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Abstract

Ant colony optimization (ACO) algorithms were originally designed for static op-
timization problems where the input data is known a priori and is not allowed to
undergo any change during their execution. Later, ACO memory proved to be ef-
fective in dealing with problems in which the benchmark is allowed to change in
real-time without any prediction, that is, to solve Dynamic Combinatorial Optimiza-
tion Problems (DCOPs). Among the main proposals of this kind, several adaptations
of ACO procedures to improve information reuse can be identified in the Literature.
In addition, the Population-Based ACO Algorithm (P-ACO) was designed specifically
for DCOPs. Indeed, P-ACO drew the attention of the research community due to
its ability to process faster pheromone information but the few studies that assessed
the effectiveness of the procedures of ACO and specially P-ACO were not sufficient
to achieve conclusions about the state of the art in ACO for Dynamic Optimiza-
tion. In this work, we carried out an extensive experimental campaign to evaluate
the most common adaptations of ACO main procedures identified in the literature,
using the state-of-the-art ACO for static optimization as underlying algorithms, that
is, theMAX -MIN Ant System (MMAS) and the most relevant ACO algorithm
proposed for dynamic optimization, P-ACO. A variant of the traveling salesman
problem, the TSP with dynamic demands (TSPDDs) was used as a test benchmark,
similar to most investigations on ACO for combinatorial optimization. More im-
portantly, a carefully designed experimental setup was adopted, which represented
significant contributions to literature as follows. This is the first work that acknowl-
edged that DCOPs required custom-configured parameter settings and also the first
that used an automatic configuration tool for this task. In addition, we also showed
how the hypervolume indicator could be used to evaluate the anytime behavior of
algorithms for DCOPs. This new way of configuring and comparing the algorithm’s
performance was then applied betweenMMAS and P-ACO. Comparing the perfor-
mance of both algorithms showed that the first was able to consistently outperform
the latter when a local search was adopted. Finally, we conducted an experimental
investigation on the DCOP-specific components proposed for ACO, isolating local
search, which is one of the most relevant procedures presented in some ACO algo-
rithms, likeMMAS. Results showed that those components contributed very little
to performance when algorithms were allowed to use local search but were remark-
ably effective in its absence. In fact, the used local search was not only feasible to
be applied when dealing with dynamic components but also a must-use procedure,
even for the TSPDDs where runtime was an issue to be coupled with. When a local
search was applied,MMAS was able to outperform P-ACO for a large part of the
experimental setup we adopted.

Keywords: Ant Colony Optimization; Traveling Salesman Problem with Dynamic
Demands; automatic configuration; hypervolume indicator.
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Resumo

Os algoritmos Ant Colony Optimization (ACO) foram desenvolvidos original-
mente para problemas de otimização estáticos, nos quais os dados referentes ao
problema tratado são conhecidos a priori e não são pasśıveis de mudanças durante
a execução do algoritmo. Com o passar do tempo, o procedimento de memória
pertencente ao algoritmo ACO provou ser efetivo para aplicação em problemas em
que os dados são pasśıveis de alterações em tempo real, sem qualquer tipo de pre-
visão, ou seja, se mostram eficientes também para serem aplicados em Problemas de
Otimização Combinatória Dinâmicos (POCD). A partir de um estudo profundo das
principais publicações sobre aplicação e comparação dos algoritmos ACO para POCD,
diversos procedimentos de adaptação com o objetivo de aprimorar seu desempenho
puderam ser encontrados na literatura, além da criação do algoritmo Population-
Based Ant Colony Optimization( P-ACO), que foi desenvolvido especialmente para
resolver POCD. De fato, P-ACO chamou a atenção da comunidade de pesquisa por
sua habilidade de processar informações rapidamente. No entanto, os poucos estudos
encontrados na literatura com o foco em analisar a efetividade dos procedimentos
dos algoritmos ACO e, em especial, o algoritmo P-ACO, quando aplicados para a
resolução de problemas dinâmicos, não foram suficientes para se alcançar conclusões
sobre o estado da arte dos algoritmos ACO quando aplicados para essa nova classe de
problemas. Assim, nessa pesquisa, é conduzida uma campanha extensiva de experi-
mentos com o objetivo de estudar e avaliar as adaptações mais comuns dos principais
procedimentos dos algoritmos identificados na literatura como estado da arte para
resolução de problemas dinâmicos usando ACO, são eles:MAX -MIN Ant System
(MMAS) e P-ACO. Uma variação direta do problema do caixeiro viajante clássico,
o problema do caixeiro viajante com demanda dinâmica (PCVDD), foi escolhido
como problema teste, assim como na maioria dos outros estudos em otimização com-
binatória apresentados na Literatura. Mais importante, é apresentada uma proposta
de um setup de experimentos, o que representa uma das principais contribuições para
Literatura, como justificado a seguir. Primeiramente, este é o primeiro trabalho que
identifica a real necessidade do uso de uma configuração de parâmetros espećıfica
para problemas de otimização combinatória dinâmica e também o primeiro trabalho
a utilizar uma ferramenta de configuração automática para um algoritmo aplicado
para essa classe de problemas. A próxima contribuição desse trabalho se direciona a
possibilidade do uso da técnica de hipervolume como indicador de desempenho dos
algoritmos com o propósito de serem eficientes em qualquer horizonte de tempo em
se tratando de problemas de otimização combinatória dinâmicos. Essa nova proposta
de análise é aplicada para comparação de desempenho entre os algoritmosMMAS
e P-ACO. Ao se comparar os dois algoritmosMMAS, foi capaz de obter melhores
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resultados em relaçãao P-ACO quando o procedimento de busca local é utilizado.
Finalmente, experimentos são conduzidos com o objetivo de investigar componentes
espećıficos dos algoritmos quando aplicados a problemas de otimização dinâmica com
o isolamento do procedimento de busca local. Os resultados mostraram que, de fato,
quando a busca local não é permitida, esses procedimentos são de grande importância.
Por outro lado, quando o uso da busca local é permitido, a melhoria em desempenho
causada por esses procedimentos é insignificante, ou até mesmo, inexistente. Outro
fato importante é o melhor desempenho do algoritmoMMAS em relação ao P-ACO
com o uso de busca local e seu desempenho inferior quando a mesma não é permitida.

Palavras-chaves: Otimização por Colônia de Formigas, Problema do Caixeiro Via-
jante com Demanda Dinâmica, configuração automática, Indicador de hipervolume,
procedimentos de atualização de feromônio.
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Chapter 1

Introduction

Optimization problems are often modeled as Combinatorial Optimization Prob-
lems (COPs), which involve finding values for a set of discrete variables related to
a given objective function. A straightforward approach to defining the best solution
for a COP could be the combination of all possible values in a search space and the
choice of the best one. Unfortunately, this approach turns unfeasible for problems
in which the number of possible values increases exponentially according to the in-
crement of instance size. In addition to that fact, the run time of the algorithm
applied to solve the problem and the time required to find an optimal combination
values grow in the same proportion. Besides the issues mentioned above, when we
talk about real-world optimization problems, other ones can arise depending on the
problem tackled. An example is when problem components are allowed to change at
runtime without any prediction. The COPs with these characteristics are known as
Dynamic COPs (DCOPs).

Whenever the optimal solution for a COP cannot be efficiently obtained in prac-
tice, approximate algorithms such as heuristics and metaheuristics have been success-
fully applied to obtain near-optimal solutions. In addition, problems with dynamic
environments impose some additional challenges to COPs. Such problems need to be
re-optimized over time, on every problem change, to ensure not only feasibility but
also the quality of the solutions.

Over the past decades, Ant Colony Optimization (ACO) (Dorigo e Stützle, 2004)
has played a central role as a successful metaheuristic for COPs and as a potential
technique to be extended for solving DCOPs. In ACO algorithms, artificial ants build
solutions for the problem tackled stochastically, biased by (i) a priori problem-specific
heuristic information, and (ii) pheromone information knowledge acquired over the
algorithm run. This pheromone-based memory of ACO algorithms has proven well
suited to static COPs where the input data do not change during the algorithm run.
In this scenario, the knowledge acquired by ACO algorithms in the form of pheromone
accumulates into a strong bias towards promising regions of solutions’ search space.

In contrast to the highly advantageous use of a pheromone memory in static
COPs, a dynamic scenario makes the long-term knowledge of ACO a good strategy
for DCOPs. Because changes on the problem data are expected to only affect a
portion of its original definition, ACO algorithms could reuse information learned
before the changes to speed up the re-optimization cycle.

On the other hand, depending on how strong the problem data change is, this long-

1



1 Introduction 2

term knowledge might lead the algorithm to get stuck in a suboptimal solution in the
search space. After an instance change, if the ACO algorithm has already converged
to a specific region of the search space, this region can no longer be interesting or
even feasible. As a consequence, the algorithm search might be delayed by the need
to first forget part of its previous knowledge.

The most innovative ACO proposal targeting DCOPs is an algorithm meant to op-
timize the reuse of pheromone information after problem changes, which we refer to as
pheromone transfer. In more detail, the Population-based ACO (P-ACO) (Guntsch,
2004) proposed a one-shot pheromone evaporation approach with the aid of a solution
archive, in which the pheromone contribution from a given solution in the archive is
removed whenever that solution leaves the archive.

Besides efficiency, this archive-based pheromone memory of P-ACO directly reg-
ulates the contribution timespan from solutions found before problem changes, and
hence this algorithm quickly rose to become the ACO reference for DCOPs.

Another promising algorithm to be applied for solving DCOPs is theMAX -MIN
Ant System (MMAS) which is one of the best-performing ACO algorithms from
static optimization. The use of a local search procedure and boundaries for pheromone
values give the algorithm the balance between exploration and exploitation. Such bal-
ance is needed for tackling a problem in which the optimum solution is able to change
on every problem instance change.

However innovative, the studies targeting ACO for DCOPs left important ap-
plication aspects underlooked in the literature. When we talk about performance
concerning different categories of COPs, parameters configuration must differ from
each algorithm applied. Moreover, this configuration change must follow the addition
or removal of algorithm’s procedures, as same as the best way of solution quality mea-
surement and comparison. Thus, the proper use of an ACO algorithm to real-world
COPs must take into account the above mentioned aspects.

When we look at the literature concerning these main aspects, their importance
is presented and recognized by the researches community. However, they have been
partially applied and/or analyzed individually. In addition, each aspect mentioned
has a direct impact on the application of the other one. Taking into account not all of
them together could impose erroneous conclusions or under measure the performance
of the algorithm tackled.

Given the fact that these aspects are crucial to define a properly ACO implemen-
tation, in this work we propose, (a) the proper configuration of parameters settings,
(b) an adequate solution quality measurement for ACO algorithms, and (c) possible
adaptations on ACO main procedures specifically for tackling DCOPs. Concerning
what has been mentioned in (a) and (c), the efficacy of ACO algorithms depends on
balancing heuristic and pheromone information. Not only on the a priori knowledge
one has about the problem to be optimized, but also on the information learned
during the execution of the algorithm. This balancing is regulated by numerical
parameters and the algorithm’s main procedures. Their proper setting requires sig-
nificant knowledge of parameter configuration, ACO algorithms, how the procedures
are applied and the problem instances one is dealing with.

Regarding (b), solution quality measurement in dynamic optimization, many mea-
sures evaluate algorithms based solely on the quality of the final solution they pro-
duce, completely disregarding the performance of the algorithm during different re-
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optimization cycles. Among the measures that assesses the behavior of algorithms
over dynamic changes and solution quality development, some depend on a combi-
nation of other metrics, whereas others were proposed in the context of artificially
designed test problems, where optimal solutions are known beforehand.

In order to proper use ACO algorithms when applied to DCOPs, in this work we
propose a complete computational study regarding all aspects related to what has
been emphasized in (a), (b) and (c).

Experiments were conducted on the Traveling Salesman Problem with Dynamic
Demands (TSPDDs). We selected a variation of the Traveling Salesman Problem
(TSP) because it is an extensively studied COP that has been used as test benchmark
for many algorithms. In addition, ACO algorithms have been successfully applied
to the TSP. In fact, we observe a similar pattern in the context of DCOPs, with
many proposals (ACO or not) being firstly assessed on this problem. To assess
algorithms on this variant of the TSP, we defined a complete experimental design that
is applicable to DCOPs in general. The most important component of the proposed
design is an effective way to configure parameter settings and evaluate performance
for an anytime behavior algorithm by the use of the Hypervolume Indicator. The
choice of this measure lies in the fact that it does not present the disadvantages
observed for existing quality measurements applied to dynamic optimization, and has
additional advantages demonstrated in the multi-objective optimization literature.
Furthermore, we showed how it can be used to optimize the anytime behavior of
dynamic optimization algorithms through automatic parameter configuration.

In this way, we proposed a bi-objective formulation of DCOPs, where runtime and
solution quality are considered objectives to be simultaneously optimized. This idea is
largely inspired by the use of the hypervolume measure to assess the anytime behavior
of heuristic algorithms. In this work, we extended that concept to comprehend prob-
lem changes, enabling the comparison of different algorithms between consecutive
changes (environment-wise analysis) or during their entire execution (scenario-wise
analysis). In addition, our approach is based on an unary version of the hypervolume
indicator, which makes it scalable as to the number of algorithms considered in the
analysis. Our formulation is also scalable as to the number of objectives considered,
meaning one can use it to assess the performance of dynamic multi-objective optimiz-
ers; yet, in this work we focused on the assessment of traditional DCOP optimizers.

We compared P-ACO and MMAS to understand whether the novelties intro-
duced in P-ACO determine a better performance. In particular when local search
procedures and properly configured parameter settings are considered as factors of
the investigation.

As a next stage of our investigation, we revisited some of the proposals to ex-
tend MMAS to DCOPs assessing under our setup the improvements to MMAS
performance provided by those pheromone transfer mechanisms. More importantly,
we choseMMAS as ACO test benchmark to understand if those components con-
tribute to the performance of effective ACO algorithms in general.

In summary, the contributions of this work have been divided into two main
groups. The first one proposed the development of a complete experimental design
and performance analysis for DCOPs. The latter was directly concerned about the
application of ACO algorithms to COPs that were close to real-world optimization
problems, and therefore, presents a detailed study on the influence of most relevant



1 Introduction 4

ACO procedures when applied to DCOPs.
In order to achieve the goals that we proposed in this research, in Chapter 2 we

introduced the existing dynamic variants of the TSP, highlighting the variant that
we used as a benchmark in this work. In Chapter 3 we gave an overview of ACO
algorithms and their adaptations to deal with DCOPs. After that, in Chapter 4,
we targeted the performance assessment of DCOP algorithms, where we reviewed
the two major metric categories, the ABC and hypervolume metrics from a critical
perspective, and detailed both approaches in the context of dynamic optimization.
In addition, we also discussed the parameter configuration as presented in Chapter 5
and Chapter 6. Finally, we dedicated Chapter 7 to describe our improvement pro-
posals onMMAS pheromone update and reported the computational study of these
adaptations for dynamic optimization. Finally, conclusions and future work were
discussed in Chapter 8.

————————————————————————————————————
—————————–



Chapter 2

The Dynamic Travelling Salesman
Problem (DTSP)

The Traveling Salesman problem (TSP) is one of the most widely studied NP-hard
Combinatorial Optimization Problems. Despite its solving complexity, the TSP con-
cepts are simple to implement and can be, most of the time, intuitive and straightfor-
ward (Gutin e Punnen, 2006; Monnot e Toulouse, 2014). Up to nowadays, these main
characteristics have turned the TSP into one of the most desired problem classes used
to introduce and compare algorithms performance (Mosayebi et al., 2021; Pina-Pardo
et al., 2021). In addition, it is the problem in which Ant System (the first ACO algo-
rithm presented in the Literature) was initially applied (Dorigo, 1992). Since then,
the TSP has also been frequently used in ACO research to evaluate improvements on
its main procedures (Dorigo e Stützle, 2004; Dorigo et al., 2011).

Without loss of generality, the classic TSP can be formulated as a COP where its
main components are defined by a set of locations (customers) with certain distances
connecting them. The goal is to find a closed tour of minimal length that visits each
customer from this set exactly once.

A TSP instance can be represented by a fully connected graph G = (V,E, d), V
being the set of n = |V | vertices (representing the customers), E being the set of
edges that fully connects the vertices, and d being a distance function that assigns
to each edge (i, j).

In the classic TSP, we assume that the distance function is symmetric, that is, we
have dij = dji, meaning that the distance is the same whether one goes from i to j or
in the opposite direction. Whenever dij ̸= dji then, the TSP is called as assimetric
TSP (Gambardella e Dorigo, 1996; Schmitt et al., 2018, 2019).

Fomally, the TSP can be modelled as:

decij

{
1, if (i, j) is covered in the tour
0, otherwise

(2.1)

in which decij ∈ {0, 1}. Then, the problem objective function is defined as:

f(x) = min
n∑

i=1

n∑
j=1

dijdecij, (2.2)

in which n is the number of customers to be attended.

5
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Different TSP approaches can be formulated from variants of its original definition.
In the TSP with Time Windows (TSPTW), the customers must be attended in a
specific time interval (time window) (Gendreau et al., 1998; López-Ibáñez e Blum,
2010). In the Probalistic TSP only an a priori subset of customers, taken randomly
from the original benchmark set, is needed to be included in the closed tour (Gendreau
et al., 1998). A review of the TSP main variations can be found at Gutin e Punnen
(2006); Monnot e Toulouse (2014).

As mentioned in Chapter 1, in this research we chose the DTSP as a problem
benchmark, more specifically, we tackled the TSP with dynamic demands. Due
to its real-world nature characteristic, the way of modeling a DTSP is not strict.
As opposite, it varies according to each researcher’s aim. Therefore, the following
contents of this Chapter are covered by the general description of the DTSP and the
different ways of modeling a TSPDDs that have been presented in the Literature, so
far.

2.1 The Dynamic Travelling Salesman Problem and

main variations

The DTSP is a variation of the TSP that makes problem-solving more challenging,
and, therefore, closer to real-world problems. As already mentioned, in the DTSP,
the problem instance is allowed to change over time without any prediction.

Two main variants of the DTSP are presented in the literature. The first one
considers that distances between the customers change over time, simulating the
occurrence of traffic jams, accidents, or the change of weather conditions (Eyckelhof
e Snoek, 2002; Melo et al., 2013; Mavrovouniotis e Yang, 2013b). The second considers
demands as dynamic, in which the set of customers that need to be included in a
tour can change over time, due to the cancellation of known visits or the appearance
of new ones (Guntsch e Middendorf, 2001; Mavrovouniotis e Yang, 2011a, 2014a,b;
Mavrovouniotis et al., 2014, 2015). In the literature, the first approach is named as
TSP with Dynamic Traffic Jams (TSPDTJ), and the latter is named as TSP with
Dynamic Demands (TSPDDs). As follows, we describe both approaches.

2.1.1 The Travelling Salesman Problem with Dynamic Traf-
fic Jams (TSPDTJ)

In this formulation, for each pair of customers to be attended i and j, there
is a traffic factor tfij assigned to the distance connecting them, that is, dij =
dij × tfij. During an algorithm run, the tfij value represents the traffic at that
moment (Mavrovouniotis e Yang, 2013b). In addition, two random numbers are as-
sociated with tfij and ptf . They are updated at each iteration. The first one denotes
whether there is or not a traffic factor rtf assigned to the distance between i and
j. Distances with no traffic assigned have rtf set to 0. On the other hand, rtf = 1,
indicates traffic. The second one ptf is generated probabilistically and, in this case,
values are generated according to [LB,UB], in which LB and UB represent a lower
and an upper bound, respectively. Values can vary from low, normal, or high. If ptf
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values are closer to UB means high traffic, while for roads with low traffic, a higher
probability is given to generate values of ptf closer to LB.

This class of DTSPs is denoted as random TSPDTJ. Another class is the one in
which previously generated environments with their respective traffic jams are allowed
to reappear. The dynamic changes occur with a cyclic pattern, that is, previous
environments are guaranteed to appear again over the run time. Such environments
are more realistic than scenarios that are randomly generated, for example, a rush
in a traffic jam situation that might happen every day can be represented by an tfij
closer to UB (Guntsch, 2004; Mavrovouniotis e Yang, 2013b).

Despite being classified as a dynamic problem, since some components of this
formulation can be stochastic, turns out that the latter variation of TSPDTJs is not
a dynamic problem class in a strict way. As presented in Guntsch (2004), probabilistic
procedures can be used to handle how dynamic information is going to be generated
as presented in the TSP with cyclic traffic jams. Despite being characterized as DTSP
for some authors in the Literature, we do not agree that it is a dynamic problem in
a strict sense as solutions can be reoptimized a priori given the probabilistically
method used to generate the dynamic changes (Psaraftis et al., 2016). Thus, in
this work, we put all our efforts into solving the DTSP which has all environments
dynamically generated. We focused on solving the TSPDDs, which are presented as
follows.

2.1.2 The Travelling Salesman Problem with Dynamic De-
mands

The TSPDDs is the DTSP problem class in which customers are allowed to be
included or removed from a tour at any time during the algorithm run without any
prediction.

Formally, the TSPDDs can be modelled as a sequence of graphs Gs = (Vs, Es),
s = 0, ..., S, and two sequences of vertex sets As and Ds, s = 1, ..., S−1. In particular,
As represents the set of new customers to be served and Ds represents the set of
deleted customers. We then have that G0 = (V0, E0) is the starting graph and each
Vs is obtained by (Vs−1

⋃
As) \Ds and Es = Vs × Vs.

Independently of which problem component is tackled as dynamic, when we move
from the static to the DTSPs, two adaptations have to be faced. They are: (i)
how to generate dynamic benchmarks and (ii) how to handle the dynamic changes
over time. Different ways of generating dynamic benchmarks have been proposed in
the literature depending on how re-optimization is done over the run and whether
changes are periodic, continuous or cyclic. A review about several DOPs benchmark
generators for both continuous and combinatorial DOPs is presented in Cruz et al.
(2011); Nguyen et al. (2012a). In the following, the main adaptations applied on the
TSPDDs are presented.

Single insertion. A way for generating dynamic environments is by what is called
insertion scenarios, as presented in Guntsch e Middendorf (2001); Guntsch et al.
(2001); Guntsch e Middendorf (2002); Guntsch (2004) in which a single cus-
tomer is removed before the algorithm run and is latter reinserted. The oppo-
site procedure is also feasible in which all customers are presented in the test
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Figure 2.1: The TSP with dynamic demands modelled according to the pool insertion
model

benchmark, and then, a single customer is removed, at any moment, over the
runtime. In order to eliminate any bias concerning the position of the customer
that has been removed or inserted, the algorithm is run over the removal and
insertion of each customer that comprises the instance at a time. After that, the
average of the solution quality is taken over all runs. For example, in Guntsch
(2004) given the runtime t as total number of iterations, for t = 1500, tests
were run with insertion or removal of this single customer after 250 and 500
iterations.

The issue of using this methodology comes from the fact that, in the end, all
components from the benchmark would have been removed/inserted. This fact,
somehow, allows an a priori optimization, specially when the order of customers
that has been removed/inserted is not random.

Pool insertion. Here, the set of customers from the actual problem instance is split
into two sets called currentpool and sparepool. The former defines the current
problem instance to be tackled and the latter defines the customers available
to be switched with the ones in the currentpool. At specific moments, a fraction
of the vertices are switched between currentpool and sparepool to define the new
problem instance, regulated by a parameter ξ ∈ [0, 1], here called degree of
dynamism.

Another parameter that characterizes the instances is the frequency of change,
which defines how often the instance in dynamic problem changes. While
in Guntsch (2004); Mavrovouniotis e Yang (2011a, 2014a,b); Mavrovouniotis
et al. (2014, 2015) the number of iterations/evaluations between changes is
fixed, in this research the periodic re-optimization occurs according to runtime.
Our rationale is that real-world dynamic problems are subject to asynchronous
changes in time, with no regard to algorithmic concepts such as the number of
iterations or the use of function evaluations. However, for simplicity, we keep
the frequency of change fixed, i.e., environment changes happen synchronously
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producing ϵ time intervals evenly split. Besides modeling real-world problems
more accurately, this change in the formulation has a direct impact on how
algorithms should be engineered. More precisely, an algorithm that presents a
high computational overhead at each iteration might have very few iterations to
reoptimize solutions between changes, which is clearly an undesirable behavior.

One step further, in order to create a more realistic benchmark, could be a
random generation of ξ values for each slot.

3

9

5

1
7

2

8

4

10 6

(a) Slot 01

3

9

5

1
7

2

8

4

10 6

(b) Slot 02

3

9

5

1
7

2

8

4

10 6

(c) Slot 03

Figure 2.2: Routes according to each slot presented at Figure 2.1.

Figure 2.1 ilustrates the example of an instance with ten customers to be at-
tended, that is n = 10. Thus, both currentpool and sparepool have size of n/2.
The dynamic environment is defined by ξ = 0.2 and ϵ = 3. In this way, the
problem has three different slots and, at the end of the runtime defined for
each slot, 20% of the customers are switched between the currentpool and spare-
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pool. The customers added from the sparepool at each slot are shown in grey.
In addition, Figure 2.2 shows the graphic representation of a feasible route for
each slot. Figure 2.2a represents the feasible tour for the first slot, while the
others 2.2b and 2.2c represent a feasible solution for the second and third tour,
respectively. The customers that are not connected in order to form the round
tour are the ones presented at the sparepool at that moment.

From the routes presented in Figure 2.2 (compare the routes presented in Fig-
ures 2.2a and 2.2b), it is easy to visualize the benchmark influence on the
complexity of the route re-optimization over algorithm runtime. That is, bench-
marks in which the customers are closer demand fewer efforts on the reoptimiza-
tion process, while instances in which the location of customers are random,
once the currentpool can have customers in many different locations as opposite
as when customers are uniformly distributed.



Chapter 3

Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a search metaheuristic, inspired by the for-
aging behavior of real ants. More precisely, while foraging, some species of ants can
leave on the ground a volatile substance called pheromone. This substance is re-
inforced according to the number of ants that have followed the same path. Over
time, whenever two paths to the same food source are discovered, the shortest path
connecting them will be the one with the higher amount of pheromone. This be-
havior lays in the fact that the pheromone trail from the shortest path will be more
reinforced once ants will traverse it faster.

Due to this foraging behavior characteristic, the ACOmetaheuristic can be applied
straightforward for solving the classic TSP and its variations. In fact, it can be applied
to any specific combinatorial optimization problem, in which candidate solutions
are incrementally built and evaluated over a given objective function, under the
consideration of adjusting or adding additional procedures such as problem-specific
improvements. These procedures can be related to the way solutions are built, how
pheromones are updated, or even the possibility of adding additional support, like
the use of local search.

As a consequence, research on ACO main procedures for developing effective ACO
variants of this COP class has been one of the most active research directions in the
ACO research community. Some examples can be seen at Stützle e Hoos (1998);
Stützle e Dorigo (1999); Guntsch (2004); Thalheim et al. (2008); Mavrovouniotis e
Yang (2015); Schmitt et al. (2018); Mavrovouniotis et al. (2019).

An intuitive approach for building a solution for the classic TSP is to first ran-
domly choose a vertex and then, at each step, go from the current vertex to the
closest one that has not been visited yet. This solution construction ends when all
vertices have been visited and the round trip is closed by returning to the initial
vertex. Despite being intuitive, the solution quality from this greedy approach is
most of the time the one with the highest values, especially when the instance size
is increased. Other methodologies, like the branch and cut algorithm, can solve up
to optimality small and medium symmetric TSP instances (1000 to 3000 customers)
within feasible computation time. However, the computation time becomes unfea-
sible when increasing the instance size. Given this limitation, heuristic algorithms,
in special heuristics with a stochastic local search procedure, became an attractive
performance methodology for tackling this problem class (Hoos e Stützle, 2004).
These methods are able to find optimal or close to optimal solutions with much lower

11
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computation time.
In this chapter, we focus on the application of ACO state-of-the-art algorithms for

solving the TSP with dynamic demands (TSPDDs). They are: P-ACO andMMAS.
Firstly, we give the reader a general overview of the ACO metaheuristic. After that,
P-ACO andMMAS are detailed and analyzed. We give special attention to improve-
ments that were developed and/or adapted on both algorithms when applied for the
TSPDDs. The most important improvements can be mentioned as the changes in
the pheromone update procedures and the use of local search. Concerning the latter,
despite the computational cost that the use of local search brings to the algorithm
run, in this research its use has been proved to be not just feasible, but desirable, or
even necessary, when we apply ACO algorithms to DTSP benchmarks.

3.1 ACO Metaheuristic

As presented in Dorigo et al. (2011), a combinatorial optimization problem can
be modeled by a tuple (S, f,Ω), in which:

• S is the set of candidate solutions s, defined over a finite set of discrete decision
variables X;

• f : S → R, is an objective function to be minimized;

• Ω is a set of constraints among the decision variables. Note that, depending on
the problem tackled, it is allowed to be empty.

A decision variable Xi ∈ X, with i = 1, ..., n, is said to be instantiated when a
value vji that belongs to its domain Di = {vi, ..., v|Di|

i } is assigned to it. A solution
s ∈ S is called feasible if each decision variable has been instantiated satisfying all
constraints in the set Ω. Solving the optimization problem requires finding a solution
s⋆ with minimun value of f in a way that f(s⋆) ≤ f(s) ∀ s ∈ S.

When ACO is applied to the TSP or other COP, after the initialization of the
metaheuristic main parameters, three steps must be followed, respectively. First, the
colony of m ants builds candidate solutions according to Ω in an attempt to minimize
f . After that, a specific procedure can be applied to improve the value of f that has
been defined. This procedure can vary according to the problem tackled or algo-
rithm implemented and it is named as Deamon Actions procedure (Dorigo e Stützle,
2004). Finally, pheromone values are updated, increasing the influence of solution
components that were associated with good solutions. These steps are repeated until
the algorithm reaches the termination condition that can be a maximun run time or
number of iterations. In most applications, these procedures are executed exactly
in the aforementioned order. However, their use can vary according to the problem
tackled and ACO variation adopted. The general outline of the ACO metaheuristic
is presented in Algorithm 1.

As already mentioned in Chapter 2, the TSP is one of the most widely studied
combinatorial optimization problems. From the COP point of view, in the construc-
tion graph G = (C,L), L represents the set of edges that connect all components
from C. Analogously for the TSP, C represents the set of customers to be attended,
that is C = V , and, thus, L = E. The Ω values ensure the visibility of the tour that
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Algorithm 1 The pseudocode of ACO metaheuristic

Initialization
while termination condition is not met do

Construct Solution
Daemon Actions ▷ Optional
Pheromone Update

end while

has been built by the colony of ants. Because the tours must be represented by a
complete graph, in this case, Ω ensures that only closed paths are allowed to be built
without repetition of any customer.

Figure 1 presents the pseudocode of ACO metaheuristic. Next, we depict all the
steps above mentioned when ACO is specifically applied to the TSP.

Construct Solution. For the classic TSP, a feasible solution is represented by a
sequence of components cij ∈ C and an instantiated decision variable repre-
sented by Xi ← vji . A pheromone trail value τij is associated to each solution
component cij ∈ C. A solution construction starts from an initially empty par-
tial solution sp. At each construction step, sp is extended by appending to it a
feasible solution component from the set of its feasible neighbors that satisfies
the constraints in Ω.

The choice of each cij is guided by a probabilistic decision rule, which is biased
by both the pheromone values τij and the heuristic values ηij associated with
cij. The pheromone values are represented by real numbers that are modified
while running the algorithm. They reflect the learned desirability of choosing
j just after the inclusion of i in the graph. The higher the pheromone value
τij, the higher is the desirability of choosing (i, j) as a solution component.
Additionally, each edge has an associated heuristic value ηij = 1/dij, which
means the desirability of going from i directly from j. The heuristic value
is inversely proportional to the distance between i and j. For the TSP, the
value ηij is a measure of the heuristic desirability of having an edge (i, j) as
a component of a tour: the shorter the distance, the higher is the heuristic
desirability. Note that, whenever 1/dij = 0, ηij is set to a very small value.
Both pheromone and heuristic information are represented by matrices of τij
and ηij values, respectively.

The exact rules for the probabilistic choice of solution components vary across
different variants of ACO. As follows, we present the one applied in the first
ACO algorithm, the Ant System algorithm (Dorigo et al., 1996), which works
as an inspiration source procedure for other probabilistic choice variations:

pcij |sp =
[τij]

α · [ηij]β∑
cil∈C(sp)[τil]

α · [ηil]β
, (3.1)

in which τij and ηij are, respectively, the pheromone trail value and the heuristic
value associated with the component cij. The parameters α ≥ 0 and β ≥ 0
determine the relative importance of pheromone versus heuristic information.
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Deamon Actions. This procedure, although optional, is important for the state-
of-the-art results of ACO algorithms, like the use of local search on MMAS
when applied to the TSP (Dorigo e Stützle, 2004). It allows the execution of
problem-specific operations that cannot be performed by artificial ants. It is
usually executed before the update of pheromone values in order to bias the
ants’ search toward high-quality solutions. In Section 3.2.4, the fundamentals
of a local search procedure (ls) are presented. We give special concern to the
2-opt ls, which is the one chosen to be applied as a Deamon Action procedure
for MMAS and P-ACO algorithms.

Pheromone Update. This procedure updates the pheromone trail values asso-
ciated with each solution components cij. The modification of the pheromone
trail values is performed in two steps. The first is the pheromone evaporation,
which decreases the pheromone values of all components by a constant fac-
tor ρ (called evaporation rate) to avoid premature convergence. The second is
the pheromone deposit, which increases the pheromone trail values associated
with components of a set of promising solutions Supd. The general form of the
pheromone update rule is as follows:

τij ← (1− ρ) · τij + ρ ·
∑

s∈Supd|cij∈s

F (s), (3.2)

in which ρ ∈ (0, 1] and f : S → R+ is a function such that f(s) < f(s′) =⇒
F (s) ≥ F (s′),∀s ̸= s ∈ S · F (·). Different definitions for the set Supd can be
found in the literature. Two common choices are Supd = sbsf , and Supd = sib,
in which sbsf is the best-so-far solution, that is, the best solution found since
the start of the algorithm, and sib is the best solution of the current iteration.
The specific implementation of the pheromone update mechanism differs across
ACO variants as presented in Dorigo et al. (1991); Gambardella e Dorigo (1996);
Dorigo e Gambardella (1997); Dorigo e Stützle (2004)

3.2 ACO algorithms applied to the TSPDDs

The high-level ACO metaheuristic description presented in Section 3.1 can vary
depending on the algorithm tackled. For example, Ant System does not apply any
Daemon Action procedure, and the Ant Colony System interleaves pheromone evap-
oration and solution construction. In the following, the variations on ACO main
procedures are detailed forMMAS and P-ACO. For both algorithms, the adapta-
tions of the main algorithm procedures for tackling the TSP with dynamic demands
are also presented.

3.2.1 MMAS Ant System (MMAS)

MMAS is an improvement over the first ACO algorithm, Ant System (Stützle e
Hoos, 1998; Stützle e Hoos, 2000; Dorigo et al., 2011). It is one of the most efficient
algorithms for tackling COPs, in particular the classic TSP. If we compareMMAS
and Ant System, apart from the use of local search, the main adaptations ofMMAS
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concerns the management of the pheromone update. They are: (i) only one ant is
allowed to deposit pheromone, (ii) the range of the pheromone trail values is bounded
by two numerical parameters τmax and τmin, and (iii) the pheromone trails are reini-
tialized every time the algorithm shows stagnation behavior.

As presented in Algorithm 2, τmax and τmin have their values initialized, in which
s⋆ represents the solution quality of the optimal tour from the instance tackled and
a is a parameter (Stützle e Hoos, 2000). The objective is the imposing pheromone
trail limits to the probability pij of choosing a customer j from a customer i. At the
beginning of the algorithm run, all pheromone values are set to τmax.

At each iteration (it), when all ants have built their tour, only one ant is allowed to
add pheromone in the pheromone matrix. It can be the best-so-far ant (L⋆), that is,
the ant that built the tour with a minimum cost since the beginning of the algorithm
run, or the iteration-best ant (L

′
), which is represented by the ant that has to build

the best tour in the current iteration.
The pheromone update rule ofMMAS is given below:

τij(it+ 1) = (1− ρ) · τij(it+ 1) +△τ bestij , (3.3)

in which ρ ∈ [0, 1] is the evaporation rate, △τ bestij = 1/s⋆ is a value that represents if

edge (i, j) belongs to the best tour (s⋆ or s
′
). If edge (i, j) belongs to the best tour,

s⋆ is set to the length of the best tour or it is set to 0 otherwise. If the best-so-far
ant is used, the τ bestij = 1/s⋆ analougusly if the best-of-iteration tour lengh is used

τ bestij = 1/s
′
.

Algorithm 2 MMAS for Combinatorial Optimization Problems

ACO parameters Initialization
Inicialize MMAS parameters
τmax ← 1/ρ · s⋆
τmin ← τmax/a
while termination condition is not met do

while i ∈ {1, ...,m} ≤ m do
Initialize selection set S 7→ {0, 1, ..., n− 1}
Let i construct solution si

end while
Determine the best solution of iteration s⋆

Determine the best so far solution s⋆

τij(t+ 1) = (1− ρ) · τij(t) +△τ bestij

Apply Local Search ▷ Optional
if number of solutions without improvement is achieved then

Reinicialize the pheromone trails
end if
if τmax value is achieved then

Reinicialize the pheromone trails
end if

end while

The initialization of the pheromone values to an upper trail together with a small
pheromone evaporation rate increases the exploration at the beginning of the run.
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At the same time, the pheromone boundaries used [τmin, τmax] avoid the algorithm
stagnation behavior (when all ants build the same tour) over time. Every time
the algorithm achieves the pre-defined limit of iterations without improvement, all
pheromone values are reset to τmax.

Another important improvement procedure from MMAS is the use of local
search. Every time ants have completed their tour construction, solutions can be
taken to their local optimum by the application of the local search procedure.

In the context of the TSP, many ACO algorithms such as MMAS use nearest
neighbor lists for speeding up solution construction, especially whenever a local search
is applied. As presented in Oliveira et al. (2011b); Oliveira et al. (2017), forMMAS
almost 90% of its computation time is spent on the pheromone update since the evap-
oration affects all pheromone entries, which are quadratically many. WhenMMAS
is used with local search, the algorithm does not update the full pheromone matrix,
but only the candidate’s lists.

MMAS modifications for DCOP. If we take the TSPDD as problem bench-
mark, the value of s⋆ will not be known anymore. Thus, at the beginning of
the run, all pheromone values are set to τ0 with the same value assigned in Ant
System, that is τ0 = m/snn, where snn is the solution quality of the tour built
by the nearest-neighbor heuristic. This setup of τ0 avoids the initialization of
the pheromone matrix with values that are too low, that quickly bias the first
tours generated, and at the same time are not too high to lead the algorithm
taking many iterations until the pheromone evaporation is reduced enough to
bias the ants. In addition, after every dynamic change, solutions that have
been built so far may be not be feasible anymore. More precisely, whenever a
DCOP moves from Gs to Gs+1, the set of customers to be attended changes.
Thus, the best solution found so far and also the nearest neighbor lists may
change or even not be valid anymore. In this case, every time there is a change
on Gs, the nearest neighbor lists are generated again for the new instance set
defined. Note that the pheromone level of edges Vs−1 \Ds × As and As × As,
unless said otherwise, are initialized to τmax. The other edges (that is, all those
in Vs−1 \Ds×Ds−1 \Ds) keep the same values as before the move, and are used
to identify the best-so-far solution by using the nearest-neighbor heuristic.

Besides being one of the state-of-the-art algorithms applied to TSP problems,
the exploration characteristic ofMMAS at the beginning of the algorithm run, to-
gether with a boundary memory given from the use of [τmax, τmin] have been gaining
researchers’ attention for expanding the MMAS to problems with dynamic con-
straints. As mentioned above, after a problem change Gs+1, depending on how strong
changes are, most of the tours may not be feasible anymore. As a consequence, the
search space has also changed. In this way, after all, adjustments when moving from
a benchmark to another, using an algorithm that has an explorative behavior at
the beginning of the search together with the speed up procedure given from the
use of nearest neighbors and local search turnsMMAS a state-of-the-art candidate
algorithm also for DCOPs.
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3.2.2 Population Based ACO (P-ACO)

P-ACO is an Ant Colony based algorithm proposed by Guntsch (Guntsch, 2004).
As the majority of ACO algorithms, P-ACO was also designed for tackling the
TSP, in special to deal with the TSP with components that are allowed to change
over time without any prediction. Despite using the same solution construction
procedure, P-ACO differs from other ACO algorithms in the way of updating the
pheromone matrix. Instead of accumulating pheromone information provided by so-
lutions constructed in every iteration, P-ACO maintains a solution archive and only
solutions in this archive are reflected in the pheromone matrix.

The general form of the P-ACO pheromone matrix is as follows:

τij(it+ 1) = τ0 +∆ · |{s ∈ P |(i, j) ∈ s}|, (3.4)

that is, the pheromone over edge (i, j) at a given iteration it + 1 is equal to the
initial pheromone deposit τ0 plus a deposit of ∆, as many times as the number of
occurrences of that edge in the solutions that belong to the archive.1

The pheromone upper bound τmax is updated as:

τmax = τ0 +∆ ·K, (3.5)

and ∆ is derived from

∆ =
τmax − τ0

K
. (3.6)

This pheromone update mechanism of P-ACO is typically faster than that of
other ACO algorithms, which makes P-ACO a promising algorithm to be applied to
dynamic COPs (Oliveira et al., 2011b; Oliveira et al., 2017). In addition, since only
solutions in the archive influence the pheromone matrix, the pheromone matrix could
be completely changed over time.

Different ways to manage when and which a solution is allowed to enter the archive
have been proposed in the literature and are presented latter in this Section. The first
and most intuitive procedure proposed is called age-based strategy (Guntsch, 2004).
This procedure follows the first in first out (FIFO) queue behavior. The P-ACO
pseudocode is presented below with the use of the age-based strategy.

Concretely, when a solution s enters the solution archive P (bounded to a maxi-
mum size K) being k = 1 its first element, ∆ is added to the pheromone matrix cor-
responding to the solution component presented in a solution. When |P | = K, every
new solution replaces the eldest solution in the solution archive (age-based strategy).
When this replacement happens, the pheromone contribution of the components of
the solution exiting P are removed2.

Overtime, depending on the problem and instance tackled the solution archive
would have k solutions presenting the same solution quality. As a consequence,

1Note that the pheromone over edge (i, j) at a given iteration it + 1 does not depend on the
pheromone over that edge on previous iterations and that the deposit does not depend on solution
quality unless stated otherwise.

2Note that, when the algorithm starts, all entries of the pheromone matrix have an initial value
of τ0, which has the same effect as the minimum pheromone trail limit inMMAS (Stützle e Hoos,
2000), that is, pheromone values on the pheromone matrix concerned the components from k = 1
at P are reduced to −∆
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Algorithm 3 P-ACO for Combinatorial Optimization Problems

while termination condition is not met do
τmax ← 1/ρ · L⋆

τmin ← τmax/a
Initialize pheromone values τij ← τ0
Initialize the population P ← 0
while i ∈ {1, ...,m} ≤ m do

Initialize selection set S ← {0, 1, ..., n− 1}
Let i construct solution si

end while
Determine the best solution of iteration s′

Add s′ to population P ← P ∪ {s′}
for all (i, j) ∈ s′ do

τij ← τij(it+ 1)
end for
if |P | > K then

Remove solution sk=0 from population P
for all (i, j) ∈ sk=1 do

τij ← τij −∆
end for

end if
end while

the search exploitation gets intensified in a way it does not let the algorithm to
improve solutions over time anymore. To manage this issue, some improvements
have been proposed to keep balance between P-ACO exploration and exploitation
over the algorithm run. These improvements are presented as follows.

3.2.2.1 Population Management procedures

The P-ACO allows different ways of adapting the pheromone removal process ac-
cording to the population of solutions. In the following, the procedures proposed by
Guntsch in Guntsch (2004) are described. Figure 3.1 presents their graphic represen-
tation.

Age-based strategy. As already mentioned, the age-based strategy was the first
population management strategy proposed by Guntsch (Guntsch, 2004). When
proposed, it was the simplest method of managing the population of solutions
following FIFO (first in first out) queue behavior.

Quality-based strategy. This strategy allows the iteration-best solution s′ to
enter the solution archive only if its solution quality is better than the worst
in P . Thus, if s′ is worse than all solutions in P , the solution archive remains
unchanged. When P is full, the new solution replaces the worst of P at that
moment and if the best solution of an iteration s′ is worse than all solutions in
the population, the P remains unchanged.
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Figure 3.1: P-ACO Strategies: Graphical representation of P-ACO age (1), quality
(2) and elitist (3) strategies, respectivelly.

Elitist-based strategy. This strategy keeps track of the best solutions found
during a run. Each time a new best solution e is found, the elitist update is
applied. This means that, given a weight we ∈ [0, 1], the best solution found so
far receives a weight we · τmax and the other solutions of the population receive
a weight ∆ · (1− we)/(K − 1).

Figure 3.1 represents the dynamics of all strategies presented above. Each col-
ored rectangle refers to a solution quality of s. Solutions in the solution archive are
inside of bigger and blank rectangles. For each solution archive, K was set to 5.
Black rectangles represented the solution quality of best so far solutions, dark grey
rectangles represented the solution quality with better performance than the ones
in light grey. Thus, rectangles with the same colors have the same solution quality.
The size of each rectangle represented the weight we added to the solution quality for
the elitist-based strategy. Figure 3.1(1) is the graphic representation of the quality-
based strategy ; Figure 3.1(2) represents the age-based strategy ; while Figure 3.1(3)
represents the elitist-based strategy.

In order to improve the performance of the strategies proposed, adaptations were
implemented on quality and age-based strategies. They are:

Probabilistic quality-based strategy. When the quality-based strategy is used,
after a certain number of iterations P might consist of K copies of the same
solution. A way of minimizing this scenario was the introduction of a proba-
bilistic component. f(s) represents the solution quality of a solution s in which
lower values of f(s) represent a higher solution quality. For P = {s1, ..., sk+1},
a probability distribution pr is assigned over the solutions si, i = 1, ..., K + 1
in which:
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pri =
xi

K+1∑
J=1

xi

, (3.7)

with
xi = f(xi)− min

j∈|1,k+1|
f(si) + avg(s), (3.8)

and

avg(s) =
1

k + 1

K+1∑
J=1

f(si)− min
j=1,...,k+1

f(si). (3.9)

Age & probabilistic-based strategy. This strategy presents the possibility to
combine the age and probabilistic quality strategies. Here, in the beginning of
each run the age-based strategy is applied. However, the probabilistic quality
strategy takes place just before the solution that would exceed the population
archive limit is added. The combination of these strategies avoid a solution
that has just been added into the archive to be immediately removed. At same
time it guarantees that new solutions will influence the algorithms search for
at least one iteration.

The same probability procedure as the one used on the probabilistic quality-based
strategy is applied to the population of solutions before the K limit exceeds. This
action removes the possibility of having a solution that has just been added, to be
removed before, at least, one iteration influence.

3.2.3 Reacting to Changes: Repair procedures for ACO al-
gorithms

Whenever we apply an ACO algorithm to a DTSP, after each dynamic change the
pheromone matrix needs to be adjusted as its objective is to serve as ants memory
source. Over time, due to the dynamic changes on the problem components, some
pheromone values may not make sense anymore.

As an example, consider the pool methodology that was applied in this research
and presented in Section 2. Every time a customer i was replaced at the current
pool, the pheromone values connecting i to any other customer j did not make sense
anymore. At the same time, a customer that had just been added to the current pool
could present weekly connections to a promising j as the pheromone values were set
to τ0. The major consequence of this fact is the possibility of an algorithm getting
stuck in a local optima area. Pheromone information from the outgoing customers
might be so strong that would not allow the inclusion of any other newly added
customers. As a consequence, these new customers could be added at the end of the
tour, resulting in suboptimal solutions.

How much and where information is still exploitable and how much exploration
would be needed just after the dynamic change to readapt the search has been the
main issue faced by the ants’ memory procedure for solving this problem class. To
tackle this issue, several repair procedures on the pheromone update have been pro-
posed and successfully tested in the literature (Guntsch e Middendorf, 2001; Guntsch,
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2004; Mavrovouniotis e Yang, 2010, 2013b; Mavrovouniotis et al., 2014; Mavrovouni-
otis e Yang, 2014b). In the following we present the strategies used in this research
that were proposed in Guntsch e Middendorf (2001); Guntsch (2004); Yang (2005) to
enable the algorithms tested to explore the search behavior again, after the dynamic
changes.

Reset strategy. In this strategy, pheromone information is removed on edges
Vs−1/Ds and are set according to a parameter γ ∈ [0, 1].

Restart strategy. The restart strategy is similar to the strategy mentioned above.
However, instead of removing the pheromone information on edges Vs−1/Ds, it
is regulated by a forgetting parameter γ ∈ [0, 1].

η-strategy. This strategy uses heuristic information to define the pheromone reset
values instead of using an arbitrary parameter as presented in the reset strategy.
Here, the heuristic distance dηij from a customer i to any customer j in the
problem benchmark is defined by

dηij = 1− η0
κ · ηij

, (3.10)

in which η0 is a normalization parameter calculated by the average of all heuris-
tic values as presented in Expression (3.11) and a parameter κ ∈ (0,∞). This
measure is developed to define the maximun value of dηi for all customers j ∈ C,
limiting the minimun value to 0 as presented in Expression (3.13).

η0 = 1− 1

n · (n− 1)

∑
i

∑
i ̸=j

ηij. (3.11)

dηij = max
j∈C

dηij. (3.12)

γi = max(0, dηij). (3.13)

Immigrant Procedure. The immigrant procedure was firstly introduced in the
context of evolutionary algorithms (Yang, 2005, 2007, 2008; Xin Yu et al., 2008),
and later extended to ACO algorithms (Mavrovouniotis e Yang, 2011a, 2012,
2013a,b, 2014b). In general, an immigrant can be either an ant or a solution that
is moved from its original search context to another to promote diversification
in a biased way. This is a default practice, when ACO algorithms are applied to
DCOPs, as the pheromone information from many solution components created
in past environments are reused in new ones. However, few proposals can
be seen in the literature in which randomly modified solutions are used as
immigrants (Mavrovouniotis e Yang, 2010), thus introducing a perturbation to
the pheromone that is transferred across environments.
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3.2.4 Local search and ACO

Constructive algorithms, like ACO, as presented in Algorithm 1, start from an
initial empty solution and iteratively add solution components until the solution is
complete. Although they are faster in comparison to approximate algorithms they
present in general worst solution quality performance. This disadvantage can be
surpassed by the use of local search methods. Without loss of generality, we can
describe a Local Search (LS) operator for the TSP as a procedure that removes (or
unsign) and inserts (or sign) nodes from a tour into such a position that improves
the overall round trip cost. Solutions that are generated by using LS operator are
named as candidate solutions.

Concerning the TSP, the literature shows that the use of local search, most of the
time, significantly improves algorithms’ performance. Starting from an initial solution
s, a local search method repeatedly tries to improve it by local changes. As presented
in Hoos e Stützle (2004), there are many variations of local search algorithms. In the
case of the TSP, the stochastic local search (SLS) is a well-known high-performing
LS algorithm and the one that is most successfully applied to this problem class. It
is the one that makes use of randomized choices in generating or selecting candidate
solutions for a given problem benchmark.

Before applying a LS procedure, we need to define what is called neighborhood
structure. More precisely, we need to define for each current solution the set of
possible solutions to which local search algorithms can move. The most efficient
neighborhood structure applied to the TSP is by the use of whats is called k-exchange
move. On the k-exchange method, s and a candidate solution sngb needs to be
neighbors. That means that sngb can be obtained from s from deselection of a set
of k edges that are rewired into a complete solution by inserting a different set of
edges. For the TSP, k = 2 and k = 3 are the most common choices. In this
research, we focus on the use of k = 2, once it is the one that presents the best
performance when MMAS is applied. It is important to note that, when applied
to ACO algorithms, k-exchange relations are called k-opt, because they build locally
optimal solutions.

Figure 3.2 illustrates a 2-opt local search move. The most straightforward im-
plementation of a 2-opt considers, in each step, all possible combinations of the two
edges from a given candidate solution s, the number of ways the fragments can be
reconnected into a different candidate solution different from s. For example, after
deleting two edges (7, 8) and (2, 3), the way to rewrite the two partial tours is by
introducing (2, 7) and (3, 8) with the reverse of one of the partial tours.

The use of local search presented an important role for ACO algorithms. However,
the efficiency of its application depended on several factors, such as the initial solution,
the neighborhood structure and the neighborhood search speed. In particular, the
speed depended on move cost, that is, the time required for computing the difference
of the cost value between couples of neighboring solutions.

When applied to ACO metaheuristic, after all ants completed their solution con-
struction, solutions are taken to their local optimum by the application of the local
search procedure. As described in Dorigo e Stützle (2004), because ACO’s solution
construction uses a different neighborhood than local search as presented in the be-
ginning of this Section, and local search needs a high-quality starting solution, the
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Figure 3.2: Graphical representation of a 2-opt local search. The left graph represents
a solution s = {1, 2, 3, 4, 5, 6, 7, 8} after a s = {1, 2, 7, 6, 5, 4, 3, 8}.

use of local search has a high probability to improve the solutions built by the ants.
This is the case ofMMAS. The most important issue of using local search on COPs
is that it is a very time-consuming metaheuristic, once run-time and solution quality
are directly correlated.

To measure the impact between the time spent by the pheromone update proce-
dure and the solution construction procedure, we run three ACO algorithms using a
profiling tool.3 Each algorithm was executed only once. P-ACO, MMAS and Ant
Colony System (ACS) were executed for the classic TSP. The comparison with ACS
for the TSP was interesting because its pheromone update procedure also takes only
O(n) steps as P-ACO but with a larger constant hidden in the O(n) notation.

The percentage of computation time for all functions related either to pheromone
update or solution construction (including local search if executed), were summed
and presented in Table 3.1.

As expected, P-ACO spent much less time for the pheromone update when com-
pared toMMAS. The amount of computation time saved was particularly impres-
sive when compared to MMAS on the TSP without a local search. For large in-
stances, up to almost 90% ofMMAS’s computation time was spent by the pheromone
update (and not in generating solutions), due to the fact that the evaporation af-
fects all pheromone entries, which were quadratically many (the big impact of the
pheromone update was also due to the fact that the solution construction was of
almost linear complexity because of the exploitation of candidate sets). For P-ACO,
the computation time taken by the pheromone update was always a small percentage
(around 5% in the discussed case). P-ACO’s pheromone update was also much faster
than ACS’s one. Once local search was added, the advantage of the faster pheromone

3A profiler is a program used to check how much time is used by each function while executing
the code.
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P-ACO ACS MMAS P-ACO+ls ACS+ls MMAS+ls
Instance %cst %ph %cst %ph %cst %ph %cst %ph %cst %ph %cst %ph
d198 95.64 4.09 81.45 18.02 43.32 55.81 98.53 0.61 93.90 6.05 97.08 1.89
eil101 93.63 5.87 83.02 16.86 47.14 52.56 97.20 0.85 95.50 4.17 97.40 1.24
kroA200 94.77 4.86 77.77 22.02 42.70 56.98 97.91 0.85 95.43 4.26 97.44 1.47
rd400 94.06 5.06 79.67 20.09 28.71 70.03 98.41 0.60 94.17 5.62 95.76 3.09
pcb1173 94.53 5.02 77.49 22.34 11.11 88.21 97.41 1.57 93.15 6.08 95.75 3.86
u2319 92.45 4.96 76.22 23.64 9.04 88.47 96.01 3.09 89.76 8.17 90.93 6.36

Table 3.1: gprof results summary - Percentage of computation time used for solu-
tion construction (including local search if executed), %cst and pheromone update,
%ph. Two variants of P-ACO, ACS, MMAS (without local search, and with local
search,+ls) were used and applied to the classic TSP. Note that in most cases the
total computation time does not sum up to 100% due to other functions used by the
code.

update by P-ACO was much reduced, due to two reasons. First, simply because rel-
atively the local search took a significant amount of time; second, MMAS when used
with local search did not update the full pheromone matrix, but only to the candidate
sets. P-ACO’s advantage with respect to computation time is nevertheless still clear
in the TSP case, where tour length computation and construction is done in (almost)
linear time.

In summary, the speedup of the pheromone update through P-ACO proved to
be directly dependent by two factors: (i) the use of a local search, and (ii) the
problem to which the algorithm is going to be applied, in particular, the complexity
of the computation of the objective function. As a consequence, the pure speed
up effect obtained by P-ACO’s faster pheromone update depends strongly on these
two features. From these experiments, P-ACO could be a good tool to be applied
to problems in which local search does not perform well like the longest common
subsequence problem (Blum et al., 2009) and the founder sequence reconstruction
problem (Benedettini et al., 2010).



Chapter 4

Solution Quality Evaluation

Real-world optimization problems are often modeled as combinatorial optimiza-
tion problems (COPs), which involve finding values for a set of discrete variables
related to a given objective function. A straightforward approach to defining the
best solution for a COP could be the combination of all possible values for each vari-
able and the choice of the best set, that is, the one with the best solution quality
for the given objective function. Unfortunately, this approach turns unfeasible for
problems in which the number of possible solutions increases exponentially according
to the increment of instance size. Due to that increment of instance size, not only the
run time of the algorithm applied to solve the problem grows in the same proportion
but also the time required to find an optimal solution. When the optimal solution
cannot be efficiently obtained in practice, approximate algorithms such as heuristics
and metaheuristics have been successfully applied to obtain near-optimal solutions.
An example is the ACO metaheuristic presented in Section 3. Dynamic environments,
in which instances are allowed to undergo some modifications over time without any
prediction, as described in Section 2, impose some additional challenges to COPs
since such problems need to be re-optimized overtime to ensure not only feasibility
but also the quality of the solutions.

Some well-established evolutionary and swarm intelligence techniques have been
tailored to solve dynamic COPs (DCOPs) (Eyckelhof e Snoek, 2002; Guntsch, 2004;
Mavrovouniotis e Yang, 2011a; Nguyen et al., 2012a; Yang et al., 2013). However,
to guarantee the effectiveness of the solution quality generated by an approximate
algorithm, one has to execute it several times and solution quality of all executions
should be compared in a way to prove whether their values are consistent or not.
The literature is rich in examples of measures to assess the performance of algorithms
applied to this context but many measures (i) evaluate algorithms based solely on
the quality of the final solution they produce (Yang, 2005; Mavrovouniotis et al.,
2017), completely disregarding the performance of the algorithm during different
re-optimization cycles (environments); (ii) require several measures to be combined
“to obtain knowledge about the behavior over dynamic changes and solution quality
development” (Mavrovouniotis e Yang, 2011a; Guntsch, 2004), and/or; (iii) require
the adaptation of measures that need a priori knowledge of the optimal solution for
each problem change (Mavrovouniotis e Yang, 2010) since they were proposed in the
context of artificially designed test problems in which optimal solutions are known
beforehand.

25
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In this chapter, we focus on the description of measures that have been proposed
in the literature for tackling DCOPs. After that, aiming to overcome the issues
discussed above, we proposed a bi-objective formulation of DCOPs, in which runtime
and solution quality are considered objectives to be simultaneously optimized. This
idea was largely inspired by Radulescu et al. (2013), who adopted the hypervolume
measure to assess the anytime behavior of heuristic algorithms. Here, we extend
that concept to comprehend problem changes, enabling the comparison of different
algorithms between consecutive changes (environment-wise analysis) and during their
entire execution (scenario-wise analysis). In addition, our approach is based on an
unary version of the hypervolume indicator, which makes it scalable as to the number
of algorithms considered in the analysis. Our formulation is also scalable as to the
number of objectives considered, meaning one can use it to assess the performance of
dynamic multi-objective optimizers. Yet, in this work, we focus on the assessment of
traditional DCOP optimizers. All the experiments conducted to validate our proposal
are presented later on.

4.1 Overview of metrics applied to DCOPs

The most common performance metrics for static COPs are based on the solution
quality of the best solution found up to a given termination criterion (the final solu-
tion), averaged over a series of runs. In addition, when the optimal solution of a given
instance is known a priori, as with the most commonly used TSP instances (Reinelt,
2008), it is possible to compute the relative percentage deviation (RPD) between the
best solution found by an algorithm and its optimal solution. The average of the RPD
over a series of runs is likely the most commonly adopted metric in static optimiza-
tion (Hoos e Stützle, 2004). By contrast, for environment changes in dynamic COPs,
a single value provided by the best solution quality average turns insufficient. Al-
though different algorithms can display the same average value at the end of a run or
just before a dynamic change, they can completely diverge on their search dynamics.
Another important fact is that, due to the dynamic behavior of the instances tack-
led, as opposed to static TSP instances, the optimal solution is not known a priori.
Thus, evaluating algorithms applied to DCOPs require re-evaluations of the quality
of solutions, due to changes on the input data and/or to the optimal solution (Branke
et al., 2005; Nguyen et al., 2012b).

Therefore, when we move from static to dynamic COPs, other evaluation criteria
must arise to measure how fast the algorithm can react to dynamic changes or if the
algorithm can maintain its performance over these changes. In fact, the goal of a
dynamic optimizer is not only to retrieve a high-performing solution at the end of its
run (or overall environment changes) but also to proceed with this retrieval efficiently.
In a sense, each environment change forces the algorithm to restart its search, and
each of these optimization cycles must be able to retrieve high-performing solutions
consuming as few resources as possible.

Many performance assessment measures have been proposed in the dynamic opti-
mization literature and can be classified as either final quality-based or behavior-based.
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4.1.1 Solution quality based measures

The solution quality-based measures are based on the quality of the best solution
found in each environment. For a scenario-wise analysis, performances across all
environments are traditionally averaged. The major drawback with these approaches
is the indifference to the search dynamics within environments. Specifically, a given
algorithm may re-optimize solutions very quickly and still be considered equivalent
to another that takes much longer to reach the same solution quality.

Average best-of-generation. The average best-of-generation is one of the most
applied measures in dynamic environments. It was initially proposed for mea-
suring the performance of evolutionary algorithms (Morrison, 2003; Alba e Sara-
sola, 2010a; Ben-Romdhane et al., 2013). The advantage of its methodology
lies in the fact that it covers the entire optimization process. That is, it records
the best solution quality over all generations Gen over the total number of runs
R. The best-of-generation formulation is presented bellow:

BOG =
1

R

1

Gen
·

R∑
r=1

Gen∑
gen=1

f(BOGr,q). (4.1)

Besides the issue of being a metric that concerns only the solution quality
development of an algorithm, another issue of applying BOG concerns that it
is not normalized.

Offline performance. When we tackle DCPs, the problem optimal solution s⋆ is
not static anymore, following the environment changes. In this way, given the
frequency of change ζ, which defines how many environments the problem will
tackle, the offline performance measures the average of the best so far solutions
found at each slot slt (Alba e Sarasola, 2010a). Equation 4.2 represents the
formulation of the offlive performance measure:

off =
1

ζ
·

ζ∑
slt=1

f(s⋆slt). (4.2)

The drawback of applying this method comes from the fact that the number of
environment changes must be known a priori.

Accuracy (Relative Error). The accuracy method, also named in the literature
as relative error, was also a measure developed for static problems and then
adapted to evaluate problems with dynamic constraints (Weicker, 2002). Given
the fact that BOG does not normalize solution quality, accuracy arises as a
complimentary analysis of BOG. As presented in Equation 4.3:

accuracy =
f(BOG)−MINt

MAXt −MINt

, (4.3)

this measure enables us to find the best solution quality for each time interval,
in which MINt and MAXt are the worst and best know solution quality at a
period t, respectively. The higher the accuracy value, the better the algorithm
is.
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4.1.2 Behavior based measures

The focus of the behavior-based measures relies on the measurement of algorithms’
ability to quickly improve solution quality after the environment changes, or how
much solution quality is lost between these changes.

Once it aims to analyze how an algorithm will adapt its search improvement over
the environment changes, the behavior analysis of an algorithm requires the use of
different approaches simultaneously or the use of interdependent measures.

In the following, we describe some of the most used behavior and how they are
combined.

Stability. The stability is a measure of the algorithm’s ability to recover its perfor-
mance after each environment change. Thus, an algorithm can be considered
stable if it can maintain its accuracy until the end of the run. Besides being
a measure that does not allow to know whether the algorithm is improving
well its solution quality, it is also accuracy dependent. That is, it requires the
previous application of the accuracy measure to enable its use. The stability
equation is presented as follows:

stability = max{0, accuracyt − accuracyt−1}. (4.4)

βDegradation. The βDegradation is a very useful measure that was proposed to measure
the algorithm’s ability to track the instance moving optima. As presented
in Alba e Sarasola (2010b), the performance of an algorithm tends to degrade
the quality of solutions as the frequency of change increases. This behavior
was also presented on the experiments conducted here specially whenMMAS
with its default configuration is applied without local search for solving bigger
instances sizes on scenarios with a higher degree of dynamism. Figure 4.3
illustrates this behavior.

To tackle this issue, the βDegradation measures how much of performance is lost
over time. As presented in Equation (4.5):

u = βDegradationa⃗c+ ζ, (4.5)

given a sequence of accuracy values obtained at the end of a time period, in
which u represents an approximation to the algorithm overall accuracy vector
acsl of size ζ, and degradation is the slope of the regression line and ζ is the
number of periods in the dynamic problem, as shown in Equation (4.6):

acsl =
1

R
·

R∑
r=1

f(s⋆slt,r). (4.6)

The accuracy for each period is obtained from the best solution found in period
slt averaged over all independent runs R. A positive degradation value indicates
the algorithm keeps a good improvement and still provides good solutions: the
bigger the improvement, the higher the slope value will be, being 1 its maximum
value.
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4.1.3 Area Between Curves measurement (ABC)

Contrarily to all other behavior metrics, the area between curves (ABC) (Alba
e Sarasola, 2010a) does not require any assumptions about optimal solutions. This
is illustrated in Figure 4.1, which depicts the performance fronts of two dynamic
optimizers (left-most plots). In all plots, runtime is given on the x-axis, while solution
quality is given on the y-axis (w.l.o.g. we consider a solution quality minimization
problem). In more detail, the performance of a given algorithm ΨA is represented as
a set of points ΦA = (⟨ϕt1

A , t1⟩, ⟨ϕ
t2
A , t2⟩, . . . , ⟨ϕ

tmax
A , tmax⟩), in which ϕti

A is the solution
quality of the best solution found by ΨA up to time instant ti. The ABC metric
computes the area between the performance fronts (or curves) of two algorithms ΨA

and ΨB, illustrated in Figure 4.1 (right). In this figure, the solution quality of ΨA is
represented by black diamonds and ΨB by white ones.

This metric can be mathematically modeled as the integral of the differences of
ΨA and ΨB in the interval [t1, tmax] as:

abcΨA =
1

tmax

∫ tmax

1

(ΨA) dt, (4.7)

abcΨB =
1

tmax

∫ tmax

1

(ΨB) dt, (4.8)

ABCΨA,ΨB =
1

tmax

∫ tmax

1

(ΨA −ΨB) dt. (4.9)

If ABC provides a positive result, the curve obtained by ΨA has higher values
when compared to ΨB. On the other hand, a negative value of ABC means that
curve ΨB has higher values. The greater the distance between the two curves, the
bigger the difference between algorithms performance.

In order to measure how better an algorithm is in comparison to the other, a ratio
parameter is applied as follows:

abcΨA

abcΨB
≥ 1− χ, (4.10)

ϵ− ratio = abcΨA · χ. (4.11)

in which χ is a pre-defined parameter. In Alba e Sarasola (2010a), the authors used
χ = 0.05. Authors also consider the distance between the curves to be negligible,
whether they are smaller than χ − ratio. The term χ − ratio is used to name the
maximum distance between some abcΨA and other abcΨ.

In fact, this metric is a binary variant of a metric known in the context of multi-
objective optimization as the unary hypervolume indicator (Radulescu et al., 2013),
one of the best-established metrics for the performance analysis of multi-objective
optimizers (Knowles et al., 2006). Specifically, the ABC metric is a particular case of
the binary hypervolume metric where the reference point is only weakly dominated by
the front assessed, and hence conclusions drawn from it cannot be guaranteed Pareto-
compliant (Radulescu et al., 2013). More importantly, this poor choice of reference
point (albeit implicit in the metric definition) means environment-final solutions may
not be properly valued.
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Figure 4.1: The hypervolume of two different sets of points (left and center), com-
puted as a function of a bounding reference point. Given that points represent the
performance of a dynamic optimizer, the hypervolume depicts its anytime behavior.
In the dynamic optimization literature, the ABC metric (right) has been employed
for a direct comparison of pairs of algorithms, measuring the difference between hy-
pervolumes. Instead, in this work we compare multiple algorithms in an unary way,
comparing the hypervolume values each algorithm achieves at a given run. We refer
to the text for the reasons why we choose the unary hypervolume version over the
binary one (ABC).

Notice that the ABC measure is loosely related to the multi-objective optimization
performance assessment literature. Specifically, when assessing a single environment,
this measure becomes close in spirit to the binary hypervolume measure (Zitzler et al.,
2003). Yet, differently from the hypervolume, one cannot draw Pareto-compliant
conclusions about the fronts being compared by the ABC, as we will later detail. In
addition, this measure can only be applied to pairwise algorithm comparisons given
its binary nature – the literature on binary measures for multi-objective optimization
is clear that this is a non-scalable approach (Zitzler et al., 2003).

In the next section, we review another existing approach to a multi-objective for-
mulation of algorithm performance, extend it to the context of dynamic optimization,
and highlight the benefits of our approach over ABC.

The behavioral-based measures compare algorithms based on their search dy-
namics, providing more insights than final quality ones. Nonetheless, many of these
measures may require the knowledge of the optimal solution to do so, or use an auxil-
iary measure that requires it. The only measure we identify without such restrictions
is the area between curves (ABC, (Alba e Sarasola, 2010a)), which considers that the
performance of algorithms are time-quality fronts and measure the area between these
fronts for each environment. Aggregation for a scenario-wise analysis is traditionally
done through an algebraic sum of the areas identified in each environment.

4.2 Assessing the anytime behavior of a dynamic

optimizer: the hypervolume approach

In the context of static optimization, assessing the performance of an algorithm
considering both resource consumption and solution quality is known as assessing
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its anytime behavior (Radulescu et al., 2013). When the resource consumption to be
minimized is runtime, solution quality over time (SQT) plots can be used for a graph-
ical analysis (Hoos e Stützle, 2004). For dynamic optimization, as presented above,
several behavior-based metrics extend analytically the SQT to deal with multiple
environments (Mori et al., 2001; Weicker, 2002; Rand e Riolo, 2005; Mavrovouniotis
e Yang, 2011a; Cruz et al., 2011; Nguyen e Yao, 2012).

However, many such metrics have been proposed in a context in which artificial
benchmark problems are used, having the knowledge of the optimal solutions for each
environment at hand. In most real-world situations (and also here), such metrics
cannot be applied as the optimal solution is in constant change across the different
environments (see Chapter 2).

In Oliveira et al. (2019), we proposed the application of the hypervolume indica-
tor to the context of dynamic optimization with minor adjustments. The high-level
idea was to compute the hypervolume dominated by each algorithm in each environ-
ment separately and aggregate over environment-wise hypervolumes to draw overall
conclusions. As illustrated in Figure 4.1 (right), we adopted environment-wise hy-
pervolume measurements since, if the whole run of an algorithm were considered as
a single front, most of the points depicting a given environment would be consid-
ered dominated by the best solution of the previous environment. To ensure that
hypervolumes from multiple environments are comparable, we follow a two-stage ap-
proach. First, the values from both axes are globally scaled to ensure that both of
them always contribute equally to the hypervolumes. Second, the reference point
for a given environment is computed as an x-axis translation of a global reference
point. As a consequence, solutions from each environment need to be evaluated in
isolation, since the reference point of a given environment would intersect with the
next environment.

The most important advantage of the hypervolume over the ABC metric was the
preservation of the benefits of the original anytime behavior formulation. Specifi-
cally, given two algorithms ΨA and ΨB, with their respective sets of performance-
describing points ΦA and ΦB, the formally proven properties of the hypervolume
indicator (IH) ensure that, if ΨA presents a better anytime behavior than ΨB, then
IH(ΦA) < IH(ΦB). Alternatively, one can also say that, if IH(ΦA) < IH(ΦB), then
ΨA cannot present a worse anytime behavior than ΨB. Additionally, using the unary
hypervolume instead of its binary variants renders the analysis scalable w.r.t. the
number of algorithms compared. Regarding an overall analysis, the benefits of our
approach vary as a function of the aggregation method considered. A rank sum anal-
ysis indicated how often one algorithm reacted more efficiently to problem changes
than others. In the most extreme case, an algorithm ΨA presented larger hypervol-
umes than another algorithm ΨB on all environments, so it is clear that ΨA could
not present worse anytime behavior than ΨB. Alternatively, one could also assess the
average performance of an algorithm across environments. This flexibility of aggrega-
tion approaches was another improvement over the ABC metric, specially given that
an algebraic sum implicitly embedded in the ABC metric provided less information
than the alternatives discussed here.

In the following, we discussed the original anytime behavior formulation and its
assessment through the hypervolume after that and extended it for the assessment
of dynamic optimizers. We evaluated our proposal through the DTSPDDs and we
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discuss both experimental setup and results.

4.2.1 The hypervolume measure for the TSPDDs

The anytime behavior of an algorithm was defined by Radulescu et al. (2013) as
the robustness of an algorithm to different stopping criteria. To compare different
algorithms as to their anytime behavior, authors proposed that the original optimiza-
tion problem under investigation be reformulated as a bi-objective problem, through
the addition of a resource-minimizing objective. In the most traditional scenario,
one wanted to optimize the solution quality of a target problem, and runtime was
the resource which consumption was to be minimized. Under this formulation, the
performance of an algorithm Ai was a nondominated front comprising points ⟨ti, qi⟩,
i.e., the solution quality qi obtained at time ti. Different algorithms could then be
compared through the hypervolume they dominated, using a common reference point
strictly dominated by all other points. Albeit simple, this approach is powerful in
that (i) multiple algorithms can be simultaneously compared, and (ii) an algorithm
that dominates a larger hypervolume cannot present a worse anytime behavior than
one which dominates a smaller hypervolume (and vice-versa).

The application of the approach above to the context of dynamic optimization
was straightforward when a single environment was considered. Yet, when problem
changes are introduced, a few adjustments need to be made. To help illustrate these
adjustments, Figure 4.1 depicted the performance fronts of two dynamic optimizers
(left-most plots) and the comparison of their hypervolumes (right-most plot). In
all plots, runtime is given on the x-axis, while solution quality is given on the y-
axis (w.l.o.g. we consider a solution quality minimization problem). The first issue
for computing a scenario-wise hypervolume illustrated in this figure was that, if the
whole run of an algorithm was considered as a single front, most of the front depicting
a given environment would be considered dominated by the best solution of the
previous environment.

An alternative was to consider the environments separately and aggregate over
environment-wise hypervolumes to draw scenario-wise conclusions. This approach re-
quired a second adjustment in the methodology, namely that reference points for each
environment be computed as x-axis translations of the scenario-wise reference point.
In more detail, to ensure all environment-wise hypervolumes were comparable (and
hence could be aggregated), all reference points considered must present the same
solution-quality coordinate. In addition, the time coordinate of each reference point
was computed such that it could be strictly dominated by its environment front.1

As we will later discuss, our case study presented fixed-duration environments and
solution-quality ranges did not vary considerably across environments. Hence, we
only applied a scenario-wise normalization to ensure both axes contributed equally
to the hypervolumes. However, depending on the application considered, axes nor-
malization for each environment might also be necessary.

Concerning environment-wise analysis, our approach preserved the benefits of the
original anytime behavior formulation, which greatly improved over the ABC metric.
Specifically, the ABC metric has been a particular case of the binary hypervolume

1In practice, this required isolating fronts from each environment before computing hypervolumes,
since the reference point of a given environment might intersect with the next environment.
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metric where the reference point is only weakly dominated by the front assessed, and
hence conclusions drawn from it could not be guaranteed Pareto-compliant. More
importantly, this poor choice of reference point (albeit implicit in the metric def-
inition) meant environment-final solutions were not properly valued. By contrast,
as long as standard guidelines about the hypervolume were followed, these solutions
were guaranteed to be properly valued.2

Regarding a scenario-wise analysis, the benefits of our approach vary as a function
of the aggregation method considered. If one uses a rank sum analysis, one could
understand how often one algorithm reacted more efficiently to problem changes than
others. More importantly, if an algorithm A1 presented larger hypervolumes than
another algorithm A2 on all environments, one could be sure that A1 could present
worse anytime behavior than A2. Conversely, if one was more interested in average
performance, it was straightforward to compare algorithms based on the average of
the hypervolumes computed for each environment. This flexibility of aggregation
approaches was another improvement over the ABC measure, specially given that an
algebraic sum implicitly embedded in the ABC measure provided less information
than the alternatives discussed here.

Next, we present a case study where we empirically evaluated our proposed ap-
proach which was published in Oliveira et al. (2019).

4.3 Applying an anytime behavior of a dynamic

optimizer for the TSDDs

The formulation and measure we proposed to employ in Oliveira et al. (2019) was
general enough to assess the performance of any dynamic optimization algorithm on
any given DOP. In that research, we conducted an experimental evaluation using the
DTSPDDs as test benchmark and the P-ACO as target algorithm. Next, we detail
the experimental setup we adopted, and later proceed to a discussion of the results
observed.

4.3.1 Experimental setup

We remark that all adaptations of ACO algorithms for the DTSP presented in this
research were implemented and executed on top of the ACOTSP software package
available at http://www.aco-metaheuristic.org/aco-code/. In the same way, all
experiments conducted here have been run on AMD Opteron CPUs with 12MB cache
and 16 GB of RAM running under Cluster Rocks Linux. The algorithms studied were
coded in C and compiled with gcc version 4.1.2.

In this work, we considered three P-ACO variants, and their parameter configura-
tions are depicted in Table 4.1, in which m is the number of ants, α and β respectively
regulate the importance of pheromone and heuristic information, τmax is the maxi-
mum pheromone deposit for a given edge, and K is the solution archive size (Oliveira
et al., 2019). The first two variants, dubbed static- and dynamic-default, differ only as

2One could argue that an application might require a custom importance distribution for the
different stages of the run. This could be achieved through the weighted hypervolume measure, as
proposed in Radulescu et al. (2013).

http://www.aco-metaheuristic.org/aco-code/
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Table 4.1: Default parameters used in the literature for P-ACO. Dynamic-default +
ls settings are not given because no study has yet investigated this setup.

Settings m α β τmax K

static-default n/4 1 2 3 25
dynamic-default 50 1 5 3 3

static-default + ls 25 1 2 3 1

to their parameter configuration, using the values traditionally employed for solving
static (Oliveira et al., 2011a) and dynamic problems (Mavrovouniotis e Yang, 2011a),
respectively. The third variant, dubbed static-default + ls, differs from the previous
two since it is the only variant that adopts a local search (LS) procedure. We remark
that this configuration had previously been only applied to static problems, due to
the expected computational overhead posed by local search procedures. Yet, we in-
clude this variant in our study given the important role that local search plays for
ACO effectiveness on static COPs, providing algorithms a means to locally explore
a neighborhood in the search space. Specifically, we adopt the 2-opt neighborhood
operator with a first improvement pivoting rule.

We adopted two sets of TSPDD instances, namely TSPLIB instances rl1323,
u1817, rl1889, u2152, and pr2392 (Reinelt, 2008), and 3 subsets of 5 random uni-
form Euclidean (RUE) instances each, with sizes ranging from 3000 to 4000, cre-
ated though the portgen generator from the 8th DIMACS implementation chal-
lenge (http://dimacs.rutgers.edu/archive/Challenges/TSP/, 2018). Each instance is
further parameterized by the degree of dynamism (ξ ∈ {20%, 40%, 80%}) and fre-
quency of change (f ∈ {2, 10}). Algorithms were allowed a maximum runtime of
1 000 seconds, which meant environments last 500 seconds when f = 2 and 100s
when f = 10. To account for variance, each algorithm was run 20 times on each
instance configuration, and results reported were averages of those runs.

The hypervolume computation required a few pre-processing steps, as follows.
First, a solution quality range was computed for each instance, and the runs of all
algorithms were normalized so that the worst solution quality value ever found by an
algorithm for a given instance corresponded to 0, and the best to 1. Time coordinates
were normalized in the [0, 1 000] range, and hence both objectives contributed equally
to the hypervolume. As previously discussed, the reference points for each environ-
ment were computed as x-axis translations of the global reference point (1.1, 1.1).
We ensured environment-specific reference points equally valued extreme solutions
by using the 1.1 ratio for both objectives. We assessed scenario-wise conclusions
for a given instance configuration using the most adequate aggregation approach,
depending on the environment-wise results. For more general conclusions across all
instance configurations, we conducted a rank sum analysis of the aggregation.

4.3.2 Results

We started our analysis with the help of solution quality over time (SQT) plots,
given in Figures 4.2 and 4.3, which respectively depicted instances configured with
ξ = 20% and ξ = 80%. In both figures, a RUE instance was given on the top
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row, whereas a TSPLIB instance was given on the bottom row. On the left column,
instances were configured with f = 2, whereas the right column depicted instances
configured with f = 10. Note that the number of environments had a stronger
influence on the final performance of the algorithm, since more environments meant
less time for re-optimization. Conversely, the degree of dynamism influenced the
solution quality recovery after an environment, since the problem changed more or
less drastically depending on this parameter.
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Figure 4.2: SQT plot depicting the anytime performance of P-ACO, on RUE instance
size 3500 (top row) and on TSPLIB instance pr2392 (bottom row). Left: scenario
ξ20f2. Right: scenario ξ20f10.

We focused the remainder of the analysis on the most relevant insights from the
direct comparison between (i) the two variants that do not use local search, and
(ii) between the variants that did not use local search and the one that did.

Experiments without local search. The first, contrasting difference between
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Figure 4.3: SQT plot depicting the anytime performance of P-ACO, on RUE instance
size 3500 (top row) and on TSPLIB instance pr2392 (bottom row). Left: scenario
ξ80f2. Right: scenario ξ80f10.

the P-ACO variants that did not use local search, was that the one config-
ured for dynamic optimization was much faster in (re-)optimizing solutions, yet
reached a much worse solution quality when compared to the variant configured
for static optimization. This was a very interesting result, as it corroborated
that algorithms applied to DCOPs need to be engineered with anytime be-
havior in mind, rather than just being fast or achieving a good final solution.
Another interesting observation was that both variants reacted to the randomly
produced changes in a very uniform pattern, and indeed the hypervolumes for
all environments were very similar. In terms of anytime behavior, the variant
configured for static optimization dominated a larger hypervolume, a fact con-
firmed by the environment-wise hypervolume computation, whatever instance
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Table 4.2: Statistical analysis of the different P-ACO variants on RUE and TSPLIB
instances aggregate over all instance configurations considered. Each run of an algo-
rithm is ranked according to the average of the environment-wise hypervolumes they
dominated. ∆R gives the difference of the sum of ranks that is statistically significant
according to Friedman’s non-parametrical test with a confidence level of 95%. The
best variant, that is significantly different from the others, is indicated in bold face.

Instances dynamicDefault staticDefault staticDefaultLs ∆R

RUE + TSPLIB 51 32 19 3.94

configuration considered.

Experiments with local search. The overall improvement provided by local
search was remarkable for most of the instance configurations considered. In-
deed, the variant with local search was at least as fast as the variant configured
for dynamic optimization, and reached a final solution with at least the same
quality as the variant configured for static optimization. A few factors affected
this pattern to some extent. For instance, a larger number of environments
further enhanced the benefits of local search, a counterintuitive result given
that less runtime was available and local search was known to be computation-
ally costly. Conversely, the benefits for TSPLIB instances were less than for
RUE instances, an understandable pattern given that the neighborhood oper-
ator we adopted was not particularly effective for TSPLIB. Indeed, when run
on TSPLIB instances configured with f = 2, P-ACO retrieved better final so-
lutions for each environment when not using local search. Yet, for all but two
instance configurations considered, the environment-wise hypervolumes favored
the variant that used local search, indicating that it presented a better anytime
behavior than the remaining variants.

Table 4.2 shows results that aggregate from all instance configurations considered.
Each column depicts the rank sum achieved by each P-ACO variant assessed, and
the last column (∆R) gives the difference in ranks above which the lowest-ranked
algorithm can be considered statistically significant better than the remaining algo-
rithms, according to Friedman’s non-parametrical test with 95% confidence. Results
show a clear separation between variants, and as expected the one that uses local
search achieves a lower average hypervolume much more often than the remaining
ones.

The fact that the hypervolume indicated an algorithm as having better anytime
behavior when it did not reached the best solution quality at the end of an en-
vironment (or the run) was a likely possibility. However, as already investigated
elsewhere (Radulescu et al., 2013), it was possible to adopt the weighted variant of
the hypervolume indicator when one wanted to change the importance distribution
of the different regions of the SQT plot. A second important observation was that
the clear performance patterns from each algorithm across environments meant that
the algorithms that dominated larger hypervolumes could be guaranteed to not have
worse anytime performance than algorithms with smaller hypervolumes. In this con-
text, averaging hypervolumes from the different environments was only helpful for
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the rank sum analysis we conducted next.
Surprisingly, the variant configured for static optimization performed better than

the one configured for dynamic optimization. More importantly, we have seen that
local search is a crucial component even in the context of dynamic optimization,
leading to the best anytime behavior on most of the experiments conducted.



Chapter 5

Manual Tuning

When tackling Combinatorial Optimization Problems, the correct setup of its
solving algorithm is crucial. Even if the algorithm has a default parameter set,
maximizing its performance may involve a proper setting, specifically for each problem
tackled.

For many years, the process of finding the best parameter configuration of an
algorithm, also known as parameter tuning, has been done manually, according to
researches experience or following attempts from more systematically techniques that
arose from the field of design of experiments (DOE) (Coy et al., 2001; Adenso-Diaz
e Laguna, 2006; Ridge e Kudenko, 2007). In spite of being an attempt to properly
configure parameter values, two main issues have arisen from its application. The first
one was concerned with the need of deeply knowing the algorithm’s search behavior
and how its parameters interact. Because some parameters must interact with others,
changing the value of one will affect the value applied to the other, which makes this
setup adaptation even more complicated. The second relied on the fact that they
are time-consuming techniques. Thus, tests need to be run for a small number of
instances and approaches. Hence, the set of parameters and search space need also
to be small. Furthermore, the instance set used for the tuning process is usually the
same used to analyze the performance of the algorithm.

As a consequence, over the last years, the development of tools that were able to
automatically configure (automatic tuning) sets of parameters has gained some re-
searches attention. In addition, the application of these tools could also be extended
for design space exploration and exploitation, or promoting the switch between algo-
rithms procedures.

Next, we present experiments conducted in order to manually define a suitable
parameter configuration of P-ACO algorithm when applied to the TSP with and with-
out the use of local search procedure. These experiments were essential to justify the
importance of tuning an algorithm and how this process could be less time-demanding
whether an automatic configuration tool had been applied. After that, we depicted
the main formulations of automatic tuning presented in the literature applied for
COPs. We emphasized the description of the Irace tool, which was the one that we
chose to be applied in this research. In the end, we described how to apply the Irace
tool for multi-objective tuning. Our objective here is the development of a configu-
ration set forMMAS and P-ACO tool to ACO algorithms when applied to DCOPs
aiming at an anytime behavior algorithm performance (Oliveira et al., 2011a,b).

39
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5.1 Configurable parameters

Before getting into the tuning process it is important to mention how parameters
are configured in this field. Configuration parameters can be primitively defined
as numerical or categorical with or without independence and interaction. In the
following all these categories are briefly described:

• Numerical parameters: a parameter is considered as numerical whether its
domain is a real-valued parameter or an integer valued parameter. As an exam-
ple, consideringMMAS, the number of ants m in a colony and the evaporation
rate ρ are both classified as numerical parameters;

• Categorical parameters: they are represented by discrete values with no
ordering relation. For instance, there is the setting of different neighborhood
operators available for a local search algorithm, like 2-opt and 3-opt.

It is also important to distinguish the concepts of parameters independence and
interaction.

• Depended or conditional parameters: when a parameter is used only if
specific values for other parameter(s) is (are) selected. As an example, for
MMAS nearest neighbor parameters are applied whenever ls is activated.

• Parameters with interaction: given two parameters, whenever a change
happens in one of them, this action will effect both simultaneously. For example,
the intensification and diversification rate used on the multi-colony MMAS
which will be described in Chapter 7. Given a random value set to ρ to the
first half of ants in the colony ρfst, where ρfst = [0, 1]. The ρ value to the other
half is supposed to be set to ρscd = 1 − ρfst. Parameters that interact cannot
be configured independently.

5.2 The use of Manual Tuning on P-ACO algo-

rithm

Our first attempt to understand the influence of parameter settings for a particular
algorithm applied to a specific problem was the analysis of P-ACO main parameters
when applied to the classic TSP. As already mentioned, P-ACO was developed with
the possibility of being applied different pheromone update strategies. These strate-
gies were presented and detailed in Chapter 3. Here we chose the age-based strategy,
which was the first one implemented on P-ACO. It was also the strategy with the
simplest behavior to address and the one with the least number of parameters, con-
straints that were crucial for supporting our studies on parameter configuration. The
complete analysis of the experiments is presented in Oliveira et al. (2011b). In this
paper, the same study was also presented for the Quadratic Assignment Problem.
Here, we presented only the experiments conducted and the main conclusions ob-
tained considering the TS because it is the problem class tackled in this work.
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5.2.1 Analysis of P-ACO Specific Parameter Settings

In an attempt to support the objectives above mentioned, several experiments
were performed on P-ACO with and without the 3-opt local search. The constant
parameters used in P-ACO are the same as the ones presented in Guntsch (2004):
m = 10 ants, β = 2 and α = 1. ForMMAS without local search, we set m = n/4,
in which n is the instance size, β = 2, α = 1, ρ = 0.02 for small size instances, ρ =
0.05 for medium size instances and ρ = 0.2 for large size instances. When local search
was applied, the following values were set in MMAS: m = 25 and ρ = 0.2. The TSP
instances used in this research were taken from the TSPLIB: eil101, d198, kroA200,
rd400, d657, u724, pcb1173, u1817,d2103, u2319 and are available at http://www.
iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/. We grouped
the first three instances as small instances, the following three as medium size in-
stances, and the remaining ones as large instances. All results reported for P-ACO,
when applied to the TSP, were implemented and executed on top of the ACOTSP soft-
ware package available at http://www.aco-metaheuristic.org/aco-code/. Hence,
the P-ACO algorithm here shares the same data structure and speed up techniques
asMMAS.

Experiments conducted in this work were run on Intel Xeon 2.4 Ghz quad-core
CPUs with 6MB cache and 8 GB of RAM running under Cluster Rocks Linux. The
algorithms studied are coded in C and compiled with gcc version 4.1.2. For the
TSP, we set the stopping criteria at 100 seconds for small instances, 1000 seconds for
medium instances, and 2000 seconds for large instances.

It is important to note that the plots chosen to be presented in this study were
just a sample set to represent our findings. Other plots can be found at http:

//anonymous/supp/tobeupdated.
This experimental analysis was divided into two phases: first, we analyzed

the P-ACO specific parameters; second, we proposed an improvement of P-ACO.
The P-ACO age-based algorithm has three specific parameters: K, τmax, and τmin.

To understand how they influence the algorithm behavior, especially concerning the
pheromone update procedure, we tested the algorithm with different values of K and
τmax. τmin is always set to 1/(n − 1), which is also the initial pheromone value τ0.
Initially, the values we examined were the same as those proposed by Guntsch (2004),
that is, K = 1, 5, and 25, and τmax = 1, 3, and 10.

However, some additional values were proposed throughout the work, to clarify
the observations taken from the results achieved by the initial parameters setting.
For this analysis, we considered only the age-based strategy, which is the simplest
method implemented to manage the solution archive. The impact of using different
strategies to manage the solution archive and the algorithm’s performance will be
presented later.

5.2.1.1 Analysis of K

The plots in Figure 5.1 show that, without the use of local search, P-ACO per-
formed the worst when K = 1, and the best when K = 25, followed closely by K =
5, with negligible differences. Similar behavior was observed across all instance sizes
tested. This behavior can be justified by the fact that P-ACO is an algorithm that

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
http://www.aco-metaheuristic.org/aco-code/
http://anonymous/supp/tobeupdated
http://anonymous/supp/tobeupdated
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Figure 5.1: Solution quality over time ofMMAS and P-ACO using different values of
K, without local search on instance kroA200 and with local search on instance u1817.

was developed to focus on exploitation. Thus, a larger solution archive enabled the
algorithm to better explore the search space.

P-ACO showed the opposite behavior when local search was applied. The best
value of K now became one. We could conclude that the search intensification of a
local search around one solution was enough and also important to guide the algo-
rithm through high-quality solutions. Note that in Figure 5.1, τmax is 3. The choice
of this parameter value is justified in the following.

5.2.1.2 Analysis of τmax

The ratio between τmax and τmin for P-ACO is approximately τmax · n. Thus,
the amount of pheromone used to deposit in the pheromone matrix increased linearly
according to the instance size, the maximum pheromone trail being τmax. Note that
this behavior is similar to the one inMMAS. For more details we refer the reader
to Stützle e Hoos (2000).

In Figure 5.2, we had an improvement on the final solution quality on the TSP
when τmax was equal to 3 or 10. On the other hand, no substantial differences could
be seen with the use of a local search. The results showed that τmax = 3 was able
to improve the algorithm’s solution quality for the best values of K in comparison
to τmax = 1. No improvement could be seen in the final solution quality for larger
values of τmax and when local search was applied. We also tested τmax = 50.

Overall, the ratio between τmax and τmin, together with the setting ofK, influenced
how strong the search intensification could be. Given P-ACO andMMAS speedup
dependence analysis presented in Oliveira et al. (2011b), we could now visualize the
speed advantage of P-ACO with regarding the TSP was much reduced when local
search was applied.
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Figure 5.2: Solution quality over time ofMMAS and P-ACO using different values
of τmax for the best setting of K, without local search on instance kroA200 and with
local search on instance u1817.

5.2.2 Influence of using Different Strategies to Update the
Solution Archive

Another particularity of P-ACO was the way it updated the solution archive.
To improve the performance of P-ACO, different strategies to manage the solution
archive have been proposed. To compare their influence on the algorithm perfor-
mance, we tested three strategies from those presented in Guntsch (2004). All strate-
gies tested here were previously explained in Chapter 3. We used, for each strategy,
the best values of K and τmax found in Subsections 5.2.1.1 and 5.2.1.2.

Here τmax was set to 3, and K was set to 25 when local search was not applied
and to 1 when it was applied.

To define the best weight for the elitist-based strategy, we tested three values we =
0.25, 0.5 and 0.75 for both problems. These weights were the same as those proposed
in Guntsch (2004).

In Figure 5.3, we presented the solution development plot of P-ACO with the best
parameters among those tested for each population update strategy. For the TSP, the
quality-based strategy showed the best performance. The elitist-based strategy with
the right weight (in this case is 0.50 and 0.75), obtained good results too. From all
instances tested, P-ACO often outperformedMMAS, independently of the strategy
or whether local search was implemented, especially when short computation time
was used.

Using the pheromone update strategy as suggested by Guntsch (2004), we man-
aged to obtain similar results. In many cases, P-ACO showed a better performance
than MMAS after a short computation time. A concrete comparison to Guntsch
(2004) could not be made because of the lack of actual data from the experiments
presented.
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Figure 5.3: Solution quality over time of MMAS and P-ACO considering all the
strategies tested, without local search on instance d198 and with local search on
instance pcb1173.

5.2.2.1 P-ACO with Restart

P-ACO is an algorithm that presented a strong exploitation capability and, hence,
a fast convergence to a right quality solution. On the other hand, its exploration dur-
ing the search could be insufficient. Following other ACO algorithms such asMMAS
we implemented a restart procedure.

It consisted of re-initializing the pheromone matrix values to τ0 after a certain
number of iterations r without improvement. We tested this procedure over a range
values of r. We tested the pheromone re-initialization after n, 25n, 50n and 100n it-
erations when local search was not applied and after 100, 250, 500 and 1000 iterations
when it was applied.

Plots in Figure 5.4 show the results achieved using r = 50n when local search is
not applied and r = 500 when local search is applied. We chose those limits as they
were the ones in which the algorithm shows the best overall results.

In Figure 5.4, an improvement in the performance of P-ACO can be seen when
we compare the final solution quality achieved by the same algorithm with and with-
out the restart procedure, especially when local search is applied. As shown in the
previous Section, the algorithm exploitation capability remains. However, the use of
a restart procedure is able to improve P-ACO finally reached solution quality.

5.2.2.2 Statistical Test

In this Section, we compare the finally reached average solution quality between
P-ACO and MMAS with and without local search. The percentage deviation is
deemed significant if the p-value according to pairwise Wilcoxon signed rank test with
Holm correction is less than 0.05. The P-ACO algorithms chosen to be tested are the
same as the ones presented in Section 5.2.2.1 as they are the P-ACO variants that
achieve best performance. The instances that we used in this section are different from
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Figure 5.4: Solution quality over time ofMMAS and P-ACO considering the quality
strategy with the restart procedure, without local search on instance d198 and on
instance pcb1173 with local search.

Inst. B.known P-ACO MMAS P-ACO+ls MMAS+ls
kroA100 21282 0.00 0.01 - -
kroA150 26524 0.52 0.97 - -
rat195 2323 0.52 0.59 - -
pcb442 50778 0.92 2.05 - -
d493 35002 1.92 2.40 - -
rl1889 316536 - - 0.15 0.26
u2152 64253 - - 0.18 0.13
pr2392 378032 - - 0.16 0.13
pcb3038 137694 - - 0.24 0.25
fnl4461 182566 - - 0.33 0.36

Table 5.1: Deviation of the average solution quality obtained by P-ACO andMMAS
across 30 trials from the best known solution to date. Entries in bold refer to entries
with significant difference to the other algorithm.
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those used in the previous ones. For the TSP, they were also taken from TSPLIB and
are shown in Table 5.1. The P-ACO andMMAS algorithm’s configuration remains
the same as we presented in Section 5.2.2.1.

The results presented in Table 5.1 show that for the TSP without local search,
P-ACO performs better thanMMAS except on instance kroA100. Nevertheless, the
performance ofMMAS and P-ACO are alike when applied to large instances tested
with local search.

Overall, these results show that P-ACO with the restart procedure appears to be
competitive toMMAS, independently of the local search application.

5.2.3 Conclusions

Here, we discussed and analyzed the P-ACO algorithm for the TSP. Extensive
experiments were conducted to investigate the behavior of P-ACO when different
parameter settings and pheromone update strategies were used. We considered dif-
ferent population update strategies for P-ACO to investigate the effect of using the
strategies for solving the TSP. We found that the quality-based strategy is the best
option for solving the TSP, on the use of local search. Without local search, the
quality-based strategy appears to provide the best overall tradeoff, while with local
search, the age-based strategy appears to be a better choice.

The insights that the usage or not of a local search has strong impact on param-
eters settings for P-ACO applied to the TSP are also new. For example, for the case
with local search, a population size of one is clearly the best for P-ACO.

Extensive analysis of the development of solution quality over time shows that
in many cases P-ACO outperforms MMAS for short computation times. P-ACO,
however, shows an early stagnation behavior compared to MMAS. To overcome
this, we introduced a restart mechanism, and this improved significantly the overall
performance of P-ACO.

As the main result, we can conclude that, with the restart procedure and the
right configuration, P-ACO is competitive to the state-of-the-art ACO algorithms
with the advantage of finding good solution quality in a shorter computation time.
However, we believe that using an automatic configuration tool could improve the
configuration proposed here, at the same time bringing more and deeper insights
about the algorithm search behavior.



Chapter 6

Automatic Tuning

As presented in Chapter 5, tuning an algorithm, besides being time-consuming,
demands an intuitive range selection for each parameter tested. It can lead researchers
to incomplete or even erroneous conclusions about the algorithm tested performance
if they do not have deep knowledge about the algorithm procedures and how they
interact, which will change according to the problem tackled. As an example, when
we moved from classic TSP to the TSP with dynamic demands, P-ACO would need
to handle its exploitative behavior especially right after the dynamic changes. On
the other hand,MMAS would need to speed up ants exploration and ants memory
would need to be adapted given the shorter amount of run time and the dynamic
changes over the instances tested.

Thus, in this Chapter, we focused our attention on the application and analysis
of the Irace automatic tuning tool for P-ACO and MMAS. In order to do that,
we firstly present an overview of the automatic tuning process with emphasis on the
Irace tool which was the tuning tool that we have chosen to be applied here. After
that, the Irace tool is applied on both algorithms and their performance is compared.
Both P-ACO and MMAS were tuned separately with and without using the local
search procedure. Our objective here was to identify whether different configurations
were also needed when isolating the use of the local search procedure.

6.1 Offline automatic tuning tool

The literature has presented two ways of automatically tuning an algorithm. They
were:

Offline automatic tuning: Here the benchmark set used is divided into a training
set and a testing set. The tuning process is applied on a training benchmark
set, and the algorithm performance from the parameter settings is evaluated
according to a different benchmark set called the testing set (Pellegrini et al.,
2010).

Online automatic tuning: In this approach, the adaptation of the parameters
happens while solving the instance benchmark. Thus, the configuration might
be changed during the solution process to adapt to the instance being solved
and possibly to the state of the search. However, even online tuning has offline

47
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tuned parameters, like the ones that are related to the tuning design choices, as
presented in López-Ibánez e Stützle (2014); López-Ibáñez et al. (2016).

In this research we focus our attention on the offline tuning. Once online tuning
needs offline tuned parameters, we believed that offline tuning would be the prelim-
inary way off tuning a DCOP, which latter, could be followed by the application of
the offline tuning procedure.

Let us assume that we have a parametrized algorithm with npar parameters, Xp,
p = 1, .., npar, and each of them can assume different values. A configuration of an
algorithm θ = {x1, ..., x

par} is a unique assignment of values to these parameters,
and Θ denotes the possibly infinite set of all configurations of the algorithm. When
applied to an instance, each configuration of θ has a cost value assigned, that is
C(θ, I). The cost can be represented as the best solution quality obtained from the
objective function within a computation time. Thus, the cost measure assigns a cost
value to one run of the algorithm with a specific configuration on a specific instance.
The goal of the automatic tuning is to find the best configuration θ⋆that minimizes
F (θ). Given the fact that the number of configuration sets Θ are infinite, they are
generated by sampling.

6.1.1 Racing approaches

The evaluation of configurations is typically the most computationally demanding
part of an automatic configuration method. To handle this issue, racing methods (Bi-
rattari et al., 2002) can be a good strategy for selecting a configuration among a
number of candidates using sequencial statistical testing. The initial candidate con-
figurations for a race may be randomly selected, based on problem specific knowledge,
or based on DOE techniques (López-Ibáñez et al., 2016)

The racing approach originated from the machine learning literature (Birattari
et al., 2002). This approach was later adapted to make it suitable for the configuration
task. At each step, a given finite set of candidate configurations are evaluated in
parallel and candidate configurations are discarded as soon as statistical evidences
prove that they are poor. The elimination of poor candidates allows the tuning to be
concentrated on candidates that are promising.

6.1.1.1 F-Racing approaches

The F-Race is a racing algorithm based on the non-parametric Friedman’s two-way
analysis of variance by ranks (Friedman test) proposed by Birattari (2009); Birattari
et al. (2010).

The racing algorithm evaluates a given finite set of candidate configurations step
by step. At each step, an instance is tested over all candidate configurations. These
configurations are then ranked and evaluated in parallel and the poor candidate
configurations are eliminated according to Friedman’s tests. The elimination of poor
candidates allows to focus on the most promising ones. The number of steps, that is,
the number of instances tests are adaptively adjusted based on statistical evidence.
The above racing procedure stops either when only one candidate configuration lasts,
a given maximum number of instances have been sampled, or when the predefined
computational budget has been achieved.
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According to his approach, the Friedman test assumes that costs generated by
each configuration tested are mutually independent.

6.1.1.2 F/I-Racing approach

Iterated racing as presented in Birattari et al. (2010); López-Ibáñez et al. (2016)
is a method for automatic configuration that consists in three steps:

1. Sampling: In the first iteration, the initial set of candidate configurations is
generated by uniformly sampling the parameter space Chi. Non-conditional
parameters are sampled first, those parameters that are conditional to them
are sampled next, if the condition is satisfied. At each iteration, a number of
surviving candidate configurations from the previous iteration bias the sampling
of new candidate configurations. In spite of having different ways to generate
the first sampling set of parameters, it is suggested to be generated randomly.

2. Selection: In each iteration the best configurations from the newly sampled
ones are selected by means of racing. As already mentioned, racing was first
proposed for machine learning proposals and it was later adapted for configura-
tion of optimization algorithms. Given the set of candidate configurations the
scheme of racing procedure applied is presented in Figure 6.1.
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Figure 6.1: Racing for automatic algorithm configuration.

The race starts with a finite set of candidate solutions. The Figure shows ten
sets St1, ..., St10, at each step of the race an instance I is run over all these
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configurations. When the race starts each configuration is evaluated on the
first instance I0 by means of the cost value C. Configurations are iteratively
evaluated on subsequence instances until a number of instances have been seen.
Then, the candidate solutions are ranked and a statistical test is applied. Can-
didate configurations that perform statistically worse than at least another one
are removed, and the race continues with the remaining configurations. After
the first statistical test, the next ones are performed at every nstep step. This
process continues until achieving a stop criteria that could be: (i) reaching a
maximum number of surviving configurations; (ii) whether all instances had
been analyzed or (iii) reaching a pre-defined computation budget (time spent
or number of iterations). As presented in Figure 6.1, the first statistical test is
executed at step 5, that is, after running the configurations sets on instance I5.
By default, after the first test, the next ones are performed at each instance. At
the end of a race, surviving configurations have a rank assigned rkz, configura-
tions with the lowest rank are selected as the set of elite configurations Θelite.
For generating a new configuration with a probability higher, ranked configu-
rations have a higher probability of being selected as parents of new candidate
configurations.

3. Adaptation: In the next iteration, before the race starts, a number of new
candidate configurations are updating the sampling distribution in order to
bias the sampling towards the best configurations. New configurations accord-
ing to a particular probability of distribution where numerical parameters the
sampling distribution follows a truncated normal distribution. In this case,
the update of distributions consists in modifying their mean and standard de-
viation. On the other hand, categorical parameters are handled by discrete
distribution and values are updated according to discrete probabilities. These
updates allow the new samplings to be concentrate over time only on promising
configurations sets.

These three steps are repeated until a termination condition is not met.

6.2 Automatic configuration for Anytime behav-

ior problems

As previously discussed, parameter settings are critical for the performance of
metaheuristic-based algorithms such as ACO. Nonetheless, few are the works that
conduct rigorous analysis of the parameter configuration best suited for dynamic op-
timization algorithms. More importantly, transferring parameter settings configured
for one setup to be used in another setup is an approach prone to major drawbacks,
as the literature on parameter configuration has repeatedly demonstrated (Bezerra,
2016). Specifically for the TSP with dynamic demands, the works presented in the
literature have been done in this way (Guntsch e Middendorf, 2001; Guntsch, 2004;
Mavrovouniotis e Yang, 2010, 2013b,a, 2014b). Here we proposed an automatic con-
figuration tool that, besides giving an specific complete configuration set for the prob-
lem tackled, also enabled the use of P-ACO and MMAS as an anytime behavior
algorithm.
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Typically, the objectives of a bi-objective problem are as conflicting as those for
the TSDDs in which we would like to minimize the run time and the problem objective
function. Thus, the solutions lie in a bi-dimensional space.

6.2.1 Experiments Setup

Next, we detail the experimental setup we adopted, individually detailing bench-
mark, performance evaluation, configuration, and testing setups. As recommended,
the benchmark and scenarios used for the Irace execution were different from the
ones used to test the algorithms’ performance after tuning. The selected TSPLIB
instances were u724, rl1304, pcb1173, u2319, and pcb3038. The instance name gives
the number of cities in the instance. The second set is composed of random uniform
Euclidean (RUE) instances, with sizes depending on whether the local search is used
or not. Specifically, we use 2 subsets of 5 instances with sizes ranging from 2500 to
3000 when local search is not applied, and 3 subsets of 5 instances with sizes ranging
from 3000 to 4000 when local search is applied all of them different from the ones
that were used to compare MMAS and P-ACO performance. Dynamic environ-
ments were generated using the method described in Mavrovouniotis e Yang (2011b)
and also in Chapter 2. In our experiments, here f is set to 4 and 6, respectively. The
degree of change is set to ξ ∈ {30%, 60%, 90%}, and so the combinations of ξ and f
also comprised 6 different scenarios.

6.2.2 Assessing parameter settings

Parameter settings used in these experiments are given in Table 6.1. Default
settings are given in the top rows, whereas configured settings are given in the bottom
ones. In addition, the suffix LS is added to settings that are used in experiments in
which local search is adopted. Concerning default settings, a few observations stand
out. First, despite their different structural characteristics, P-ACO and MMAS
have typically been run with the same parameter settings. Second, settings are very
similar whether local search is used or not. Finally, the most noticeable difference
between settings from the static and the dynamic optimization literature is the value
of β, in an attempt to provide algorithms with stronger convergence pressure and
thus speed-up solution re-optimization.

By contrast, the configured settings selected by Irace given in Table 6.1 (bottom)
are different for each algorithm, as well as between runs that use local search and
runs that do not. ConcerningMMAS, for instance, we notice a larger value of ρ that
makes the search more explorative. Effectively, this setting helps the algorithm escape
from the search space region to where it had converged before an environment change,
but had not yet been considered by manual configuration. The value of β changes
as a function of local search. When local search is not adopted (mmasTuned), β is
also increased to allow the algorithm faster exploitation due to the limited amount
of runtime available. Conversely, the strong exploitation nature of the local search
component induced a decrement of β in mmasTunedLS.

Regarding P-ACO, parameters configured by Irace for the experiments without
local search (pacoTuned) greater resemble the settings adopted in the static optimiza-
tion literature (pacoDefault) than the ones used in the dynamic optimization liter-
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Table 6.1: Default (top) and configured (bottom) parameter settings used
forMMAS (settings with the mmas prefix) and P-ACO (settings with the paco pre-
fix). The LS suffix is appended to settings used on experiments where local search is
adopted. We remark that settings for pacoDynamicLS are not given since no study
has yet investigated P-ACO coupled with local search for dynamic optimization.

MMAS + P-ACO MMAS P-ACO

Settings m α β ρ τmax K

mmasDefault n/4 1 2 0.2 − −
mmasDefaultLS 25 1 2 0.2 − −
mmasDynamic 50 1 5 0.2 − −

mmasDynamicLS 50 1 5 0.2 − −
pacoDefault n/4 1 2 − 3 25

pacoDefaultLS 25 1 2 − 3 1
pacoDynamic 50 1 5 − 3 3

mmasTuned 96 1 5 0.6 − −
mmasTunedLS 9 1 1 0.4 − −

pacoTuned 79 1 3 − 3 25
pacoTunedLS 5 2 2 − 3 1

ature (pacoDynamic). Interestingly, this resemblance between static and configured
settings also holds in the presence of local search (pacoDefaultLS and pacoTunedLS ).

To empirically assess the impact of the different parameter settings presented in
Table 6.1, we discuss below the most important insights observed with the help of
SQT plots.

• Dynamic characteristics of the scenarios

Figure 6.2 shows the anytime performance ofMMAS (top) and P-ACO (bot-
tom) on a TSPLIB instance, run without local search using the three different
parameter settings on two different experimental scenarios. In common, both
scenarios present a degree of dynamism ξ = 40%, but differ as to the frequency
of change f ∈ {2, 10}. The overall pattern depicted in these plots shows how
parameter settings can be affected by the dynamic characteristics of the sce-
narios. Notice, for instance, the anytime performance of MMAS settings on
the topmost plots. On the left (Figure 6.2a), the default settings of MMAS
(mmasDefault) improve over the dynamic settings (mmasDynamic), but the
opposite happens on Figure 6.2b. In summary, an increment in the frequency
of change is enough to alter the relative performance of the settings. The config-
ured settings (mmasTuned) represent a compromise solution that shows robust
performance across different scenarios.

Regarding P-ACO, the improvements obtained with the help of automatic con-
figuration are significant for most scenarios. Yet, for specific scenarios such
as the one depicted in Figure 6.2c, P-ACO with default and configured con-
figuration settings (pacoDefault and pacoDynamic, respectively) present simi-
lar performance. Moreover, we remark that the worst performance observed
in Figures 6.2c and 6.2d concern P-ACO run with dynamic settings (pacoDy-
namic), which reinforces the importance of automatic parameter configuration
methodologies.
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(b) ξ=40, f=10
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(c) ξ=40, f=2
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(d) ξ=40, f=10

Figure 6.2: SQT plot depicting the anytime performance of MMAS (top)
and P-ACO (bottom) on TSPLIB instance pr2392, without local search, run with
different parameter settings on different dynamic scenarios.

• Interactions with local search

Figure 6.3 shows the anytime performance of MMAS and P-ACO when run
with local search on the same instance and scenarios from the previous analy-
sis. Although the conclusions about the effects of the dynamic characteristics
of the scenarios still hold, the use of local search significantly changes the im-
provement rate provided by automatic configuration forMMAS. This is easily
explained by the high-quality solutions obtained when local search is adopted,
which makes any further improvement much more difficult to be obtained. The
performance of P-ACO, on the other hand, is significantly improved by the
configured settings. Furthermore, the benefits of automatic configuration are
consistent through both scenarios.

• Structural characteristics of the benchmark instances

The differences in benchmark instance characteristics are reflected in the perfor-



6.2 Automatic Tuning 54

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Time

C
os

t o
f t

he
 s

ol
ut

io
ns

mmasDefaultLS
mmasDynamicLS

mmasTunedLS

(a) ξ=40, f=2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Time

C
os

t o
f t

he
 s

ol
ut

io
ns

mmasDefaultLS
mmasDynamicLS

mmasTunedLS

(b) ξ=40, f=10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Time

C
os

t o
f t

he
 s

ol
ut

io
ns

pacoDefaultLS pacoTunedLS

(c) ξ=40, f=2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Time

C
os

t o
f t

he
 s

ol
ut

io
ns

pacoDefaultLS pacoTunedLS

(d) ξ=40, f=10

Figure 6.3: SQT plot depicting the anytime performance of MMAS (top)
and P-ACO (bottom) on TSPLIB instance pr2392, with local search, run with dif-
ferent parameter settings on different dynamic scenarios.

mance displayed by different parameter settings, at least in the case ofMMAS.
Figure 6.4 helps explain our observation, showing the performance improve-
ments obtained from automatic configuration when running MMAS on sce-
narios with f = 10 and ξ = 20% (left) or ξ = 80% (right). Specifically,
results from RUE instances (top) show a much larger improvement provided
by configuration, even if the improvement seen on the results from TSPLIB
instances (bottom) is also significant.

A possible explanation is the importance of cities (customers to be attended)
in the different benchmark sets. In more detail, RUE instances are expected
to present cities of similar relevance to solution quality, whereas the relevance
of TSPLIB instance cities may differ considerably. These results indicate that,
though the configured settings are robust w.r.t. benchmark sets, an a priori
knowledge of these features would likely benefit the configuration process.
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Figure 6.4: SQT plots depicting the anytime performance of MMAS on RUE in-
stance 3002 (top) and on TSPLIB instance pr2392 (bottom), without local search,
run with different parameter settings on different dynamic scenarios.

6.2.3 Performance comparison

We next directly compareMMAS and P-ACO, once again isolating the effects of
local search. For these experiments, however, we consider only the configured param-
eter settings, as the results from the previous section confirmed that the automatic
configuration methodology leads to improvements in the anytime performance of the
algorithms. Overall, the insights we observed are considerably different for the ex-
periments with and without local search, corroborating our claim that experimental
analyses should isolate this factor. Figure 6.5 illustrates the most important insights
we observed from each set of experiments, which we discuss below.
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Figure 6.5: SQT plots depicting the anytime performance of P-ACO and MMAS
configured by irace, on TSPLIB instance pr2392 with (top) and without (bottom)
local search run on different dynamic scenarios.

• Experiments without local search

When local search is not adopted (top-most plots), the difference in perfor-
mance between MMAS and P-ACO across different environments is signifi-
cant. More precisely, MMAS demonstrates its best performance before the
first environment change, whereas P-ACO displays a constantly good perfor-
mance throughout the run. In addition, the effect forMMAS is much weaker
for f = 2 (left) scenarios than when f = 10 (right). Altogether, these ob-
servations can be justified by the characteristics of the ACO algorithms being
compared. MMAS is an algorithm originally designed for static, final-quality
optimization, and thus it requires a given minimum runtime to produce good
results. Moreover, the best applications of MMAS rely on local search to
increase its convergence pressure, an aid we specifically forbid in this set of
experiments. Concerning P-ACO, its pheromone transfer mechanism and the
fast update procedure appear to be the keys for its good performance. In ad-
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dition, P-ACO studies have only started considering local search recently, and
hence, the original algorithm was designed to be effective without this extra
source of pressure.

• Experiments with local search

Results change considerably when algorithms are allowed to use local
search (bottom-most plots). In particular, both algorithms benefit from the ad-
ditional convergence pressure, butMMAS is now able to outperform P-ACO
by a significant margin across all instance types, sizes, and scenarios. More
importantly,MMAS is no longer affected by the runtime available (nor, con-
sequently, by the dynamic characteristics of the scenarios). Analogously, the
performance of P-ACO is the same across all environments, whatever the in-
stance type, size, or scenario considered. A deeper analysis revealed that the
advantage of the faster pheromone update designed for P-ACO is much reduced,
since relatively the local search procedure uses a significant amount of time. On
the other hand, MMAS presents speed-ups specifically conceived to improve
the efficiency of its coupling with local search procedures, e.g., avoiding updat-
ing the pheromone matrix as a whole. Altogether, these changes in the relative
efficiency of the algorithms explain the change in their anytime performance,
withMMAS clearly becoming the best option for the DTSP when local search
is allowed.

6.2.4 Statistical analysis

To support the insights discussed in this section, Table 6.2 provides a rank sum
analysis where we compare all variants of the algorithms, isolating the effect of local
search. In more detail, we conduct three levels of aggregation. At the bottom level,
we evaluate an algorithm w.r.t. to the average hypervolume it produces over all
environments in a given run. At the mid-level, we evaluate an algorithm w.r.t. its
average performance over the 20 runs on a given block, i.e., a given instance from a
given experimental scenario. At the top level, for each block algorithms are ranked in
ascending order according to their performance, and the sum of the ranks obtained
by an algorithm on all blocks depicts its overall performance. These rank sums are
used to assess statistical significance with 99% confidence level using Friedman’s non-
parametric test and associated post-hoc test (Conover e Conover, 1980). The critical
difference in ranks indicated by the test is provided as ∆R. Algorithms that present
a rank sum difference w.r.t. to the best ranked smaller than ∆R are highlighted in
boldface, indicating that no statistical significant difference was observed between
the performance of the given algorithm and the best ranked one.

As discussed from the plots, when local search is not adopted, the performance of
P-ACO is very similar when both default and configured settings are adopted. Iron-
ically, the worst performance among all algorithms is observed for the settings typi-
cally adopted for P-ACO in the dynamic optimization literature. RegardingMMAS,
the configured settings improve over the manually-configured ones, but not enough
to match the performance of P-ACO. Conversely, conclusions change completely
when local search is adopted. For this setup,MMAS is able to outperform P-ACO
no matter the configuration adopted. More importantly, the configured version of
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Table 6.2: Statistical analysis ofMMAS and P-ACO using different parameter con-
figurations, without and with local search, aggregated over all instances and scenarios
considered. Rank sum differences w.r.t. the best ranked algorithm are given in paren-
thesis.

Without LS
Mean pacoTuned pacoDefault mmasTuned mmasDynamic mmasDefault pacoDynamic

(∆R = 36.77) (28.5) (142) (257) (313.5) (405)

With LS
Mean mmasTunedLS mmasDefaultLS mmasDynamicLS pacoTunedLS pacoDefaultLS

(∆R = 9.3) (110) (190) (304) (406)

MMAS statistically significantly outperforms both the settings adopted in static
and dynamic optimization. Regarding P-ACO, configured settings improve over the
settings adopted in static optimization, but not enough to match the performance of
MMAS.

6.2.5 Conclusions

The experiments comparing the top-performing ACO algorithms from the context
of static and dynamic optimization confirmed that the most important factors in such
an analysis are the appropriate configuration of parameters and the use of local search.
In real-world scenarios, parameter configuration and local search procedures need to
be assessed as to their practicality, since it may not always be the case that one is able
to run the number of experiments required by offline configuration, or the expected
time available for each environment can be too small for local search to be of any
benefit. Nonetheless, it is easy to conceive a database of configured parameter settings
for different problem benchmarks, scenarios, and stopping criteria, greatly reducing
the overhead of offline configuration in practice. In the next section, we investigate the
benefits of approaches proposed in the dynamic optimization literature to improve
ACO performance. ———————————————————————————
——————————————————–



Chapter 7

Improving MMAS for the TSPDD

The successful applications of ACO to static COPs stirred the interest of re-
searchers that investigate dynamic COPs (DCOPs) (Rohlfshagen e Yao, 2008; Yang
et al., 2013; Mavrovouniotis et al., 2020, 2017; Mavrovouniotis e Yang, 2018). In
contrast to the highly advantageous use of a pheromone memory in static COPs,
a dynamic scenario makes the long-term knowledge of ACO a mixed blessing. On
one hand, changes to the problem data are expected to only affect a portion of its
original definition, and so ACO algorithms could possibly reuse information learned
before the changes to speed up the re-optimization cycle. On the other hand, if an
ACO algorithm has already converged to a specific region of the solution space that
after a change is no longer interesting or even feasible, the algorithm search might be
delayed by the need to first forget its previous knowledge.

In this Chapter we conducted a computational study to investigate the role of
pheromone transfer with and without local search in the performance of MMAS.
We maintained our focus on conducting our computational study on the travel-
ing salesman problem (TSP) with dynamic demands (Guntsch e Middendorf, 2001;
Mavrovouniotis e Yang, 2011a; Oliveira et al., 2019).

Our investigation revisited some of the proposals to extend MMAS to
DCOPs (Mavrovouniotis e Yang, 2013b, 2011a, 2014a; Mavrovouniotis et al., 2015;
Mavrovouniotis et al., 2017; Mavrovouniotis e Yang, 2013a), assessing under our setup
the improvements to MMAS performance provided by those pheromone transfer
mechanisms.

More importantly, we used MMAS as ACO test benchmark to understand if
those components contributed to the performance of effective ACO algorithms in
general. Different adaptations of ACO algorithms and procedures for DCOPs have
been proposed in the literature, but no study targeting the potential interactions
between adaptation proposals has yet been conducted. In this work, we conducted
such an investigation specifically targeting the two aforementioned sets of proposals,
namely (i) local search, and (ii) parameter settings on different pheromone transfer
procedures.

We initially created a set of variants of the selected baseline ACO algorithm, dif-
fering by the addition of a single pheromone transfer proposal. Effectively, the assess-
ment of a variant was actually an assessment of how the algorithmic component that
characterizes the given variant contributed to the performance of high-performing
ACO algorithms in the context of DCOPs. In addition, to understand the impor-

59
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tance of the other two experimental factors (local search and parameter settings),
each experiment we conducted were performed with and without local search, and
with different parameter settings that were obtained from automatic configuration,
see Chapter 6.

7.1 Evaluation

As previously discussed, algorithms applied to DCOPs have been traditionally
compared using different performance metrics. In common, both final-quality based
and behavior-based metrics have been indiscriminately assessed concerning number of
iterations, function evaluations, or solutions generated (Weicker, 2002; Rand e Riolo,
2005; Guntsch e Middendorf, 2002, 2001; Mavrovouniotis e Yang, 2011b; Sarasola e
Alba, 2013; Alba e Sarasola, 2010a; Ben-Romdhane et al., 2013; Nguyen et al., 2012b).
The rationale behind these resource consumption metrics was understanding by how
much algorithms were able to improve solutions within a given iteration, of after a
fixed number of function evaluations / solutions generated. Although they shared
the benefit of being hardware-independent (as long as no maximum runtime was
established), they also mask the computational overhead of the algorithms, an effect
that is particularly undesirable in the context of dynamic optimization. Here, we
evaluated algorithms using the hypervolume metric detailed in Chapter 7 considering
as resource consumption metric the runtime of the algorithms. Concretely, as same
as on previous experiments, algorithms were allowed a maximum runtime of 2 000
seconds when they used local search, and 1 000 seconds otherwise. By doing so,
we put on evidence the most important characteristic algorithms designed tackling
DCOPs should present, namely to be efficient as to the runtime they required for
reoptimizing solutions.

7.2 Configuration

As detailed in Chapter 6, automatic algorithm configurators such as Irace should
be used within a carefully designed configuration setup. To meet this need, we
formally defined a configuration space given in Table 7.1 based on the ACO litera-
ture (Dorigo e Stützle, 2004; Guntsch e Middendorf, 2001; Guntsch, 2004; Guntsch
e Middendorf, 2002; Mavrovouniotis e Yang, 2011b), delimiting parameters and do-
mains for each algorithm we configured in this investigation.

Concerning the separation between configuration and testing benchmark sets,
we created an alternative benchmark set for configuration, comprising thirteen
instances ranging from 100 to 3000 cities taken from the TSPLIB instance
benchmark (Reinelt, 2008)1, and 15 RUE instances, ranging from 2 000 to 4 000
cities (http://dimacs.rutgers.edu/archive/Challenges/TSP/, 2018). Additionally, to
prevent floor effects that could reduce the effectiveness of the automatic configu-
ration, when configuring an algorithm allowed to use local search we only adopted
instances with more than 600 cities. Concerning the configuration budget, Irace is

1The selected TSPLIB instances are rd100, kroA150, kroB200, gr202, pr226, pr439, gr666, u724,
vm1084, rl1304, vm1748, u2319 and pcb3038.



7.3 Assessing the effectiveness of pheromone transfer proposals 61

Table 7.1: Parameters space used as input for Irace when configuring MMAS
and P-ACO. For brevity, we use the (xi, xn) notation to represent a discrete interval
between xi and xn, where all integer values are considered by Irace.

Algorithm m ρ α β q0 τmax K

MMAS (5, 100) [0.1, 1] [0, 5] [1, 10] − − −
P-ACO (5, 100) − [0, 5] [1, 10] − [1, 10] [1, 25]

given a maximum of 5 000 experiments for each configuration campaign. Candidates
are evaluated according to the hypervolume metric, with reference points computed
on-the-fly, and are discarded based on Friedman’s non-parametric rank sum test using
the default configurations of Irace.

7.3 Assessing the effectiveness of pheromone

transfer proposals

The experiments discussed in the Chapter 6 showed that, when properly con-
figured and in the absence of local search, the pheromone transfer approach used
by P-ACO is particularly effective. Conversely, since MMAS was proposed for
static optimization, it fails to display competitive performance after the first problem
change. Here, we assessed the effectiveness of some of the pheromone transfer propos-
als reviewed in Chapter 3 when coupled withMMAS. Initially, we investigated the
benefits of adding toMMAS the pheromone transfer approach from P-ACO, while
isolating the effects of parameter configuration and local search. Next, we compared
several pheromone transfer approaches previously discussed, once again isolating the
effects of local search. Finally, we assessed the combination of transfer approaches
and compared the best-performing variant to P-ACO.

7.3.1 Assessing pheromone transfer through reset

As discussed in Chapter 3, P-ACO originally proposed that the pheromone in-
formation on edges Vs−1/Ds should be (re)set to τ0 after each environment change,
regulated by a forgetting parameter γ ∈ [0, 1]. In the context ofMMAS, this trans-
lated into (re)setting the pheromone information to τmax, since this was the initial
pheromone value it adopts.

For the set of experiments conducted here, we compared three variants ofMMAS.
The first version was the one we configured in the previous Chapter 6 (mmasTuned),
which did not use any pheromone transfer mechanism, and served as a baseline. The
second variant used the same parameter settings of the first one, but adopted the
pheromone reset approach (mmasTreset).2 Finally, the third version also adopted
pheromone reset, but was re-configured by Irace (mmasResetT ).

Our rationale was that the addition of pheromone transfer mechanisms could lead
to interactions with other algorithmic components of MMAS and thus required a

2Since the pheromone reset introduced the forgetting parameter γ, we have only configured this
parameter.



7.3 Assessing the effectiveness of pheromone transfer proposals 62

Table 7.2: Parameters selected by Irace for MMAS variants using different
pheromone transfer approaches. Settings specific to runs with local search are in-
dicated by the LS suffix.

MMAS reset multi

Variant m α β ρ γ q0

mmasTreset 96∗ 1∗ 5∗ 0.6∗ 0.8 −
mmasTresetLS 9∗ 1∗ 1∗ 0.4∗ 0.7 −
mmasResetT 95 1 5 0.4 0.9 −
mmasResetTLS 9 1 2 0.4 0.6 −

mmasRestartT 96 1 5 0.3 − −
mmasRestartTLS 6 1 1 0.1 − −
mmasMultiT 91 1 2 0.3 − 0.3
mmasMultiTLS 9 1 1 0.8 − 0.3

mmasMultiRestartT 98 1 5 0.4 − 0.4
mmasMultiResetT 95 1 5 0.3 0.4 0.2

* Settings reused from the experiments conducted in the previous section.

different parameter configuration. Configured settings for this set of experiments are
given in Table 7.2 (top rows). Like before, experiments were run isolating the effects
of local search, and the LS suffix was added to configurations where 2-opt local search
was adopted.

In the following, we discussed the most important insights we observed from our
analysis, with the help of the SQT plots given in Figure 7.1. In particular, the
plots depicted the anytime performance of the three different MMAS variants we
considered when run on a TSPLIB instance with (left) and without (right) local
search, on the ξ = 40%, f = 10 scenario.

• Parameter settings

The only parameters in which the settings of mmasTreset and mmasResetT
differ were the evaporation (ρ) and the forgetting (γ) rates. The similarity also
held between the variants that used local search (mmasTresetLS and mmasRe-
setTLS ), though this time it was β rather than ρ that was changed by Irace.

From an algorithmic point of view, the most likely explanation for these
changes concerned the absence of a pheromone transfer mechanism in the origi-
nalMMAS, which was compensated by Irace with an increased ρ value. Con-
cerning performance, bothMMAS variants that adopted the pheromone trans-
fer mechanism from P-ACO perform similarly, although differences were mostly
observed in favor of mmasResetT.

• Improvements over the original MMAS

Figure 7.1 (left) demonstrated the significant performance improvements pro-
vided by pheromone transfer through reset. In particular, the transfer approach
helped address the most concerning issue with the originalMMAS, in that the
performance of the variants were consistent throughout the run. More impor-
tantly, the benefits of transfer were observed for all instance sets, scenarios, and
parameter configurations, as shown in the rank sum analysis given in Table 7.3.

Conversely, the effects pheromone transfer mechanism were greatly reduced in
the presence of local search, as shown in Figure 7.1 (right). In fact, it was often
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Figure 7.1: SQT plots depicting the anytime performance of three differentMMAS
versions, run on TSPLIB instance pr2392 with (right) and without (left) local search,
using different parameter configurations on the ξ = 40, f = 10 scenario.

possible to identify performance differences in favor of the original MMAS
over the variants that adopted pheromone transfer. This was an important
finding that corroborated our claim that algorithmic components proposed for
dynamic optimization algorithms should be carefully assessed, in particular as
to their possible interactions with other relevant components algorithms might
use, such as local search.

7.3.2 Comparing pheromone transfer approaches

The insights produced in the previous section demonstrate that pheromone trans-
fer approaches may interact with other algorithmic components, and hence recon-
figuring variants is indicated. In this section, we compared threeMMAS variants,
differing as to the transfer approach they adopt. The first variant is mmasResetT,
which we preliminarily assessed in the previous section, and served as baseline. The
second variant (mmasRestartT ) restarted the pheromone trails of edges Vs−1/Ds to
τmax, completely forgetting the deposits from previous environments.3 Finally, the
third variant (mmasMultiT ) follows the multi-caste approach (Melo et al., 2013) dis-
cussed in Chapter 3. In our work, ants were split into two groups of equal size ⌊m/2⌋.
The first group of ants constructed solutions using probability q0, whereas the second
group used probability 1 − q0. Thus, depending on how q0 is set, half of the ants
would search favoring exploitation, with the other half favoring exploration.

• Parameter settings

Configured settings for this set of experiments were given in Table 7.2 (middle
rows). The different pheromone transfer strategies produced little effect on the
number of ants (m) and importance of the pheromone information (α). Indeed,

3Notice that the restart variant was equivalent to configuring parameter γ to its maximum value
in the reset variant.
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the only noticeable differences between settings used by the variants concerned
the importance of heuristic information (β) and the evaporation rate (ρ). How-
ever, no overall pattern could be easily observed, although it was remarkable
that the variants that used local search presented so contrasting ρ values. In
particular, the very low ρ value adopted by mmasRestartT was probably an ef-
fect of its strong forgetting behavior. Conversely, the very high ρ value adopted
by mmasMultiT was likely induced from not having an explicit transfer mech-
anism.

• Frequency of change and instance characteristics

The performance benefits provided by the different pheromone transfer ap-
proaches assessed in this section vary considerably as a function of the dynamic
and structural characteristics of scenarios and instances. In general, the restart
approach leaded to less benefits than reset regardless of set or scenario, as illus-
trated in Figure 7.2 (top). By contrast, the multi-caste approach leads to the
most significant improvements only on RUE instances when f = 2, as shown on
Figure 7.2 (top left). In more detail, when we considered TSPLIB instances (for
all scenarios) or even RUE instances for f = 10 scenarios, adopting multiple
castes was the approach that brought less performance benefits among all trans-
fer approaches compared. This was corroborated by the analysis provided in
Table 7.3, where mmasResetT was the best-performing variant. Regarding the
frequency of change, the reduced benefits from multiple castes when f = 10 are
likely related to the split computational resources among ant groups, given that
the runtime available for each slot was much smaller than when f = 2. Con-
cerning instance characteristics, the experiments in Section 4.3.2 had already
indicated thatMMAS need more runtime for reoptimizing TSPLIB instances
than for RUE instances, which became an issue for the multi-caste variant.

• Local search

As in the preliminary assessment of pheromone transfer though reset, the pres-
ence of local search rendered the benefits from the transfer approaches minimal.
This was illustrated in Figure 7.2 (bottom), where we observed that this per-
formance similarity between approaches held whatever the frequency of change.
Moreover, it was not possible to observe differences between transfer approaches
whatever the instance set and degree of dynamism. Yet, when we aggregated
over all runs considered, these small differences accumulated once again in favor
of mmasResetT.

7.3.3 Combining pheromone transfer approaches

The assessment of pheromone transfer approaches produced two major insights.
First, selecting a single pheromone transfer approach depended on the experimental
factors adopted. Second, in the presence of local search, the benefits from all ap-
proaches considered became minimal. In this section, we assessed the combination
of pheromone transfer approaches, to see if it was possible to combine their advan-
tages into a single variant. In more detail, the multi-caste approach only affected
the solution construction rule. This way, the pheromone update behavior of the
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Figure 7.2: SQT plot depicting the anytime performance of MMAS with three
different versions of pheromone update mechanisms, run on TSPLIB instance pr2392
without local search, using same parameter configurations and different dynamic
scenarios.

variants investigated in this section during a given environment was identical to the
originalMMAS. Only when transitioning between environments was that the vari-
ants chose to either partially (mmasMultiResetT ) or entirely (mmasMultiRestartT )
forgot the pheromone information from previous environments. Furthermore, we re-
marked that we restricted our investigation in this section to experiments without
local search.

Table 7.2 (bottom rows) showed the configured settings for the variants we con-
sidered in these experiments. The first variant was mmasMultiT, preliminarily as-
sessed in the previous section, which we used as baseline. The second and third
variants followed the multi-caste approach from the first variant, but explicitly pro-
moted pheromone transfer through reset (mmasMultiResetT ) or restart (mmasMul-
tiRestartT ). Overall, all three variants presented similar configuration, the strongest
exception being parameter β, which was significantly increased for the novel variants.
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Figure 7.3: SQT plots depicting the anytime performance of three differentMMAS
variants, run on RUE instance 3002 using different parameter configurations on f =
10 scenarios, with ξ = 20% (left) and ξ = 80% (right) .

In a sense,MMAS was now allowed to be more greedy as the transfer mechanisms
help balance its search.

Figure 7.3 depicted SQT plots for experiments without local search, run on RUE
instance 3002 on dynamic scenarios that presented frequency of change f = 10, but
differ as to the degree of dynamism (left: ξ = 20%; right: ξ = 80%). The most
evident observation was how the combination of transfer approaches improved over
using multiple castes alone.

Two other observations stood out. First, it was rather interesting how the de-
gree of dynamism affected the variants that did not adopt restart. In the case of
mmasMultiT, its reoptimization in the initial environments was more effective when
the degree of dynamism was lower. In the case of mmasMultiResetT, this loss in
performance is observed across all environments, with a competitive performance
on ξ = 20% scenarios contrasting with a less competitive performance on ξ = 80%
scenarios.

Second, mmasMultiRestartT was able to improve over mmasMultiResetT, spe-
cially for larger RUE instance sizes. Altogether, these findings were an excellent
evidence of algorithmic component interaction, given that in the previous set of exper-
iments mmasResetT had outperformed both restart and multi-caste for a significant
number of experimental factors.

7.3.4 Comparing MMAS variants with P-ACO

We concluded our investigation with a comparison of the best-performing algo-
rithms and variants identified in this work. Namely, in this section we compared
(i) P-ACO (pacoTuned); (ii)MMAS coupled with pheromone transfer through re-
set (mmasResetT ), and; (iii)MMAS using the multi-settings approach coupled with
pheromone transfer through restart (mmasMultiRestartT ). Note that these experi-
ments did not consider local search, as none of the algorithms and variants considered
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Figure 7.4: SQT plot depicting the anytime performance of best performingMMAS
versions and P-ACO, run on RUE instance 3005 ( 7.4a, 7.4b) and on TSPLIB instance
pr2392 ( 7.4c, 7.4d) without local search, using different parameter configurations and
different dynamic scenarios. Left: scenario ξ40f2. Right: scenario ξ40f10.

here were competitive with (P-ACO) or able to improve significantly over (mmasRe-
setT and mmasMultiRestartT ) the originalMMAS coupled with local search. Our
main objective here was then to measure the relative performance of the MMAS
variants w.r.t. P-ACO when local search was not adopted.

Figure 7.4 showed SQT plots depicting runs without local search on RUE in-
stances 3002 (top) and 4002 (bottom), on scenarios that presented degree of dy-
namism ξ = 40%, but vary as to frequency of change (left: f = 2; right: f = 10).
These plots helped illustrate the two more relevant factors that affect results, as
follows. First, the relative performance of the MMAS variants w.r.t. P-ACO was
strongly affected by the frequency of change. Specifically, Figure 7.4 (left) showed
that P-ACO outperformed all MMAS variants when f = 2. Conversely, we see
from Figure 7.4 (right) that theMMAS variants outperformed P-ACO when there
was an increase in the frequency of change. This was a rather remarkable result that
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Table 7.3: Statistical analysis of the experiments conducted in this section.

Section Setup ∆R Rank sums

7.3.1
Without LS 17.51 mmasResetT mmasTreset (65) mmasTuned (178)

With LS 27.65 mmasTunedLS mmasResetTLS (7) mmasTresetLS (122)

7.3.2
Without LS 29.62 mmasResetT mmasMultiT (98) mmasRestartT (115)

With LS 31.51 mmasResetTLS mmasMultiTLS (34) mmasRestartTLS (107)

7.3.3 Without LS 35.69 mmasMultiRestartT mmasMultiResetT (10) mmasMultiT (56)

7.3.4 Without LS 36.31 pacoTuned mmasResetT (28) mmasMultiRestartT (47)

confirmed thatMMAS could be competitive in the context of dynamic optimization
even in the absence of local search procedures.

The second factor that affect results was the number of customers. In particular,
we observed that the instance size played a more relevant role than the instance
structural characteristics in this particular assessment. For this reason, we included
both a smaller (top) and a larger (bottom) RUE instances, with the smaller instance
being representative of the results for TSPLIB. When f = 2, P-ACO improved over
theMMAS variants by a larger margin on smaller instances (Figure 7.4a) than on
larger instances (Figure 7.4c). Conversely, when f = 10 P-ACO was only competitive
on smaller instances (Figure 7.4b), and was worse than the MMAS variants by
a significant gap on larger instances (Figure 7.4d). When we look at the overall
picture given in Table 7.3, we saw that pacoTuned and mmasResetT were considered
equivalent.

Altogether, these experimental factors suggested that the results from this com-
parison may have been influenced by the configuration setup adopted. More pre-
cisely, we decided to use a single configuration for multiple experimental scenarios and
benchmark instance sets. In addition, the TSPLIB instances we selected were smaller
than the RUE instances we created. Balancing instance sizes among benchmark sets
and adopting configurations specific to each scenario and set would likely help further
understand the performances of these algorithms and variants. However, we made
significant progress through this performance assessment, in that many factors that
have been previously overlooked led to important insights, such as the effects of pa-
rameter configuration and the interactions between algorithmic components, such as
pheromone transfer and local search.



Chapter 8

Conclusion

Efforts have been dedicated over the years to develop high-quality algorithms
when applied to DCOPs. However, many issues were identified from the literature
review about how to implement and/or improve algorithms when applied to this
problem class. As a main consequence, experiments could conduct researchers to
erroneous analyses and conclusions. Thus, the main purpose of this research was the
development of an empirical way to address all these issues. They were: (i) the use of
automatic tuning to properly adapt the algorithm’s parameter when tackling DCOPs;
(ii) the use of local search to improve algorithms performance and (iii) the application
of the hypervolume as a unique and complete performance metric. The ACO and the
TSPDDs were chosen as algorithm and problem benchmark, respectively.

Among the most relevant ACO algorithms proposed in the literature, there
are those that re-evaluate the pheromone information deposited on the solution
components affected by problem changes. The best known of these algorithms
was P-ACO (Guntsch e Middendorf, 2002), which was based on a transient pheromone
memory that quickly adapts exploiting the most recent solutions found. Another ma-
jor share of the ACO algorithms applied to dynamic optimization literature focused
on extendingMAX -MIN Ant System (MMAS (Stützle e Hoos, 2000)), given its
excellent performance on static optimization. Concerning the TSP dynamic variation,
the TSPDDs, its simplicity of implementation, close relation to real world problems
and influence on testing new algorithms were the main facts that defined the use of
this problem class in our research.

The experiments presented in this research resulted in the publication of one book
chapter, three conference papers and two journal papers. The main contributions of
each publication were summarized as follows. The first publication was dedicated
to a review about ACO metaheuristic, its algorihtms and their application on COPs
in order to improve the ACO knowledge background that was going to be needed
in this research (Dorigo et al., 2011). This publication was followed by the work
that highlighted the issue faced by researchers when applying manual tuning and
the influence of local search (Oliveira et al., 2011a). There, P-ACO algorithm was
chosen to be applied, and two problems were used as benchmark: the TSP and the
Quadratic Assigned Problem (QAP). Here we concentrated our efforts only on the
TSP. From the insights obtained after the analysis of the experiments conducted, we
highlighted that the usage or not of a local search had a strong impact on parameters
settings and pheromone update for P-ACO applied to the TSP.

69
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After this publication, the TSP was replaced by the TSPDDs, which was the
main problem chosen to be applied to this research. The TSPDDs had not been
applied in the first place due to the fact that we would like to have the first insights
about the importance of automatic tuning from a problem that had been exten-
sively studied in the literature. In this way, we would be able to see whether our
conclusions corroborated with the ones already presented in the literature so far.
This experience would serve as a knowledge source to move from static to dynamic
COPs. This replacement resulted in another publication (Oliveira et al., 2019) and
in a journal paper (da Silva et al., 2020). From the results obtained, we could see
how dynamic optimization problems demand algorithms engineered to quickly pro-
duce high-quality solutions, particularly after problem data changed. This dichotomy
would be more accurately addressed when formulated as a bi-objective optimization
problem, where solution quality and runtime were the most prototypical objective
examples. Through the extension of this formulation and application of the concept
of anytime behavior to a dynamic optimizer, we were able to use the hypervolume to
compare any number of algorithms and, under certain circumstances, benefit from the
Pareto-compliance property of this indicator. Together, these characteristics greatly
improved over previous measures adopted in the dynamic optimization Literature.
To empirically evaluate our proposed approach, we also conducted an experimen-
tal study on the performance of different variants of the P-ACO algorithm run on
the TSPDDs. Surprisingly, the variant configured for static optimization performed
better than the one configured for dynamic optimization. More importantly, once
again, we saw that local search was a critical component even in the context of dy-
namic optimization, leading to the best anytime behavior in most of the experiments
conducted.

The methodology presented was then successfully applied in the field of multi-
criteria decision making (MCDM) to evaluate the impact of social distancing and
mobility evaluation for human mobility during the first COVID-19 lock down consid-
ering (i) multiple categories for a given time period and (ii) multiple categories over
multiple time periods. We empirically demonstrated these approaches by conduct-
ing both a region- and country-level analysis, comparing some of the most relevant
outbreak examples from different continents.

After the setup of a proper way to evaluate end compare algorithms’ performance
when applied to TSPDDs, we were able to define an automatic way to set up algo-
rithms parameters and improve ACO main procedures. Thus we had proposed the use
of the Irace tool to tune allMMAS and P-ACO parameters. By using the Irace tool
we were also able to include the hypervolume measure as a methodology for selecting
the most promising parameters during the tuning process. A new parameter setting
was defined for both MMAS and P-ACO. Latter, improvements were proposed
toMMAS generatingMMAS extensions which were also able to be tuned due to
the velocity of tuning algorithms automatically. In this way, we had assessed P-ACO
and many such pheromone transfer approaches through a rigorous computational
study on a dynamic variant of the traveling salesman problem (TSP). All possible
contributions concerning the automatic tuning tool andMMAS improvements were
then assigned to a journal paper (Oliveira et al., 2021).

In summary, our work produced, at least, three major contributions. First, we
proposed an automatic configuration approach for dynamic optimization, where we
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use the hypervolume as a metric to evaluate the anytime behavior of algorithms.
Second, we compared P-ACO toMMAS, one of the best-performing ACO algorithms
for the static TSP, isolating the effects of parameter settings and local search. In
the absence of local search, as traditionally observed in the dynamic optimization
literature, P-ACO outperformsMMAS by a large margin. Yet, when the local search
is adopted,MMAS consistently outperforms P-ACO on all experimental scenarios
considered. Third, we investigated the benefits of ACO adaptations for dynamic
optimization, observing that their benefit is considerably reduced in the presence of
local search. However, pheromone transfer approaches renderMMAS more effective
than P-ACO for a large part of the experimental scenarios where local search is not
adopted.

The insights produced in this investigation opened several possible future work
directions. Concerning the automatic configuration of anytime behavior for dynamic
optimization, results revealed the importance of both instance characteristics and
size, indicating better results could likely be obtained from isolating these factors
for configuration. More importantly, given the overhead required by offline config-
uration, it would be paramount to assemble a repository of configured settings for
multiple algorithms, benchmark sets, and experimental scenarios. In addition, we
have only just started taking advantage of the theoretical benefits of hypervolume.
For instance, it remains an open question whether the Pareto-compliant properties of
the hypervolume when measuring the anytime behavior within a single environment
could also be extended for definite conclusions about the whole run.

Regarding the comparison betweenMMAS and P-ACO, we observed that con-
clusions are strongly dependent on local search. Yet, we considered a single local
search operator, which is neither the most efficient nor the most effective for the
static TSP. An extended investigation on operators possibly better suited for dynamic
optimization would likely indicate a means to reduce overhead while preserving the
performance benefits. Conversely, in the absence of local search, it was not possi-
ble to identify a single best-performing algorithm for all scenarios. Nonetheless, our
work has paved the way for other high-performing ACO algorithms to be extended
to dynamic optimization.



Bibliography

Adenso-Diaz, Belarmino e Laguna, Manuel. (2006). Fine-tuning of algorithms using
fractional experimental designs and local search. Operations research, v. 54, n. 1, p.
99–114.

Alba, Enrique e Sarasola, Briseida. (2010)a. ABC, a new performance tool for
algorithms solving dynamic optimization problems. Proceedings of the IEEE Congress
on Evolutionary Computation (CEC 2010), Barcelona, Spain, 18-23 July 2010, p. 1–
7, (2010)a. doi: 10.1109/CEC.2010.5586406.

Alba, Enrique e Sarasola, Briseida. (2010)b. Measuring fitness degradation in
dynamic optimization problems. Di Chio, Cecilia; Cagnoni, Stefano; Cotta, Car-
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Monnot, Jérôme e Toulouse, Sophie. (2014). The traveling salesman problem and its
variations, p. 173–214. Wiley Online Library, 2th edição.

Mori, Naoki; Kita, Hajime e Nishikawa, Yoshikazu. (2001). Adaptation to changing
environments by means of the memory based thermodynamical genetic algorithm.
Transactions of the Institute of Systems, Control and Information Engineers, v. 14,
n. 1, p. 33–41. doi: 10.5687/iscie.14.33.

Morrison, Ronald W. (2003). Performance measurement in dynamic environments.
Branke, Jürgen, editor, Proceedings of the Workshop on Evolutionary Algorithms
for Dynamic Optimization Problems (EvoDOP-2003) held in conjunction with the
Genetic and Evolutionary Computation Conference (GECCO-2003), 12 July 2003,
Chicago, USA, p. 5–8, (2003).

Mosayebi, Mohsen; Sodhi, Manbir e Wettergren, Thomas A. (2021). The traveling
salesman problem with job-times (tspj). Computers & Operations Research, v. 129,
p. 105226.

Nguyen, Trung Thanh; Yang, Shengxiang e Branke, Jüergen. (2012)a. Evolutionary
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Dorigo, Marco. (2011)a. A Detailed Analysis of the Population-Based Ant Colony Op-
timization Algorithm for the TSP and the QAP. Relatório Técnico TR/IRIDIA/2011-
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