stable anyway. Note that this is a time-varying system as a function

of αk, so Figure 3.10 shows the variant parameter values throughout the simulation.

3.4.3 Example 3

Consider the precisely known discrete-time pendulum model given by (3.1) investigated

by Gomes da Silva Jr. et al. (2007), and the matrices adapted as

A =





1.0013 −0.0500 −0.0013
−0.0500 1.0025 0.0500
−0.0013 0.0050 1.0013



 , B =





−0.0021
0.1251
5.0021



× 10−2,

Bw =





−0.0021
0.1251
5.0021



× 10−2, C =

[

1 0 0
0 1 0

]

,

with the actuator parameter Λ = 20, the symmetric limits of magnitude and rate sat-

uration given by ρM = 1.25 and ρR = 2, respectively, and Ts = 1. In this example, the
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Figure 3.8: Trajectory of the system subject to the maximum admissible disturbance en-
ergy (blue line) limited by RE and to a disturbance whose energy exceeds the disturbance
limit (magenta line).

objective is to analyze the system’s disturbance tolerance and rejection and compare the

results with a method from the literature. The result presented by Gomes da Silva Jr.

et al. (2007) deals with discrete-time systems with magnitude and rate saturation through

dynamic output feedback controllers. However, this method cannot deal with LPV sys-

tems, unlike the one proposed in this work. Another fundamental difference is that the

result of Gomes da Silva Jr. et al. (2007) is based on considering the saturation in a

nonlinear controller (preventing the control signal from violating the saturation limits)

and not considering the limitations in an actuator model, which is done here.

First, different values of η are defined, which define a certain performance level for the

closed-loop system measured by the Lyapunov function’s decay rate, and, through the

optimization procedure T2, the maximum value of allowed disturbance energy (δ−1) for

the system is evaluated. Considering null initial conditions, yields to δ−1 = µ−1. Table

3.1 shows the values of µ−1 obtained for different values of η using the Theorem 3.1 and

the ones presented in (Gomes da Silva Jr. et al., 2007). As expected, the faster the decay

rate (smaller (1 − η)), the lower the maximum admitted disturbance energy. Note that

the maximum disturbances admitted resulting from this work are bigger than the ones
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Figure 3.9: Actuator’s output reaching the rate variation limit in the presence of the
maximum admissible disturbance.
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Figure 3.10: Time-varying parameters used during the simulation.

obtained by Gomes da Silva Jr. et al. (2007). Values marked in bold are the ones with

the best results.

Considering the procedure T3 given in (3.48) with zk = 0, different values of maximum

admitted perturbation energy (δ−1) are defined, resulting in values of γ, related to the

minimization of the ℓ2-gain. Table 3.2 presents the values of γ obtained for the set of

tests. As the disturbance energy bound (δ−1) grows, so does γ, such that the system is

ISS. See that the ℓ2 bounds obtained by Theorem 3.1 are bigger than the ones presented

in (Gomes da Silva Jr. et al., 2007) in cases where the admissible disturbance energy is

lower, denoting that for these conditions, the method from (Gomes da Silva Jr. et al.,

2007) presents a better disturbance rejection. However, as the energy perturbation bound

grows, Theorem 3.1 presents a better disturbance rejection. Values marked in bold are
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Table 3.1: Maximal disturbance energy limit for different values of decay-rate perfor-
mance.

Theorem 3.1 (Gomes da Silva Jr. et al., 2007)
(1− η) µ−1 = δ−1 µ−1 = δ−1

1 12.0064 10.2737
0.99 7.6854 5.3997
0.975 4.2769 2.5087
0.95 1.9518 0.9449
0.925 1.0304 0.3356
0.9 0.5549 0.0741

the ones with the best results.

Table 3.2: Minimal ℓ2-gain for different values of disturbance energy limit.

Theorem 3.1 (Gomes da Silva Jr. et al., 2007)
µ−1 = δ−1 γ γ

10 221.611 17094.7
8 57.7056 211.8103
6 22.5822 45.4023
4 10.1838 14.5536
2 4.5572 4.7053
1 2.8286 2.2508
0.5 2.1336 1.2816
0.1 1.4977 0.4768
0.01 1.2005 0.1689

3.4.4 Example 4

Consider the invariant continuous-time system presented in (Baiomy & Kikuuwe,

2020), discretized with sampling time Tp = 0.01 s, resulting in the discrete-time system

(3.1) with matrices

A =

[

0 −0.005
0.0101 1.0151

]

, B =

[

0
−0.0101

]

.

The actuator dynamics is defined by Λ = 10 and Ts = 1. In this example, with no

disturbance (ωk = 0), the objective is to evaluate the effects of magnitude and rate

saturation levels on the size of the system’s region of attraction through the optimization

procedure T1 presented in (3.46). Fixing the magnitude saturation limit with ρM = 1,

different values for ρR were defined. Figure 3.11 shows the cut with x̄ = 0, and it is

possible to see that the region of attraction gets smaller as the system’s rate of change
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gets more constrained. The closed-loop corresponding to initial conditions belonging to

the sets were simulated. As Figure 3.11 presents, when they start into the region of

attraction, the system is asymptotically stable. Considering the most restricted case, i.e.,

ρR = 0.2, an initial condition outside the corresponding region of attraction causes an

unstable closed-loop behavior (dash-dotted magenta line). Note that even though the
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Figure 3.11: Cuts of the estimates of RA for different rate saturation constraints with
corresponding state trajectory projections, for x̄ = 0.

stable trajectories leave the cuts of RE ⊆ RA, they do not leave the contractive set for all

k ≥ 0, as the presented behavior of V (zk) in Figure 3.12.

Hence, the same analysis is made fixing the rate saturation limit as ρR = 0.6 and

varying the values of ρM. Figure 3.13 presents a cut at phase plane with x̄ = 0. Clearly,

when more control energy is available, bigger is the region of attraction. The behavior of

Lyapunov functions with initial conditions belonging to the ellipsoidal sets are shown in

Figure 3.14, and notably, they are always less than 1 and monotonically decreasing.

An interesting analysis can be done comparing Figures 3.12 and 3.14. Note that by

increasing the restriction of the actuator variation rate, the convergence speed towards

the origin is modified, showing an abrupt change in the system’s dynamics. Although

the magnitude saturation constraint decreases the region of admissible initial states, its

variation had a minor influence on the settling time of the function V (zk).

3.5 Final Considerations

In this chapter, results related to the synthesis of state feedback gains to LPV systems

presenting magnitude and rate saturating were presented proposed. First, the problem
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Figure 3.12: Time-behavior of the Lyapunov function for the trajectories with the initial
state belonging to E(P ) for different values of ρR, illustrating that no trajectory leaves the
corresponding region.
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Figure 3.13: Cuts of the estimates of RA for different magnitude saturation constraints
with corresponding state trajectory projections, for x̄ = 0.

to be investigated was defined, and some results from the literature that contribute to its

solution were presented. Then, the stabilization conditions for systems with or without
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Figure 3.14: Time-behavior of the Lyapunov function for the trajectories with the initial
state belonging to E(P ) for different values of ρM, illustrating that no trajectory leaves the
corresponding region.

disturbance were presented. Then, stabilization conditions for systems with or without

energy-limited disturbance were presented. From these, convex optimization procedures

were proposed with the objectives of maximizing the estimate of the region of attraction,

maximize the disturbance tolerance, and minimize the ℓ2-gain. Finally, the efficiency of

the proposed conditions was tested through numerical examples.
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Chapter 4
Experimental control of a nonlinear system

In this chapter, the effectiveness of the new design conditions proposed is illustrated

with a real-time experiment aiming to control the level of a second-order nonlinear process

modeled as a quasi -LPV model. First, a brief description of the coupled tanks system is

presented, followed by the system’s physical modeling and dynamic equations. Finally,

the experimental results are shown using the controller synthesis conditions proposed in

this work.

4.1 System’s Setup

The system used is available at the Signals and Systems Laboratory of CEFET-MG,

campus Divinópolis and consists of four cylindrical tanks with a capacity of 200 liters,

two reservoirs of 400 liters each, and two motor pumps with 1 HP of power each, model

CAM-W6 from Dancor, activated by independent frequency inverters manufactured by

WEG of model CFW09. Its hydraulic network supports different configurations, as valves

interconnect the tanks. Figure 4.1 shows the tank system described. The levels of the

tanks are measured with differential pressure sensors manufactured by Honeywell of the

model 26PCBFA6D.

The controller is implemented with an open-source Python-based interface (Sousa

et al., 2018) and a Raspberry Pi 3 communicating with a programmable logic controller

(PLC) of model Simatic S7-300 from Siemens. The PLC monitors the sensors’ signals and

sends the control signal to a frequency inverter manufactured by WEG of model CFW09

that varies the pump power. In addition, the plant has an interlocking safety system that

limits the level height of the tanks to 0.7 meters so that an overflow does not occur.
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4.2. Physical Modeling

Figure 4.1: Coupled tank system used in the experiments.

4.2 Physical Modeling

In the case of this experiment, the chosen configuration uses the two lower tanks. The

pump acts by directing the water to tank T4, which is connected by a fixed-open valve

to tank T3, where the level must be controlled. Then, the outflow of this tank goes to

a reservoir of 400 liters capacity, where the fluid is recirculated. Moreover, a nonlinear

solid designed in expanded polystyrene, based on a solid revolution of a Gaussian curve,

is placed inside tank T3, as shown in Figure 4.2. Thus, the volume occupied by the fluid

is not linear as a function of its height, causing significant changes in the dynamics of the

system, allowing the system to be described in a quasi -LPV model. Figure 4.3 shows a

simplified diagram of the configuration adopted.

The system model could be obtained through mass balance equations in each of the
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Figure 4.2: Coupled tanks system used in the experiments.

qin

q34
qout

h3

h4

T3 T4

Figure 4.3: Schematic diagram of the tanks system (Figueiredo et al., 2020).

tanks, such as

V̇ (t) = qin − qout.

where qin is the input flow and qout is the output flow. Through experimental data, the
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equation that describes the input flow as a function of the control signal u(t) applied to

the motor pump is modeled as

qin = (18.9996 u(t) + 265.2426)× 10−4,

where the control signal is given by 0% ≤ u(t) ≤ 100%. The flow between the tanks T3 and

T4 depends on the difference of the measured levels of the respective tanks (h4(t)−h3(t))

and by experimental data, it follows that:

q34 = (37.3916(h4(t)− h3(t)) + 290.5831)× 10−4,

where the levels h4(t) and h3(t) are directly measured in meters and verifies 0 m ≤ hi(t) ≤
0.7 m, i = 3,4. Finally, the output flow equation was obtained empirically as

qout = (8.7777h3(t) + 555.9995)× 10−4.

Due to the nonlinearity inside tank T3, its free area is given by

a(h3(t)) =
3r

5

(

2.7r − cos(2.5π(h3(t)− υ))

σ
√
2π

e−
(h3(t)−υ)2

2σ2

)

,

where the tank radius is r = 0.31 m, υ = 0.4, and σ = 0.55 refer to the Gaussian surface of

the nonlinear solid. Since the area a(h3(t)) varies according to the height h3, the system

can be described as a quasi -LPV model, where the varying parameters depend on the

measured system’s states. Then, using mass balance equations and following the steps

from (Figueiredo et al., 2020), assuming the level range 0.28 m ≤ h3 ≤ 0.48 m, and

discretizing the model with a zero-order holder and sampling time Tp = 5.2632 s (see

(Lopes et al., 2020) for details), the discrete-time model disregarding the disturbance is

given by the following vertex matrices:

A1 =

[

93.9626 5.9718
8.3235 89.6570

]

× 10−2, A2 =

[

94.1012 5.8000
12.4222 84.5628

]

× 10−2,

B1 =

[

3.1928
0.1412

]

× 10−4, B2 =

[

3.1944
0.2128

]

× 10−4.

The time-varying parameters are related to the measured states by

α1k = −5h3 + 2.4,

and

α2k = 1− α1k.

Because the process operates around h∗3 = 0.38 m, the limit of the symmetrical magnitude

saturation of the actuator is ±ρM = 15%. As a consequence of the limits on motor pump

acceleration, the constrained rate on qin(t) is modeled here with ρR = 0.005, Λ = 10, and

Ts = 5.2632.
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4.3 Experimental Results

Assuming the nominal operational condition, that is with A = (A1 + A2)/2 and B =

(B1+B2)/2, it is possible to use the methods proposed in (Gomes da Silva Jr. et al., 2008)

and (Bateman & Lin, 2002) to compare with this work’s proposal. In order to match the

conditions in (Bateman & Lin, 2002), it is assumed η = 0 and solved the procedure (3.46)

with Corollary 3.1. The estimate of the region of attraction achieved by this proposal is

12.4% bigger than the one achieved by Gomes da Silva Jr. et al. (2008), and 3.5% bigger

than the estimate from Bateman & Lin (2002). Thus the proposed method yields better

estimates of the region of attraction. Moreover, the proposed method can handle the LPV

case while the proposals in (Gomes da Silva Jr. et al., 2008) and (Bateman & Lin, 2002)

fail to handle such a case. Furthermore, the method in (Zhou, 2013) cannot be applied to

LPV systems, even if it is adapted to controller design under actuator’s rate saturation.

Considering the system without disturbance, the LPV controller design can be ob-

tained by solving the convex optimization procedure (3.46) with Corollary 3.1 with η =

0.0168 that is obtained by increasing it from 0 until an estimate of the region of attraction

compatible with the tank level range is obtained. For greater values of η, smaller are the

estimates of the region of attraction. Thus, there is a trade-off between performance and

operational range, which requires the designer’s choice. Also, the optimization procedure

(3.46) was modified to minimize trace(Y ) − 2trace(H̃). The term −2trace(H̃) aims

to counteract the effect of H̃−1 recovering Pi. In this system, this addition allows to

obtain an estimate of the region of attraction compatible with the physical limits of the

tanks. Thus, solving the described optimization procedure, the following control gains are

obtained:

K̂1 =
[

−13.5166 −7.4485 980.8274
]

× 10−3,

and

K̂2 =
[

−13.8240 −7.0629 980.8292
]

× 10−3. (4.1)

The resulting matrices of the polyquadratic Lyapunov function are

P1 =





37.6235 19.3481 50.1352
19.3481 11.6306 27.0150
50.1352 27.0150 70.0079



 ,

and

P2 =





38.2723 19.1468 50.6046
19.1468 11.1473 26.5086
50.6046 26.5086 70.1170



 .

Figure 4.4 shows the cut of the estimate RE at x̄0 = 0, thus in the process’s phase-

plane. The practical level trajectories obtained for two initial conditions at the border

of the estimate of the region of attraction RE : z01 =
[

−0.0969 −0.1053 0.025
]⊤

and
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z02 =
[

0.0959 0.1253 −0.03428
]⊤

. It is possible to notice that the trajectories converge

to the origin and do not leave the estimated region of attraction. For each of these initial
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Figure 4.4: Cut of the estimated region of attraction (the intersection of green and purple
ellipsoids) and projections of state trajectories resulting from the closed-loop experiment.

conditions, simulations and real-time experiments were performed in the closed-loop tank

system. The simulations were executed by adding a random noise signal with magnitudes

limited to ±0.0046 m to the level measurements, reproducing the water agitation and

electronic noise found in practical operational conditions. Figure 4.5 shows the simulated

(red and magenta lines) and experimental data (cyan and blue lines) with the designed

LPV controller. It is evident that the model well fits the real system behavior. In both

experiments, the LPV controller acts to bring the level of T3 to its operational point,

h∗3 = 0.38 m. Figure 4.6 shows the normalized decay rates of the state norm, computed

as
√

β2

β1

(√
1− η

)k
, with β1 = 0.8747 and β2 = 117.3161, (red line) and ‖zk‖/‖z0‖ for

both experiments (blue line for z01 and magenta dashed line for z02). Note that the

experimental data presents a faster response, which is expected since the η value yields a

bound for all initial admissible conditions and all possible parameter sequences belonging

to the unit simplex. The varying parameters during the experiment with z01 are shwon

in Figure 4.7.

Magnitude and rate associated with this experiment are shown in Figure 4.8 for z01

(blue line) and z02 (cyan line), for the first 15 samples. The design conditions ensures

the rate saturation function symmetrically constrained by ρR = 0.005 (see satR (·) in the

bottom plot). Consequently, the magnitude of uk increases on a limited amount at the

first samples, indicating the controller acting on its energy limits. Although it appears
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Figure 4.5: T4 and T3 levels from the experiment (cyan and blue lines), and from the
numerical simulation (magenta and red lines).
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Figure 4.6: Red line represent the theoretical decay rate and blue and magenta dashed
lines concern the experimental achievements for initial conditions z01 and z02, respectively.

that the signal’s rate of change is greater than ρR = 0.005, this happens once the actuator

has been modeled with a sampling time different from the plant discrete-time model.

To facilitate understanding the graphics in this type of approach, it is recommended

to implement it with synchronous sampling, i.e., Ts=1. The experimental data shows

that the proposed approach can be implemented in practical systems, ensuring regional
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Figure 4.7: Time-varying parameters during the experiment with z01.

0 5 10 15

32.75

32.8

32.85

32.9

32.95

0 5 10 15

-5

0

5

10
-3

u
k
[%

]

k

k

s
a
t
R

Figure 4.8: Control signal subject to rate saturation (top) and rate saturation reaching
its bound (bottom) in the first samples of the experiment.

exponential convergence for initial conditions belonging to RE .

4.4 Final Considerations

This chapter shows that the proposed approach on Chapter 3 can be implemented

in practical LPV discrete-time systems under magnitude and rate saturation actuators,
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4.4. Final Considerations

ensuring regional exponential convergence for initial conditions belonging to the estimated

region of attraction. In this case, a nonlinear tanks system was modeled as a quasi -LPV

system, where its dynamics varies as a function of its height.
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Chapter 5
Conclusion

In this work, new conditions for the synthesis of parameter-dependent state feed-

back controllers that guarantee the asymptotic and input-to-state stability of LPV linear

discrete-time systems with saturation in magnitude and rate of change for a set of ini-

tial conditions and limited energy disturbances were presented. Therefore, the main and

specific goals proposed in Chapter 1 where achieved.

In Chapter 2, the main theoretical concepts and essential mathematical tools necessary

for the development and understanding of this work were addressed.

In Chapter 3, conditions for local input-to-state stabilization in discrete-time LPV

systems under magnitude and rate saturation were developed. This approach employs

a parameter-dependent candidate Lyapunov function to reduce the conservatism jointly

with generalized sector condition handling the saturation’s nonlinearities. Moreover, the

closed-loop exponential convergence performance specification can be ensured. Convex

optimization procedures were proposed for different objectives, such as the maximization

of the region of attraction, the maximization of the allowed disturbance energy, and the

minimization of the ℓ2-gain. Some numerical examples were presented to demonstrate

the efficiency of the proposed technique and its behavior according to the variation of

some system parameters. In the first example, it is shown how the use of a polyquadratic

Lyapunov function yields to less conservative regions of attraction and that the initial

states belonging to it converge to the origin without leaving it. In the second example,

the input-to-state stability guaranteed by the parameter-dependent controller in the pres-

ence of energy-limited disturbances is demonstrated. In the third example, the trade-off

between the maximum disturbance energy and the performance specification is presented

and compared with a result from the literature. Likewise, it is done with the ℓ2-gain

and the disturbance energy limit. The last example of this chapter presents how satura-

tion limits change the size of the attraction region in the context of magnitude and rate

saturation.
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5.1. Developed Works

In Chapter 4, the description and modeling of a nonlinear level control system de-

scribed as a quasi -LPV system is presented, and the approach presented in the previous

chapter is implemented as a practical experiment to demonstrate the proposal’s efficiency.

In this case, it is noted that even with the system reaching the actuator rate saturation

limit, the LPV controller still guarantees stability for initial conditions belonging to the

region of attraction.

Although the approaches developed here allow magnitude and rate saturation for ini-

tial conditions belonging to the region of attraction and still guarantee their asymptotic

stability, it is difficult to find examples whose behavior presents both nonlinearities. Thus,

this is an indication that the proposed conditions can still be relaxed in search of less con-

servative results.

5.1 Developed Works

During the development of the master’s course and this thesis, some works were pro-

duced. The first paper, presented at a Brazilian national conference, was produced in

order to introduce the control systems tools that would be used during the master’s

course. Thus, the following paper was presented:

L. A. L. OLIVEIRA, M. V. C. Barbosa, L. F. P. Silva, and V. J. S. Leite, “Estabilidade

Entrada-Estado de Sistemas Discretos no tempo a Parâmetros Lineares Variantes e Su-

jeitos a Atuadores Saturantes,” in XXIII Congresso Brasileiro de Automática, 2020.

So, the main theme of this thesis and research project resulted in two more papers, one

presented at an international conference, and the other published in a scientific journal:

L. A. L. OLIVEIRA, M. V. C. Barbosa, L. F. P. Silva, and V. J. S. Leite, “Regional

Polyquadratic Stabilization of Discrete-Time LPV Systems under Magnitude and Rate

Saturating Actuators,” in 2021 American Control Conference (ACC), 2021, pp. 4926-4931.

L. A. L. OLIVEIRA, M. V. C. Barbosa, L. F. P. Silva, and V. J. S. Leite, “Exponential

Stabilization of LPV Systems Under Magnitude and Rate Saturating Actuators,” in IEEE

Control System Letters, vol. 6, pp. 1418-1423, 2022.

Currently, the following paper is under preparation to be submitted to a scientific

journal:
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5.2. Future Works

L. A. L. OLIVEIRA, M. V. C. Barbosa, L. F. P. Silva, and V. J. S. Leite, ”ISS control

for discrete-time LPV Systems Under Magnitude and Rate Saturating Actuators.”

that includes part of the results presented in Chapter 3.

5.2 Future Works

Some topics can be investigated in order to extend the results obtained in this work:

1. to consider the use of Lyapunov functions dependent on homogeneous polynomial

parameters in order to obtain less conservative estimates of the region of attraction,

and extend the result to LPV systems polynomial on the states, using relaxations

based on the sum of squares (SOS) (Note that the Lemma 2.3 used in this work

was generalized in (Figueiredo et al., 2021) to homogeneous polynomial parameter-

dependent functions);

2. to consider the generalized sector condition for systems with magnitude and rate

saturating actuators in the context of fuzzy Takagi-Sugeno systems;

3. to consider the presence of delay and elaborate synthesis conditions using Lyapunov-

Krasovskii functions;

4. to investigate the design of controllers with an anti-windup loop to handle magnitude

and rate saturation in discrete-time LPV systems;

5. to investigate the control signal written as a speed algorithm using ∆uk, without

using nested saturations.

58



Appendix A
Tools

In this appendix, some mathematical tools used to achieve the conditions proposed in

Chapter 3 are demonstrated.

A.1 Schur’s complement

Schur’s complement is a relationship between submatrices contained in a matrix. Let

Q and R be symmetric matrices, then the condition
[

Q S
ST R

]

≥ 0 (A.1)

it’s equivalent to

R ≥ 0, Q− STR−1S ≥ 0.

Thus, the Schur’s complement of the submatrix R corresponds to the following ex-

pression:

Q− STR−1S ≥ 0. (A.2)

A.2 Proof of Lemma 2.3

Proof: The proof is reproduced from (Jungers & Castelan, 2011). Assume that xk ∈
LV(c) ⇔ for all α ∈ P and

V (xk,αk) < c⇔ xk ∈
⋂

αk∈P

E(P (αk),c).

Also,
⋂

αk∈P

E(P (αk),c) ⊂
N
⋂

i=1

E(Pi,c).

To prove that
N
⋂

i=1

E(Pi,c) ⊂
⋂

αk∈P

E(P (αk),c),
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A.2. Proof of Lemma 2.3

consider xk ∈
⋂N

i=1 E(Pi,c), then for all i = 1, . . . ,N , it follows that x⊤k Pixk < c. Applying

the Schur’s complement, the following inequality can be obtained:

[

c x⊤k
xk P−1

i

]

> 0. (A.3)

Thus, for all α ∈ P ,
[

c x⊤k
xk P (αk)

−1

]

> 0, (A.4)

which yields that xk ∈ E(P (αk),c), for all α ∈ P , or xk ∈
⋂

αk∈P
E(P (αk),c)
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