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Abstract

Many-Objective Optimization (MaO) refers to optimization problems having four or
more objectives, the increase in objective dimensionality brings some complex issues,
such as the ineffectiveness of the Pareto dominance relation, quality indicators calcu-
lation, solution sets visualization, balancing convergence and diversity, and others.

A key issue in many- and multi-objective optimization is comparing and assess-
ing solution sets obtained by optimization algorithms. This is not a simple task; the
outcome of many-objective optimization algorithms is typically a set of incomparable
solutions. Using a quality indicator to reflect the inner Pareto front characteristics
requires careful design/selection of such indicators. In the first part of this thesis, we
deal with the Dominance move (DoM) quality indicator. We propose novel approaches
to calculate DoM using mixed-integer programming (MIP) models and an approxi-
mate method using machine learning techniques. In general, our attempts uses the
dominance move quality indicator as a suitable way to measure, compare, and assess
many-objective problems.

Another challenge in MaO is to provide a true representative set with the desired
number of Pareto-optimal solutions in a reliably well-distributed set. In the second
part of this work, we propose a multi-stage framework involving reference-vector-based
evolutionary multi- and many-objective algorithms that attempt to rectify previous
stages’ shortcomings by careful executions of subsequent stages so that a prescribed
number of well-distributed and well-converged solutions are achieved.

The results presented in this thesis come from the attempts to address challenges
in evolutionary many- and multi-objective optimization. This research has analyzed
and systematically evaluated existing methods. It has also extended them in innovative
directions related to quality indicators and improvements concerning the multi-stage
approach in balance convergence and diversity in evolutionary algorithms.

Keywords: Multi- and many-objective optimization, quality indicators, evolutionary
algorithms.
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Chapter 1

Introduction

1.1 Context

In our daily lives, we face common decisions: buying a car, choosing an internet
provider, making a course, taking a route to go to work, and others. The options
available have some characteristics, and they can be assessed from many perspectives:
comfort, monetary, utility, speed, distance, and quality, to name a few. Typically,
these options are conflicting, and we have to decide and find a trade-off among the
alternatives in these situations.

When two or three objective functions are optimized simultaneously, we deal
with multi-objective optimization problems (MOPs). When the number of objectives
equals or exceeds four, we deal with many-objective optimization problems (MaOPs).
Real-world optimization problems are composed of multiple and conflicting objectives.
Therefore, we usually want to either minimize and maximize some objective functions
concurrently.

In general, an improved solution for one objective function often means a worse
solution for another objective function. Due to the conflicting nature of the objective
functions, there is no single optimal solution but a set of optimal solutions. This set
of solutions is referred to as the Pareto optimal solutions. We consider the solutions
optimal so that no other solutions in the search space are ‘superior’ for all objectives
considered in the set of optimal solutions.

Although traditional approaches can combine the objective functions into a sin-
gle one and solve the resulting problem, several multi- and many-objective optimiza-
tion techniques have proven to be efficient in dealing with the true multi- and many-
objective nature of such problems [Chand and Wagner, 2015].

Evolutionary multi-objective (EMO) or many-objective optimization (EMaO)
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techniques have been recognized to be well suited for MOPs and MaOPs [Chugh et al.,
2019]. They find a set of Pareto-optimal solutions to such problems, generating a
solution set as a final result. EMO and EMaO algorithms have been applied in dif-
ferent domains, coming from health sciences and engineering problems, for example,
[González-Álvarez and Vega-Rodríguez, 2013; Deb, 2008].

Various approaches have been proposed in the evolutionary optimization com-
munity to solve many-objective problems [Li et al., 2018]. However, in contrast to
single-objective optimization, the solutions generated by EMO/EMaO algorithms can
be tough to obtain and compare. Such difficulty grows as the need for an increasingly
large number of candidate solutions and an increase in the number of objectives. When
there are two or three objectives only, some graphical techniques visually examine the
solution set. However, when the number of objectives is greater than three, this task
is challenging, needing more advanced visualization techniques that can show features
like location, shape, and the distribution of the solution set [Li et al., 2015a; Ibrahim
et al., 2018; Bhattacharjee et al., 2020; Talukder and Deb, 2020].

Quality indicators are suitable for situations when we need to compare two or
more solution sets [Zitzler et al., 2003]. They have been used to compare the outcomes
of multi- and many-objective algorithms. In Li and Yao [2019], 100 quality indicators
are discussed. The paper considers some state-of-the-art indicators with diverse char-
acteristics and focuses on which quality aspects they have, highlighting their strengths
and weaknesses.

There is no quality indicator able to represent all the solution set features: car-
dinality, convergence, spread, and uniformity. It is an open question to find if such
a quality indicator exists. An additional difficulty is related to the quality indicator
computation; hypervolume is an example in which hard efforts have been made related
to its calculation on high dimensions [Guerreiro et al., 2021].

Additionally to the quality indicators issue, there are several known shortcom-
ings of EMO and EMaO algorithms which have been recognized in the literature in
achieving adequate convergence and distribution of non-dominated solutions: I) EMO
and EMaO algorithms are stochastic, and a single application may not always produce
a well-distributed and well-converged set of non-dominated (ND) solutions, II) some
algorithms are expected to produce a pre-specified number of non-dominant (ND) so-
lutions, but every EMO or EMaO run may not produce the exact number of ND points
as desired, and III) a set of ND solutions may indicate specific gaps in the apparent
ND front discovered by an EMO or EMaO algorithm, the such gap may be artificial
(from discovering fewer points in a particular area of the solution set), or a gap may
genuinely exist in the efficient front.
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In fact, it would be desired if the EMO/EMaO algorithms could find a more
reliable and reproducible ND set having exactly the desired number of a uniformly
distributed set of points on the entire efficient set with a clear indication of true gaps
and holes, if any.

Our general goal here is to discuss and present some novel proposals to deal
with these challenges. In this chapter, firstly, we describe the motivation behind this
research. Next, we outline the text structure, and finally, we detail some publications
generated from this work.

1.2 Motivation

The research motivation starts based on the quality indicators used in MaOPs. They
typically map a solution set to a real number and should reveal some features of the
solution set. The common use of quality indicators is to compare results from multi- or
many-objective algorithms. Additionally, it can be applied in other scenarios as well.
For example, it can be used in search strategies or to improve the individual selection
criteria during the evolutionary process.

There are many indicators available, and they have been used in numerous sit-
uations in literature [Li and Yao, 2019]. The hypervolume (HV) [Deng and Zhang,
2019; Yang et al., 2019; Bradford et al., 2018; Zitzler and Thiele, 1999], inverted gen-
erational distance plus (IGD+) [Ishibuchi et al., 2015b], and ϵ-indicator [Zitzler et al.,
2003], generational distance (GD) [Ishibuchi et al., 2015b], and KKTPM [Deb and
Abouhawwash, 2016] are just some examples.

HV, IGD+ and ϵ-indicator are commonly used in many-objective problems.
Nonetheless, some handicaps can be observed:

• Indicators which are based on Pareto dominance relation typically return similar
results of two solution sets with high dimensions;

• HV is hard to exactly calculate in many-objective problems [Guerreiro et al.,
2021] . It is still very sensitive to extreme points [Ishibuchi et al., 2018];

• In many-objective test problems and real cases, obtaining a Pareto front or a
reference set can be difficult. This information is vital to IGD+, for example;
The same happens to HV, in [Ishibuchi et al., 2018], in which is necessary to
specify a reference point;
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• Essentially, a quality indicator applied in MaOPs must have no severe information
loss. In other words, consider as much information as possible from all objectives
and solutions.

Based on these observations, some provocative and ambitious questions arise
when thinking about many-objective scenarios. Our research questions and hypothesis
are:

1. What are the quality indicators suitable for dealing with problem sets in high
dimensional space, avoiding the drawbacks previously related?

2. What features (geometrical properties, distributions, and others) characterize the
solution sets and quality indicators in high dimensional spaces?

3. Given two solutions sets P and Q in high dimensional space, is it possible to
compare them using as much as possible available information? If it is possible,
can it be done in a reasonable time (computational complexity)?

These questions are crucial in this work. The first part of this thesis tries to
bring innovative approaches to address these challenges in the evolutionary many-
objective optimization context. Our main objective is to assess many-objective solution
sets using a quality indicator, the Dominance Move, dubbed DoM. It brings up the
dominance move concept and utilization. It also proposes efficient ways to calculate it
in a reasonable computational time.

In the second part of this work, we continue to deal with MOPs and MaOPs.
Performance quality indicators measure convergence and uniformity since that aspects
are relevant in EMO and EMaO area. Our focus is on a fundamental evolutionary
algorithm design question: balancing convergence and diversity. Some algorithms put
more attention on maintaining diversity, for example. However, it may hamper the
convergence to the optimal Pareto front, especially for some hard MOPs/MaOPs in-
stances. To alleviate this fact, some multi-phase or multi-stage algorithms have been
proposed, such as MOEA/D-AWA [Qi et al., 2014], B-NSGA-III [Seada et al., 2019],
CMOEA-MS [Tian et al., 2021b], CLIA [Ge et al., 2019], RVRL-EA [Ma et al., 2021],
MSEA [Tian et al., 2021a], and others. This approach generally divides the optimiza-
tion process into a certain number of stages and applies different selection strategies
in these stages. In this way, the diversity performance of the evolutionary algorithm is
improved.
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Similarly, it is well known that the usage of reference vectors (RV’s) in
EMO/EMaO helps to guide the evolutionary process towards convergence and uni-
formity [Deb and Jain, 2014; Zhang and Li, 2007].

Considering such context, we would like to push the boundaries in evolutionary
algorithm design. With MOPs and MaOPs we would like to investigate:

1. Is there a non-invasive method that can be coupled with RV’s based EMO/EMaO
algorithms bringing benefits (enhancing convergence and diversity) for this ‘new
method’?

2. Is there a reliable method to treat some hard problem instances, dealing with
natural or ‘artificial’ gaps?

3. Is there an approach to get precisely N well-distributed non-dominant solutions?

More importantly, it does not treat each of the mentioned research questions
isolated but how they can be treated simultaneously, coupling all these features in
current and most used RV’s based EMO and EMaO algorithms.

Our Multi-Stage Reference-vector-based Framework can find exactly N uniformly
distributed solutions with a straightforward process to deal with true gaps and holes
using current EMO or EMaO algorithms. Essentially, we use a reference vector-based
EMO/EMaO algorithm in a non-invasive manner with a multi-stage approach coupled
with a procedure to make global adjustments in the reference vectors.

Steps towards a better understanding of performance quality indicators and im-
proving the balance between convergence and uniformity are our pillars. We believe
that such contribution helps to advance the current evolutionary multi- and many-
objective approach, allowing us to tackle more challenges.

1.3 Thesis structure

The thesis is organized as follows.
Chapter 2 provides the necessary background material. It introduces multi- and

many-objective optimization with evolutionary algorithms and some contextualized
relevant concepts. It also discusses the role of quality indicators in this scenario, with
some commonly used indicators found in the literature (focused on convergence and
uniformity). Some test problems are also listed and presented. Another section is
related to the mathematical programming area, furthering the mixed-integer program-
ming and some concepts and classical problems. In the last section, machine learning
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as a concept is also discussed. We are focusing on unsupervised learning techniques
related to clustering tasks. In general, all these concepts and methods presented in
this chapter are introduced and are used as basic ‘blocks’ to solve problems and extend
EMO and EMaO shortcomings.

In the first thesis’ part, we will present and discuss the Dominance Move (DoM)
concept as a viable way to assess, compare, and analyze results produced by EMO and
EMaO algorithms. In Chapter 3 DoM is introduced as a performance quality indicator,
and the benefits and drawbacks are also presented. Until now, DoM was calculated
just for bi-objective problems. We propose a novel approach to calculate DoM using a
mixed-integer linear programming (MIP) approach, which can handle solution sets in
multi- and many-objective problems. Experiments using three to 30-objective problems
are performed using 50 to 400 solutions in the set to show how the model behaves in
higher-dimensional cases. Algorithms such as IBEA, MOEA/D, NSGA-III, NSGA-II,
and SPEA2 are used to generate the solution sets. Further extensions are discussed
to handle particular idiosyncrasies with some solution sets and improve the quality
indicator and its use in other situations.

Next, in Chapter 4 and 5 the computational time spent by the former model
will be assessed and improved, enabling broader use of the DoM. In Chapter 4 a com-
pact mixed-integer formulation will be presented; it is based on a different perspective
adopted in Chapter 3 (initially proposed by Prof. Carlos Fonseca). Some experiments
will show that this compact formulation is able to calculate DoM; we also compare the
former and the compact models. The compact one presents better computational time
and is much more straightforward in its formulation. However, there are still some
limits to the use of the compact formulation, mainly related to the number of solutions
in each set.

In Chapter 5 we propose an approximation method that joins our mixed-integer
programming model with a machine learning clustering technique. It brings an inter-
esting tradeoff between DoM value precision and the time spent by the method. Lastly,
we test some limits, using hard instance problems that take hours to be computed by
the compact formulation. Our approximate method is able to transpose such limita-
tions. This chapter closes our first thesis part with insights into the practical use of
DoM and different ways to calculate it in MOP and MaOP scenarios.

The next part of this thesis treats the balance between convergence and di-
versity in evolutionary multi-objective and many-objective (that is a question that
DoM, as a concept, tries to address as well). Since EMO and EMaO algorithms are
stochastic, a single application may not provide a true representative set with the
desired number of Pareto-optimal solutions reliably and, importantly, with a well-
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distributed set of solutions. In Chapter 6, we propose a multi-stage framework involv-
ing reference-vector-based evolutionary multi- and many-objective algorithms (MuSt-
EMO and MuSt-EMaO) that attempts to rectify shortcomings of previous stages. By
carefully executing subsequent stages, an exact prescribed number of well-distributed
and well-converged solutions are achieved at the end. The working of the proposed
Must-EMO/EMaO algorithms is implemented in a number of popular reference-based
EMO/EMaO algorithms and is demonstrated working on various multi- and many-
objective tests and real-world problems.

In Chapter 7, we summarise the work presented in this thesis and look at how
it has contributed to the field of evolutionary multi- and many-objective optimization.
Additionally, some suggestions are provided as comments and directions for future
research.

The Appendix A brings additional experiments and further information about
our multi-stage framework presented in Chapter 6.

1.4 Publications

The work resulting from this thesis has been published in the following paper:

• Claudio. L. d. V. Lopes, Flávio. V. C. Martins and Elizabeth. F. Wanner,
An Assignment Problem Formulation for Dominance Move Indicator, 2020 IEEE
Congress on Evolutionary Computation (CEC), Glasgow, United Kingdom, 2020,
pp. 1-8, doi: 10.1109/CEC48606.2020.9185597.

• Claudio. L. d. V. Lopes, Flávio. V. C. Martins and Elizabeth. F. Wanner, and
Kalyanmoy Deb. An Approximate MIP-DoM Calculation for Multi-objective
Optimization using Affinity Propagation Clustering Algorithm, 2021 The Genetic
and Evolutionary Computation Conference (GECCO), Lille, France 2021.

• Claudio. L. d. V. Lopes, Flávio. V. C. Martins, Elizabeth. F. Wanner and
K. Deb, Analyzing Dominance Move (MIP-DoM) Indicator for Multi-and Many-
objective Optimization, in IEEE Transactions on Evolutionary Computation, doi:
10.1109/TEVC.2021.3096669.

• Claudio. L. d. V. Lopes, Flávio. V. C. Martins and Elizabeth. F. Wanner,
and Kalyanmoy Deb. A Computationally Fast but Approximate MIP-DoM Cal-
culation for Multi-Objective Optimization, 2022 The Genetic and Evolutionary
Computation Conference (GECCO), Boston, USA 2022.
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Chapter 2

Background

This chapter reviews relevant topics in multi- and many-objective evolutionary algo-
rithms, mixed-integer programming, and machine learning. Then, these topics’ issues
are merged and used as the blocks to solve some challenges in multi- and many-objective
optimization scenarios.

In the multi- and many-objective evolutionary optimization area, there are some
open research questions. It brings some new opportunities, and solving such questions
can allow us to extend the approach for applications in complex real-world problems [Li
et al., 2015a]. Some common concepts, methods, and shortcomings will be presented
as a starting point.

As part of the mathematical programming area, integer programming refers to
the class of constrained optimization problems in which some or all of the variables
are required to be integers. In most studied and used integer programs, the objective
function is linear, and the constraints are also linear. The method has been used
in academic and business problems [Jünger et al., 2010]. This section will discuss
definitions, terms, and some classical problems in mathematical programming, with a
general mixed-integer programming model emphasis.

Machine learning is an artificial intelligence sub-area in which, using experience,
computer algorithms learn automatically, [Mitchell, 1997]. It builds a model based on
sample data and makes predictions or decisions without being explicitly programmed.
We will use some machine learning tasks, such as clustering, in this work. The section
will give some contextual concepts that will be used later.

All these topics are vast in literature, and here we present some reviews with
fundamental concepts that are most relevant in our work.

This chapter is organized as follows. First, in Section 2.1, we present basic con-
cepts, properties, and suitable techniques to deal with multi- and many-objective evo-
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lutionary optimization problems. Then, in Section 2.2, the mathematical programming
method is introduced with some mixed-integer programming concepts, as well as some
typical problems. Finally, in section 2.3, a machine learning view is presented, further
discussing the clustering task.

2.1 Multi- and many-objective optimization

Many real-world optimization problems are composed of multiple and conflicting ob-
jectives. Although traditional approaches can combine the objectives into a single one
and solve the resulting problem, several multi and many-objective optimization meth-
ods have proven to be efficient techniques dealing with the true multiobjective nature
of such problems [Chand and Wagner, 2015].

In general, a multi- or many-objective optimization problem (MOP, MaOP, re-
spectively) includes N decision variables, x, from a feasible decision space Ω ⊆ RN ,
and a set of M objective functions. Without loss of generality, the minimization of an
MOP can be simply defined as [Yuan et al., 2018]:

Minimize F (x) = [f1(x), . . . , fM(x)]T , x ∈ Ω. (2.1)

F : Ω → Θ ⊆ RM is a mapping from the feasible decision space Ω to vectors in the
M -dimensional objective space Θ. When M ≥ 4, the problem is commonly called a
many-objective problem.

The possible relations between two or more solutions are essential in a comparison
task. The dominance concept plays an indispensable role in this sense [Zitzler et al.,
2003]:

Definition 1. Dominance:
Consider two vectors, p, q ∈ Θ. p is said to dominate q if pm ≤ qm for 1 ≤ m ≤

M and necessarily pm < qm for at least one m. It is denoted as p ≺ q.

A vector p ∈ Θ is called Pareto-optimal , if there is no q ∈ Θ that dominates
p. Such solutions constitute a Pareto-optimal front in the objective space. We are
interested in evaluating these objective vectors.

The result of a MOP or MaOP is a solution set, and we want to compare each
one. Therefore, it is possible to state the following definition considering solution sets:

Definition 2. Dominance of sets:
a set P is said to dominate another set Q, if every member of Q is dominated

by at least one member of P . It is denoted as P ≺ Q.
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In addition to the dominance definition, there are other relations found in litera-
ture, such as better dominance, strict and weak dominance [Kaisa, 1999; Zitzler et al.,
2003; Branke et al., 2008].

EMO researchers have been rapidly increasing interest in the use of evolutionary
algorithms on MaOPs, focusing efforts in algorithm analysis and design, empirical
studies, visualization, performance indicators, real-world application, and others, [Li
et al., 2015b]. These enable many-objective optimization to become one of the most
active research topics in the EMO area.

2.1.1 Evolutionary multi- and many-objective optimization

There are different ways to deal with multi- and many-objective optimization problems,
e.g., ϵ-constraint method [HAIMES, 1971], method of global criterion [Yu, 1973] and
weighting method [Kaisa, 1999]. Evolutionary optimization is one of the methods
available and used to treat multi- and many-objective problems (EMO, and EMaO,
respectively). They have shown certain success in finding well-converged and well-
diversified non-dominated solutions [Deb, 2001].

Evolutionary or population-based optimization methods collect information from
the objective functions at more than one point in the solution space; each one is
called an individual. The individuals evolve towards the next generation through the
information collected, using evolutionary procedures that mimic evolution concepts in
nature, such as selection, mutation, and crossover.

Some successful algorithms using this inspired evolutionary approach include, for
example, the strength Pareto evolutionary algorithm: SPEA2 [Zitzler et al., 2001];
non-dominated sorting genetic algorithm: NSGA-II [Deb et al., 2002] and NSGA-III
[Jain and Deb, 2014; Deb and Jain, 2014]; the multi-objective evolutionary algorithm
based on decomposition: MOEA/D [Zhang and Li, 2007]; indicator-based evolutionary
algorithm: IBEA [Zitzler and Künzli, 2004]; and many others.

There are two main goals in the most evolutionary algorithms [Deb, 2001]: find
a set of non-dominated solutions that define a Pareto-optimal frontier, or an adequate
approximation of this frontier; and, simultaneously, find a set of non-dominated solu-
tions with diversity, which means a good approximation able to represent the entire
range covered by the Pareto-optimal boundary.
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2.1.2 Quality indicators

Comparing two or more solutions is a common task in EMO/EMaO area. Quality
performance indicators have been used in this sense, and hence considerable efforts
have been made to define different quality performance indicators [Li and Yao, 2019].
The indicators can compare the outcomes of multi- and many-objective algorithms or
even assist an algorithm during the search process for non-dominated candidates.

Additionally, it is paramount to make more precise statements when applying a
quality indicator comparison; for example, if one algorithm is better than another, how
much better is it? The following definition formalizes the quality indicators [Zitzler
et al., 2003]:

Definition 3. Quality indicator: An k-ary quality indicator I is a function I:Θk → R,
which assigns each vector of k objective vectors (P1, P2, . . . , Pk) a real value I(P1,
P2 ,. . . , Pk).

The quality indicators can be unary, binary, or k -ary, defining a value to one
solution set, two solution sets, or k solution sets, respectively.

It is expected that quality indicators can be easily interpretable also [Zitzler et al.,
2003], e.g., if P dominates some points of Q, and Q does not dominate any point of
P , it is reasonable to expect that the indicator value I(P ,Q) is less than I(Q,P ).

In [Li and Yao, 2019], 100 indicators are listed and some discussed in detail.
The performance quality indicator properties should have to be able to capture some
relevant approximation set aspects: convergence, spread, uniformity, and cardinality.

Dominance must be a central criterion in reflecting the convergence of solution
sets, which measures the closeness of a solution set to the Pareto-optimal frontier.

The spread of a solution set must consider the region that the set is covering.
It involves finding boundaries and the distribution of the points in the interior of the
Pareto set.

The number of solutions in the set is another property, known as cardinality. In
general, solutions sets with more candidates and generated with the same computa-
tional resources are preferred.

Finally, a good indicator must prefer a set with uniformly distributed points,
uniformity, showing an equidistant spacing (measured in Euclidean or Manhattan dis-
tance, for example) amongst solutions. Spread and uniformity are closely related, and
they collectively are known as the diversity of a set.

Some indicators present all quality aspects but brings some drawbacks [Li and
Yao, 2019]. It is plausible to add more perspectives about quality indicators, such as
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computational cost. Notably, some indicators are not viable (computationally speak-
ing) to be calculated in high dimensions or for high-cardinality sets. Other indicator
details also deserve to be mentioned, such as the necessity for a reference point or set,
additional parameters, how to deal with scale, and normalization.

There are many indicators available, and they have been used in numerous situ-
ations in literature [Li and Yao, 2019]. Hypervolume (HV) [Zitzler and Thiele, 1999;
Deng and Zhang, 2019; Yang et al., 2019; Bradford et al., 2018], inverted generational
distance plus (IGD+) [Ishibuchi et al., 2015b], and ϵ-indicator [Zitzler et al., 2003] are
some examples of commonly used quality indicators and they are going to be briefly
described below:

• Hypervolume (HV): Let r′ be a reference point in the objective space that is
dominated by all approximation sets. Let P be one approximation set. The
HV value of P with regard to r′ represents the volume of the region which is
dominated by P and dominates r′. It can be expressed as:

HV (P , r′) = λ

(⋃
p∈P

[p; r′]

)
, (2.2)

in which λ is the M -dimensional Lebesgue measure. An extensive analysis of
the computational complexity is presented in [Guerreiro et al., 2021]. Chan’s
algorithm presents the best time complexity, considering m ≥ 4: O(|P |M3 polylog
|P |).

• Inverted generational distance plus (IGD+) [Ishibuchi et al., 2015b]: Let R∗ be
a reference set on the Pareto front. Considering P as an approximation set
not previously defined, the inverted generational distance between R∗ and P is
defined as:

IGD + (R∗,P ) =
1

|R∗|

(∑
r∈R∗

d(r,P )

)1/2

, (2.3)

where for minimization d(r,P ) = max{pi− ri, 0} representing the distance from
pi to the closest solution in R∗ with the corresponding value ri. This indicator
is a measure that represents how far the approximation set is from the reference.
Lower values of IGD+ represent a better performance. The IGD+ metric is able
to measure both diversity and convergence of P if |R∗| is large enough [Cheng
et al., 2018]. The computational cost is O(M |R∗||P |) [Audet et al., 2018].

• ϵ-additive/multiplicative indicator : it is a extension to the evaluation of approxi-
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mation schemes in operational research and theory [Zitzler et al., 2003]. For two
solution sets P and Q, the additive ϵ-indicator measures the maximum of mini-
mum distance to move one solution set, such that it dominates another solution
set. Formally, the additive ϵ-indicator is calculated as:

Iϵ+(P ,Q) = max
q∈Q

min
p∈P

max
m∈{1,...,M}

(pm − qm) , (2.4)

in which pm denotes the objective value of solution p in the m-th objective. For
the multiplicative ϵ-indicator, the pm−qm is replaced by pm

qm
. A value of Iϵ+(P ,Q)

≤ 0 or Iϵ×(P ,Q) ≤ 1 implies that P weakly dominates Q. The computational
cost is O(M |P ||Q|).

Since one of the two main goals in evolutionary algorithms is to find a set of non-
dominated well-distributed solutions, it is relevant to mention some quality indicators
that focus on this goal. They assess a uniform distribution of points on the efficient
front:

• A naive uniformity estimation method is to measure the distance between a
solution and its nearest neighbor solution [Kukkonen and Deb, 2006]. However
as the number of objectives increase, the number of effective nearest neighbors
must be adapted. It is possible to use the Euclidean distance of a point from
its k-th nearest neighbor, in which k = ⌊

√
M − 1⌋, for example. The uniformity

measure for a set of ND points is then computed by mean and standard deviation
of k-th nearest neighbor’s distances of all members of the set. A large value of
mean and a small value of standard deviation are desired.

• Spacing (SP), proposed in Schott [1995], measures how uniform the ND solutions
are according to the Euclidean distance from their nearest neighbors. Considering
S as the obtained ND set, SP is computed as follows:

SP (S) =

√√√√ 1

|S| − 1

|S|∑
i=1

(
di − d̄

)2
, (2.5)

in which di is the Euclidean distance in objective space between the individual
Si and its nearest neighbor, and d̄ is the mean of all di. Smaller spacing values
indicate better distribution.

• Uniform Distribution (UD), proposed in Tan et al. [2001], is a niching-based
unary quality indicator. For a given solution set, the indicator is computed as
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follows:
UD(S) =

1

1 + Σnc

, (2.6)

in which Σnc =

√∑|S|
i=1 (nc(Si)−nc(S))2

|S|−1
is the standard deviation of niche count of

the overall solution set S, nc(S) is the mean value of niche counts, which is
computed for the i-th individual Si, as follows:

nc(Si) =

|S|∑
j=1,j ̸=i

Sh(Si,Sj), (2.7)

where, Sh(Si,Sj) =

{
1, if d(Si,Sj) < σshare,

0, otherwise.

The distance d(Si,Sj) is the normalized Euclidean distance between i-th and j-
th individuals in the objective space, and σshare is a user-specified parameter for
specifying a critical threshold. As it is the inverse of standard deviation, larger
values indicate a better uniformity.

• Evenness(ξ) [Messac, 2004] is an performance quality indicator to measure gaps,
if any, in the ND solution set. For each point Si, we define two hyperspheres
whose diameters are calculated in the following way. The first hypersphere puts
the point Si and its nearest neighbor in the objective space on the opposite ends
of the diameter, meaning the diameter dil is equal to the Euclidean distance of Si

from its nearest neighbor. The second hypersphere has a diameter diu that puts
Si and its farthest neighbor on opposite ends and with no other points inside the
hypersphere. Constructing D = {dil, diu : Si ∈ S}, ξ is defined as follows:

ξ(S) =
σD

D̂
, (2.8)

where σD and D̂ are, respectively, the standard deviation and mean of D. The
indicator can be viewed as a coefficient of variation, and the smaller the value,
the better is the uniformity.

Hypervolume has been widely applied in the evolutionary community as a unary
indicator choice, [Audet et al., 2018] and [Guerreiro et al., 2021]. It is still important to
note its drawbacks: the increasing exponential cost (due to the number of objectives)
and the need to designate an explicit reference point [Ishibuchi et al., 2018]. The
reference point affects the ordering of pairs of incomparable sets. Some community
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efforts have focused on discovering new indicators, which can overcome hypervolume’s
limitations while providing a good set of properties.

An ideal quality indicator must present the four facets (convergence, spread, uni-
formity cardinality). Besides, it must have a low computational cost in its calculation
and should not need a normalization. Scaling invariant is another characteristic in
which it only exploits the dominance relation among solutions sets, but not their ab-
solute objective function values [Zitzler et al., 2008]. Finally, an ideal quality indicator
should avoid any additional parameters or the necessity to specify a reference point or
set.

2.1.3 Some test problem sets

Test problem sets have been used as a performance benchmark for EMO/EMaO algo-
rithms. They are also called test functions, artificial problems with a precise mathemat-
ical formulation, varying features, and difficulties. A range of artificial test problems
exists, such as ZDT, DTLZ, WFG, and MaF, to name a few, [Huband et al., 2011].
Given the theme relevance, a paper proposes a parameterized generator of scalable and
customizable benchmark problems for MaOP, Meneghini et al. [2020], for example.

DTLZ family presents seven problems, and it is possible to configure the number
of decision variables and the number of objectives. The Walking Fish Group - WFG
brings nine instances, and it is also possible to configure the number of objectives and
decision variables. The solution vector contains k position parameters and l distance
parameters, so the number of decision variables n = k + l. In contrast to DTLZ, some
WFG test problems are non-separable.

The MaF is the benchmark problem set from the Competition on Many-Objective
Optimization at the 2017 and 2018 IEEE Congress on Evolutionary Computation.
Every problem has an instance for five, ten, and fifteen objectives.

As can be seen in Table 2.1, the DTLZ, MaF, and WFG test problem families,
for example, present different properties with good properties variation among them.
For example, these families can offer geometrical features, separability characteristics,
bias evidence, and multi-modality.

A natural extension of these test problem sets is formulated with constraints.
Constrained multi-objective optimization problems (CMOPs) are also available in lit-
erature. In Deb and Jain [2014] the DTLZ family problems are changed, adding a
constraint to the original problems. The idea is to provide an infeasible barrier in ap-
proaching the Pareto-optimal front, creating infeasible regions in the objective space.
Therefore, the problem sets DTLZ1 and DTLZ3 are modified, turning the C1-DTLZ1
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Table 2.1. DTLZ, MaF and WFG are problem set families commonly found in EMO and
EMaO. Each problem set is presented with its properties.

Family test problem Test problem Properties
DTLZ1 Linear and multimodal
DTLZ2 Concave
DTLZ3 Concave and multimodal

DTLZ DTLZ4 Biased and Concave
DTLZ5 Concave and degenerate
DTLZ6 Biased, concave, and degenerate
DTLZ7 Disconnected, mixed, and multimodal
MaF01 Inverted and linear
MaF02 Concave
MaF03 Convex and multimodal
MaF04 Concave, inverted, and multimodal
MaF05 Biased and Convex
MaF06 Concave and degenerate
MaF07 Disconnected, mixed, and multimodal

MaF MaF08 Degenerate and linear
MaF09 Degenerate and linear
MaF10 Biased and mixed
MaF11 Convex, disconnected, and nonseparable
MaF12 Biased, concave, deceptive, and nonseparable
MaF13 Concave, degenerate, nonseparable, and unimodal
MaF14 Linear, large scale, and partially separable
MaF15 Convex, inverted, large scale, and partially separable
WFG1 Biased, convex and mixed
WFG2 Convex, disconnected, and multimodal
WFG3 Degenerate and linear
WFG4 Concave and multimodal

WFG WFG5 Concave
WFG6 Concave
WFG7 Concave and biased
WFG8 Concave and biased
WFG9 Concave, multimodal, and biased

and C1-DTLZ3, respectively. Additionally to the difficulties arriving at the entire
Pareto-optimal front, another type of constraint is proposed: introduce infeasibility
to a part of the Pareto-optimal front, creating a disconnected Pareto-optimal front.
DTLZ2 is altered in this way, making the C2-DTLZ2 problem.

In Fan et al. [2020], a toolkit to make difficulty-adjustable and scalable CMOPs
(DAS-CMOPs) is discussed. They suggest nine difficulty-adjustable and scalable
CMOPs and nine CMaOPs, named DAS-CMOP1-9 and DAS-CMaOP1-9, respectively.

Real problems also bring additional difficulties and properties. For example,
some common real test problems are the crashworthiness, car side impact, the three-
bar truss optimization, the mineral processing production planning [Hua et al., 2021],
the wind turbine design problem [Fritsche and Pozo, 2020], and the hybrid electric
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vehicle controller design problem [Cheng et al., 2017].

Some theoretical problems added with some real problems represent a good test
set cohort available in some EMO/EMaO frameworks such as DEAP [Fortin et al.,
2012], pymoo [Blank and Deb, 2020a], PlatEMO [Tian et al., 2017] and others.

2.1.4 Challenges in evolutionary many-objective optimization

There are some challenges in many-objective optimization. This section brings some
of them, focusing on the difficulties of increasing the number of solutions and objec-
tives, visualizing solution sets in high dimensions, the ineffectiveness of Pareto-based
algorithms, and balancing convergence and diversity in evolutionary algorithms.

2.1.4.1 Number of solutions and objectives

Most of the EMO/EMaO algorithms use the concept of Pareto Dominance, comparing
and identifying the best solutions. However, considering the MaOP, the proportion
of non-dominated solutions increases according to the number of objectives [Li et al.,
2015a]. For example, the portion of any two individuals being comparable in an m-
dimensional objective space is η = 1/2m−1, thus in a two- or three-dimensional space,
η is equal to 0.5 or 0.25, respectively, meaning that fifty and twenty-five individuals are
comparable in a randomly-produced population with 100 individuals. However, when
m gets to five or seven, η is almost 0.0625 and 0.0019, with around six and less than
one comparable individuals, respectively (considering randomly-produced population
with 100 individuals). In this scenario, the selective pressure to find better solutions is
reduced, slowing down the overall evolutionary search process.

Many-objective optimization algorithms tend to increase the computational cost
(time or/and space requirement) with the increment in the number of objectives. For
example, some EMO algorithms, such as PAES and PESA-II, increase exponentially
with the number of objectives [Li, 2015]. The same fact also happens to some qual-
ity indicators, such as the exact hypervolume calculation and Integrated Preference
Functional - IPF calculation [Bozkurt et al., 2010].

A relationship that describes the behavior between the number of solutions and
objectives is found in Deb and Saxena [2005]. If there is an increase in the number
of objectives in the objective space, the number of solutions representing the Pareto-
optimal frontier also increases. Thus, if N points are needed for satisfactorily repre-
senting a one-dimensional Pareto-optimal front, NM points will be necessary to express
an M -dimensional Pareto-optimal front, for example.
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Some different approaches have been used to deal with the dimensionality in the
objective space. Objective reduction is one example, it can alleviate the scenario. In
Yuan et al. [2018], for example, the objective reduction is treated as a multiobjective
search problem, and three multiobjective formulations of the problem are discussed:
the first two formulations are both based on preservation of the dominance structure,
and the third utilizes the linear correlation between objectives.

In summary, these aspects pose general challenges in the design and use of EMaO
algorithms.

2.1.4.2 Visualization

Visualization is an essential part of optimization and decision-making process. An
efficient visualization technique can help understand the solution sets’ location and
shape. It also helps in assessing conflicts among the objectives, and it is able to
support the decision-maker in choosing solutions in real-world situations.

The scatter plot can show some Pareto characteristics in two or three objective
space. In Figure 2.1 is it possible to observe the location, shape, and Pareto’s diversity.

Figure 2.1. A scatter plot for DTLZ1 problem set with M = 3

However, as the number of objectives increases beyond three, it becomes difficult
to visualize the objective space. Some authors seek to circumvent this situation in
several ways. The parallel coordinates plot [Inselberg and Dimsdale, 1990] is used as
the y axis represents the dimensions of a point in space, and the x axis presents values
of each coordinate. One solution is represented by a line connecting the respective
values of each coordinate. As an example, in Figure 2.2 is possible to contrast two
different solutions in a objective space with M = 6.
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Figure 2.2. A parallel coordinates plot example, contrasting two solutions in an objective
space with M = 6. It is possible to compare the red solution with the blue one.

Another visual technique is used to represent the solutions through the radar
chart. It is similar to parallel coordinates, in which M objectives means M radial axes.
It is also called a spider chart, polar chart, or star plot. Typically, the inside of the
plot represents small values, while the outside represents high values. Figure 2.3 shows
an example of radar plots with three solutions from each approximation set, the red
and green ones.

Figure 2.3. An example of a radar plot showing six different solutions from two approxima-
tion sets with M = 5.

Heatmap and star coordinate plots are other standard techniques to deal with
many-objective problems. All these methods try to outline the whole solution set,
showing the set’s range, location, and shape.

Extracting information like convergence or shape in many-objective problems is
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not easy, even using these existing techniques. Some efforts have been employed in this
issue; a recent paper, for example, proposes a method (PaletteViz) to visualize several
different structures of Pareto-optimal data sets [Talukder and Deb, 2020]. However,
visualization in a many-objective scenario is still a significant challenge.

2.1.4.3 Ineffectiveness of Pareto-based algorithms

The solutions found by EMO/EMaO algorithms can be seen from two perspectives:
dominated by other solutions or non-dominated and possibly belonging to the Pareto-
optimal set. As the number of objectives increases, almost all solutions in the popu-
lation become non-dominant, which weakens the Pareto-based algorithms. It directly
impacts the algorithm selection pressure.

When the Pareto dominance criterion fails to distinguish between individuals,
one possible alternative is to use the density-based selection criterion. It will play a
relevant role in determining the survival of individuals. Some papers, as Wagner et al.
[2006]; Ishibuchi et al. [2008] show that the diversity improvement has an impact on
the algorithm’s proximity due to its preference for dominance resistant solutions, DRS,
meaning as solutions with an extremely poor value in at least one of the objectives,
but with near-optimal values in some others.

If dominance resistant solutions are distributed in a larger area in the search
space than the actual Pareto-optimal set, Pareto-dominance-based algorithms, during
the solution search process, may fail to obtain a good approximation of this set. In this
way, all non-dominated solutions are treated as survivors, and the DRS spreads across
the search space and lasts for several generations. Some studies have shown that a
random search algorithm may even achieve better results than Pareto-based algorithms
in problems with around ten objectives [Purshouse and Fleming, 2007; Knowles and
Corne, 2006].

This ineffectiveness is still present in some quality indicators. Since the portion
of the space that a solution dominates decreases with the number of objectives, most
solutions in different approximation sets are likely to be incomparable under the Pareto
dominance criteria. Indicators based on comparing solutions’ Pareto dominance rela-
tion, such as coverage and G-metric [Li, 2015] also present this characteristic. For
example, coverage captures the proportion of points in an approximation set A dom-
inated by the approximation set B. As we increase the number of objectives, the
number of incomparable solutions also increases, turning challenging to use this kind
of indicator.
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2.1.4.4 Balancing convergence and diversity

Maintaining the balance between convergence and uniformity solutions in EMO/EMaO
algorithms is a complex task [Tian et al., 2021a]. Many algorithms focus on these as-
pects, aiming to improve the diversity and uniformity of the solution set concomitantly
with search efficiency and convergence.

In the diversity preservation perspective, the solution proposals can be roughly
categorized into three groups: I) approaches that try to preserve diverse sub-
populations converging toward different optimal solutions for local exploitations, such
as in NSGA-II [Deb et al., 2002]; II) Greedy strategy, such as SPEA2 [Zitzler et al.,
2001] which, for example, calculates the Euclidean distance between all solutions in
a pairwise manner, and then iteratively excludes the solution that brings the mini-
mum value to the other solutions. III) The last category is based on a concept that
decomposes the objective space into some sub-regions using weight vectors where a
representative solution is maintained inside each sub-region, such as NSGA-III [Jain
and Deb, 2014] and MOEA/D [Zhang and Li, 2007].

It is well known that the usage of reference vectors (RVs) in EMO/EMaO helps
to guide the evolutionary process towards convergence and uniformity. According to
Messac [2004], an uniformly distributed solution is defined as: “A set of points is evenly
distributed over a region if no part of that region is over or underrepresented in that
set of points, compared to other parts”. Keeping that in mind, as a way to guide
the search process, reference vectors can be used as uniform neighborhood axes to
convert the original problem into sub-problems with corresponding sub-spaces. In the
literature, there are some approaches, such as MOEA/D [Zhang and Li, 2007] and
NSGA-III [Jain and Deb, 2014], that explore that idea.

The two-archive evolutionary algorithm for constrained multi-objective optimiza-
tion, C-TAEA, proposed in Li et al. [2019b], tries to balance convergence and unifor-
mity in a two-archive procedure that simultaneously maintains two populations: the
convergence archive (CA) and the diversity archive (DA). The former supports the
convergence and feasibility in the evolutionary process while the latter explores areas
that the convergence archive has not exploited yet. In this algorithm, the reference
vectors are also used in the update mechanism of the CA and DA.

There are generally difficulties in solving MOP/MaOP even when the reference
vector approach is employed. The quality of the final solution set depends on choice of
reference vectors, and this choice is somehow inherently arduous. Although there are
some EMO/EMaO that are primarily focused on these problems, most of them have
been demonstrated to have poor versatility [Tian et al., 2021a].
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A successfully approach is the multi-stage or multi-phase evolutionary algorithms
([Ge et al., 2019; Qi et al., 2014; Tian et al., 2021b; Seada et al., 2019; Tian et al.,
2021a] and [Liang et al., 2021]). In general, this approach divides the optimization
process into a certain number of stages and applies different selection strategies in
these stages. In this way, the diversity performance of the multi-stage evolutionary
algorithm is improved.

The MOEA/D-AWA [Qi et al., 2014] uses a two-stage strategy to deal with the
generation of the weight vectors. In the first stage, a set of pre-determined weight vec-
tors are used until the population is considered converged. Then, in the second stage,
some weight vectors are adjusted according to the current Pareto optimal solutions
based on geometric analysis.

In Seada et al. [2019], B-NSGA-III is presented as a multi-phased many-objective
evolutionary optimization algorithm capable of automatically balancing convergence
and diversity of population members. The algorithm uses three phases dynamically.
In phase 1, it looks for extreme points. In phase 2, it tries to cover gaps found in
the non-dominated front. And finally, in phase 3, it concentrates the efforts toward
helping poorly converged non-dominated solutions. The algorithm can interchange
from one phase to another if some triggers/conditions are observed. Results show
superior performance when compared to several state-of-the-art algorithms in a set of
benchmark problems.

In Tian et al. [2021b], a multi-stage constrained multi-objective evolutionary al-
gorithm, CMOEA-MS, is proposed. Exclusively focusing on constrained problems, the
algorithm balances objective optimization and constraint satisfaction giving different
priorities in each phase. The first phase indicates that most solutions are infeasible,
and these solutions can support the population to leave the infeasible regions. The
second phase points that most solutions are feasible so that more feasible solutions
can be found to help the population spread along the feasible boundaries. The general
strategy uses different priorities of objectives and constraints in the two stages. The
objective optimization and constraint satisfaction are well balanced, tackling different
feasible regions. The work presents some experiments based on constrained problem
sets.

A many-objective evolutionary algorithm combining two interacting processes,
Cascade Clustering (CC) and Reference Point Incremental Learning, dubbed as CLIA,
is proposed in Ge et al. [2019]. The cascade clustering (CC) uses the non-dominated
and dominated solutions to create clusters, sort, and select solutions for a better con-
vergence and diversity. CC uses reference lines to create and sort the solutions. In
the second process, a support vector machine (SVM) model is applied in an incremen-
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tal learning approach, classifying the reference points as active/inactive and creating
denser reference lines (generated on the unit simplex) and is used in the optimization
process. The incremental SVM model adjusts the RVs during the evolution process.
Although CLIA hybridizes an evolutionary approach with SVM, due to an adaptive
adjustment of RVs to provide a better distribution of ND solutions.

RVRL-EA [Ma et al., 2021] is a recent framework that uses reinforcement learning
to adapt reference vectors. However, it only applies to decomposition-based algorithms.
The authors have used Q-learning algorithm, and they suggest that other reinforce-
ment learning models should be assessed jointly with a better method to generate
uniform reference vectors. Experiments are presented, showing that the algorithm is
competitive compared to CLIA [Ge et al., 2019].

MSEA [Tian et al., 2021a], a multi-stage EMaO algorithm, is designed for im-
proving the diversity performance of EMaO. In each generation, firstly, an assessment
population is based on convergence, which determines stage 1 with a specific selection
algorithm. Then, in stage 2, the diversity is assessed again; a particular selection al-
gorithm generates offspring to replace one solution in the population. Finally, in stage
3, there is a mating selection for a parent with good convergence and diversity. The
authors present results for multi-objective problems, and the method presents a cubic
computational complexity related to the number of solutions. In summary, a specific
selection strategy is adopted in each stage’s mating and environmental selection; how-
ever, the reported algorithm is not tested, and it is not suitable for many-objective
problem sets.

All the algorithms mentioned above address the question of balancing convergence
and diversity in a multi-stage or multi-phase approach

2.2 Mathematical programming

Mathematical programming can be seen as a process of assessing a set of available
alternatives and select the best elements using some criteria. The mathematical pro-
gramming problem consists of maximizing or minimizing a function, choosing input
values from the alternatives, and computing the function’s value. The approach has
been used to solve problems as production planning, scheduling, localization, routing,
and many others [Sierksma and Zwols, 2018].
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2.2.1 Mixed-integer linear programming

Linear programming is one of the most used optimization methods in mathematical
programming. It is a technique for optimizing a linear objective function, subject to
linear equality and linear inequality constraints [Sierksma and Zwols, 2018]. A common
formulation of the linear programming model is presented in Equation (2.9):

minimize
n∑

j=1

cjxj

subject to:



n∑
j=1

aijxj ≤ bi ∀i ∈ {1, 2, ..,m},

xj ≥ 0, ∀j ∈ {1, 2, .., n}.

(2.9)

The number of decision variable is defined by n. The xj represents the j-th
decision variable. The number of constraints is indicated by m. A coefficient value is
aij related to i-th constraint and associated to j-th decision variable. Finally, bi and cj

are model parameters, meaning an independent term associated to the i-th constraint,
and the cost associated with the j-th decision variable, respectively.

Another standard method in the field is mixed-integer linear programming (MIP).
It differs from linear programming in which some of the variables are constrained to
be integers, while other variables are allowed to be non-integers.

A common mixed-integer linear model is:

minimize
n1∑
j=1

c1jxj +

n2∑
j=1

c2jyj

subject to:



n1∑
j=1

a1ijxj +

n2∑
j=1

a2ijyj ≤ bi ∀i ∈ {1, 2, ..,m},

xj ≥ 0, ∀j ∈ {1, 2, .., n1},

yj ∈ Z+ ∀j ∈ {1, 2, .., n2}.

(2.10)

In Equation (2.10) there are two types of variables x and y. The x are continuous
and non-negative variables, and y are non-negative, and integer variables, with n1 and
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n2 number of variables, respectively. c1 and c2 are the objective function coefficients
related to x and y. At the same way, the a1

j ∈ Rn1 and a2
j ∈ Rn2 are the left-hand side

constraint coefficients associated with the i-th constraint. Lastly, for the constraint
set, bi is a constant vector representing the right-hand side constants and associated
with the i-th constraint, [Klotz and Newman, 2013].

There are still other common models used in mathematical programming, such
as binary linear programming, non-linear programming, stochastic optimization, and
others [Lepenioti et al., 2020].

2.2.2 The assignment problem

Historically, there are various classical problems in mathematical programming. The
assignment problem is discussed in many mathematical programming and management
sciences works. Generally, it addresses the problem of dealing with the question of how
to assign n tasks to n agents. The objective function is related to minimizing the
total cost of the assignments. However, some examples still involve other situations,
such as assigning jobs to machines, tasks to workers, products to machines, students
to teachers, clients to sellers, and many others.

In Figure 2.4 we can see a bipartite graph with two sets P and Q. Here, our
objective is to assign exactly one member of P to each one member of Q with the
minimum cost, represented by the edges. Figure 2.4 presents a valid assignment from
P to Q.

p1

p2

p3

p4

q1

q2

q3

q4

Figure 2.4. One possible example of assignment between P and Q . The edges indicating
the assignment can be computed using the minimum distance from p to q, for example.

The mathematical model for the classic assignment problem may be given as
[Pentico, 2007]:
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minimize
n∑

i=1

n∑
j=1

cijxij

subject to:



n∑
i=1

xij = 1 ∀j ∈ {1, 2, .., n},

n∑
j=1

xij = 1 ∀i ∈ {1, 2, .., n},

xij = 0 or 1,

(2.11)

where xij = 1 indicates if the client/machine i is assigned to the agent/task j, and 0
otherwise. The cij represents the cost involved in the seller j assigned to the client
i. The first constraint ensures that every agent is assigned to only one client and the
second constraint ensures that every client is assigned to a agent. It is worth mention
that xij is a binary variable.

The classical linear assignment problem has many variations, such as the lexi-
cographic bottleneck assignment problem, algebraic assignment problem, and sum-k
assignment problem.

There are still other more complex assignment problems: the quadratic, cubic,
and quartic assignment problem, the quadratic semi-assignment, and the multi-index
assignment problem [Burkard et al., 2012].

2.2.3 The packing problem and the Riesz s-energy concept

The packing problems possess a standard structure, essentially, there are two groups
of data whose elements define geometric bodies in one or more dimensions; the stock
of the so-called large objects and the list of the so-called small items. The packing
processes realize patterns being geometric combinations of small items assigned to
large objects. The residual pieces, which mean figures are occurring in patterns not
belonging to small items, are usually treated as a slight loss. The objective function of
most solution models in packing problems is to minimize the wasted material [Faina,
2020].

A general combinatorial optimization problem is formalized as a pair (C,F),
where C is the finite or possibly countably infinite set of configurations and F : C → R

as a cost functional. The functional F is defined in such a way that the lower the value
of F , the better corresponding configuration. The problem is then reduced to find
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a configuration for which F takes its minimum value, satisfying, F(ω0) = min
ω∈C
F(ω).

The packing problems are known to be NP -hard combinatorial optimization problem
[Faina, 2020].

In practical situations, packing problems arise in kinds of goods packaged in
cartons for handling, in manufacturing and distribution industries, for example. But,
there are other situations as well.

The Riesz s-energy is related to a solution to the best-packing problem. It arises
from the problem of distributing N points on the unit sphere Sm in Rm+1, influencing
potential theory and the distribution of charges. A relevant application of the Riesz
s-energy is the discretization of manifolds (e.g., Pareto fronts).

The proposed discrete Riesz s-energy measure the evenness of a set of points
in m-dimensional manifolds, [Falcón-Cardona et al., 2020]. Mathematically, given an
solution set P = {p1 , .., pN}, where pi∈ Rm, the Riesz s-energy is given as follows:

Es(P ) =
∑
p∈P

∑
q∈P
p̸=q

ks(p, q)

ks(p, q) =


∥ p− q ∥−s, s > 0,

− log ∥ p− q ∥, s = 0.

(2.12)

The function ks is the Riesz s-kernel, and s is a parameter that controls the
emphasis on the uniform distribution. As s increases, a more uniform distribution is
obtained. In fact, the minimization of Es is related to the solution of the best-packing
problem.

Riesz s-Energy (Es) has been employed to successfully distribute points uniformly
on a sphere or other multi-dimensional surfaces. Recently, the approach has been
used to improve the diversity of EMO and EMaO [Falcón-Cardona et al., 2020], as
a performance metric for multi-objective optimization and as a reduction method for
choosing a set of reference points from a large set [Blank et al., 2021]. Still, in [Blank
et al., 2021] an iterative process based on Riesz s-Energy can effectively find an arbitrary
number of well-spaced points in higher-dimensional spaces.



2.3. Machine learning tasks 31

2.3 Machine learning tasks

Machine learning is about designing algorithms that automatically extract valuable
information from data. Three concepts are at the core of machine learning: data,
a model, and the learning process [Deisenroth et al., 2020]. Data is at the heart of
machine learning, and its goal is to get general-purpose procedures to obtain relevant
patterns from data without domain-specific expertise. Models are typically related to
simulating the process that makes the data. Finally, the learning process is the act
of automatically finding patterns and structures in data by optimizing the model’s
parameters.

During the learning process, it is needed to measure the algorithm performance.
We want to know how the learning is going, quantify it, and measure it. For example,
some measures are used, such as accuracy or inversely error rate. To best measure
performance, we are typically interested in assessing data that has not previously been
seen by our learning algorithm. At this point emerges the concept of having training
and testing datasets, in which the test portion is used as the unforeseen data.

One possible classification of machine learning algorithms is related to the kind of
experience they are allowed to have during the learning process. It can be supervised
(there is labeled data) or unsupervised (there is no labeled data) [Mitchell, 1997].

In another way, machine learning algorithms can be broadly categorized into a
few groups based on the tasks they are designed to solve [Zaki and Meira, 2020]:

• The frequent pattern task extracts informative and valuable patterns in massive
and complex datasets. Patterns comprise co-occurring attribute values, such
as sequences, which consider explicit precedence relationships between entities.
The goal is to discover hidden relationships in data to understand the interactions
among the data points and attributes;

• Clustering is one task that seeks to separate data points into natural groups called
clusters, such points within a group are very similar, while points between differ-
ent groups are as dissimilar as possible. There are different clustering paradigms:
representative-based, hierarchical, density-based, graph-based, and spectral Clus-
tering. Clustering is an unsupervised learning approach since it does not require
a separate training dataset to learn the model parameters;

• The classification is a task to predict the class for a given unlabeled point/case.
Formally, a classifier is a function Mc that predicts the class label ŷ for a given
input case x, that is, ŷ = Mc(x), where ŷ ∈ {c1, c2, ..., ck} and each ci is a class
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label. Classification is a supervised learning approach since learning the model
requires a set of points with correct class labels, training set. After learning
model Mc, we can automatically predict the class for any new point/case;

• Regression is a task to predict the value of a (real-valued) dependent variable
Y given a set of d independent variables X1, X2 ,.., Xd. The goal is to learn
a function Mr such that ŷ = Mr(x), where ŷ is the predicted response value
given the input point x. Differently to classification, in regression the response
variable is real-valued, but in the same way as classification, regression is also a
supervised learning approach.

2.3.1 Clustering

Clustering is the task of partitioning data points into similar groups called clusters
in a way that different groups are as dissimilar as possible. It is an unsupervised
learning approach, and it does not require a separate training dataset to learn model
parameters.

There are different types of clustering paradigms. Representative-based clustering
is a type that finds mutually exclusive clusters of spherical shape. It uses distance-
based methods to calculate points similarity, and as a cluster center, it uses mean or
medoid, for example, to represent the cluster center. It is commonly used for small to
medium-sized data sets.

Hierarchical clustering is a hierarchical decomposition method that starts from
each point in its cluster and successively merges pairs of clusters until the desired
number of clusters has been found.

Density-based types can find arbitrarily shaped clusters. Clusters are dense re-
gions of objects in space that are separated by low-density areas.

Grid-based methods use a multi-resolution grid data structure. As a result, these
methods present a fast processing time, typically independent of the number of data
objects.

Finally, the graph clustering type uses an approach over graph data; given a
graph, the goal is to cluster the nodes by using the edges and their weights, representing
the similarity between the nodes. Graph clustering is related to divisive hierarchical
clustering, as many methods partition the set of nodes to obtain the final clusters using
the pairwise similarity matrix between nodes.

Some clustering algorithms are relevant in our work’s context.
K-Means is a representative-based algorithm that minimizes the squared distance

of points from their respective cluster means (centroids) [Pham et al., 2005]. It performs
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clustering interactively, assigning each point to only one cluster and minimizing the sum
of squared errors. One of the parameters of K-Means is the number of clusters. Another
K-Means feature is its stochastic component in the initialization step (it does not have
numerical stability). However, considering the performance, the time complexity is
O(C L M i), in which C is the cluster number, L is the number of data points, M the
space dimension, and i is the number of iterations.

Mean shift is another clustering algorithm [Comaniciu and Meer, 2002; Yizong
Cheng, 1995]. The method assumes that exists some probability density function from
which the data is obtained, and it uses the maxima of the density function as clusters of
centroids. It does not require prior knowledge of the number of clusters. The number of
clusters is obtained automatically by finding the densest regions’ centers in the space,
the modes. It is an iterative technique, and it estimates the modes of the multivariate
distribution underlying the feature space. However, as it approximates the centroids
via kernel density estimation techniques, the key parameter is the kernel bandwidth.
Concerning the numerical stability, we have a random initialization, as well. But, the
performance may vary: if it uses a flat kernel and a ball tree to look for members of
each kernel, the complexity is O(L s log(s)) in lower dimensions, and O(L s2) in higher
dimensions, with s the number of samples.

Affinity propagation clustering is an algorithm that treats all points as potential
cluster centers. The process starts with the similarity matrix (S), which is constructed
in a pairwise manner using a similarity function, such as the negative Euclidean distance
(values near zero indicate similarity otherwise, the degree of dissimilarity between the
points) [Wang et al., 2019]. Then, given S, the method tries to find ‘exemplars’ that
maximize the net similarity. The algorithm is a graphing approach and can be viewed as
a message-passing process through edges with messages exchanged among data points.
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Chapter 3

MIP-DoM - Dominance Move

3.1 Introduction

In Li and Yao [2017], a new quality measure, called dominance move (DoM) is pro-
posed. Dominance move (DoM) is a binary quality indicator that can be used in
multi-objective and many-objective optimization to compare two solution sets. The
DoM indicator can differentiate the sets for certain important features, such as con-
vergence, spread, uniformity, and cardinality.

DoM measures the minimum ‘effort’ that one solution set has to make to dominate
another set, precisely the sum of the movement needed to make a set dominant. It
has the same interpretation of ϵ-indicators, and it can capture some quality aspects of
solution sets, such as Pareto convergence and spread. The authors propose an exact
algorithm to calculate DoM for the bi-objective case that can be computed at a low
computational cost. However, it can not be used or extended to three or more objectives
due to the combinatorial calculation nature.

Another attempt to solve the DoM calculation is presented in d. V. Lopes et al.
[2020]. DoM is considered an assignment problem. Some experiments in three objec-
tive scenarios are presented. However, the assignment-based approach still has some
drawbacks preventing its use in solution sets with more than 20 solution candidates.
The assignments necessary to calculate the formulation turn it prohibitive when the
number of solutions in the non-dominated set increases.

This chapter focuses on the dominance move by applying a mixed-integer linear
programming model (MIP) to deal with its calculation. More specifically, it presents
the following items: (i) the proposed MIP model for DoM calculation is tested for some
objective space dimension and cardinality of the supplied solution sets, (ii) extensive
evaluation of the proposed MIP-DoM formulation and approach in a number of common

37
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problem sets having 3, 5, 10, 15, 20, 25 and 30 objective functions, (iii) comparison with
optimal DoM solutions in cases where it is possible to achieve the optimal solution,
and (iv) raise of questions and details about the model behavior for some test sets,
including future research paths to tackle other problems.

This chapter is organized as follows. Section 3.2 introduces DoM definition and its
use as an indicator. The mixed-integer linear programming model to approach the DoM
calculation is presented in Section 3.3. The MIP-DoM model is introduced with some
comments and considerations. Experiments are discussed in Section 3.4. It starts with
a bi-objective case presenting the results’ correctness and model validity. Following,
some common multi-objective problem sets and algorithms are used to compare MIP-
DoM with the ϵ-indicator, IGD+, and Hypervolume indicators. The Section 3.4,
some many-objective experiments are discussed using problem sets with 5, 10, and 15
objectives with till 240 members in the solution sets. In Section 3.5, further extensions
are discussed to handle particular idiosyncrasies with some solution sets and improve
the quality indicator and its use for other situations. Finally, in Section 3.6, some final
considerations are presented.

3.2 DoM as quality indicator

Dominance move (DoM) is an intuitive indicator that is commensurate with all four
desirable properties (i.e., convergence, spread, uniformity, and cardinality) [Li and Yao,
2017]. The first idea presenting DoM came from the performance comparison indicator
(PCI) [Li et al., 2015b]. Examining the PCI proposal is quite similar to DoM in its
essential purpose. PCI is a binary quality indicator, and it builds up a reference set
using two solution sets, P and Q. This reference set is then split up into clusters, using
its clustering algorithm, and the indicator estimates the minimum moves of solutions
in the approximation sets to dominate these clusters.

Dominance move is a measure for comparing two sets of multi-dimensional points,
being classified as a binary indicator. It considers the minimum overall movement of
members in one set needed to dominate each and every member of the other set.

The DoM definition is stated as [Li and Yao, 2017]:

Definition 4. Dominance Move (DoM): Consider that P and Q are two sets of points,
with points pi, i ∈ {1, . . . , |P |} and points qj, j ∈ {1, . . . , |Q|}. The dominance move
of P to Q, DoM(P ,Q), is the minimum total distance of moving points of P , such that
any point in Q is weakly dominated by at least one point in P . In fact, the problem aims



3.2. DoM as quality indicator 39

to obtain the moved set P ′ = {p′
1,p

′
2, . . . ,p

′
|P |} from P = {p1,p2, . . . ,p|P |} dominates

such that 1) P ′ dominates Q and 2) the total move from P to P ′ is minimum.

It is necessary to highlight that our definition is similar in concept to this one. Our
definition ensures that every element of Q gets dominated by at least one element of
P . Since DoM corresponds to the minimum move distance, one of the moved elements
of P ′ can be vanishingly better (ϵ → 0) in one or more objectives compared to a
dominating element of Q, thereby providing a vanishingly close DoM value compared
to the original DoM.

Note that a solution can not dominate itself, that is, if q = p, p does not dominate
q, and vice versa. But if pj = qj − ϵj for a specific j and ϵj → 0, and for all other
objectives (i = 1, 2, . . . ,M and i ̸= j) pi = qi, then p ≺ q.

Our DoM definition is stated as:

Definition 5. Dominance Move (DoM): Consider that P and Q are two sets of
points, with points pi, i ∈ {1, . . . , |P |} and points qj, j ∈ {1, . . . , |Q|}. The dominance
move of P to Q, DoM(P ,Q), is the minimum total distance of moving points of P ,
such that the moved set P ′ = {p′

1,p
′
2, . . . ,p

′
|P |} (with some or all p′

i are allowed to be
infeasible) from P = {p1,p2, . . . ,p|P |} dominates Q and that the total move from P

to P ′ must be minimum.

The original DoM definition in [Li and Yao, 2017] uses the weakly dominance
term. There is an issue related to it. The classical Multiple Criteria Decision-Making
MCDM literature [Kaisa, 1999; Branke et al., 2008] defines the term weakly efficient (or
weakly Pareto-optimal) solution as follows: A feasible solution p is weakly efficient, if
there does not exist any feasible solution q in the search space such that qm < pm for all
1 ≤ m ≤M . It means that for a solution q to be weakly efficient, there can be another
point p having a few objectives identical to q, but there cannot be any point which is
strictly better than q in all objectives. There is no definition of a weakly dominance
term in the MCDM literature, as it is sometimes used in the EMO literature in the
following way: Consider two solutions, p, q. We can state that p weakly dominate q if
pm ≤ qm for all for 1 ≤ m ≤ M and pm < qm for at least one m. It is denoted as p ⪯
q. The set P weakly dominates Q, i.e. it is denoted as P ⪯ Q, if every solution q ∈
Q is weakly dominated by at least one solution p ∈ P . This definition is founded in:
[Li et al., 2015b; Zitzler et al., 2003; Li, 2015; Ishibuchi et al., 2015b], for example.

Considering the similarity terms issue, we decide to use the dominance definition
discussed in Chapter 2. Our dominance move definition is adequate with the standard
Pareto dominance concept and achieves the desired concept proposed:
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1. Every element of Q gets dominated by at least one element of P .

2. Since DoM corresponds to the minimum move distance, one of the moved ele-
ments of P ′ can be vanishingly better (ϵ→ 0) in one or more objectives compared
to a dominating element of Q, thereby providing a vanishingly close DoM value
compared to the original DoM.

The formal expression of DoM can be stated as:

DoM(P ,Q) = min
P ′≺Q

|P |∑
i=1

d(pi,p
′
i), (3.1)

in which d(pi,p
′
i) is not negative and can be the Manhattan distance between pi to p′

i

[Li and Yao, 2017].
DoM reflects how far one solution set P needs to move to dominate another

solution set Q. Thus, DoM(P ,Q) is always larger than or equal to zero. A small
value suggests that P and Q are close (e.g., one point of P that only needs a little
movement to dominate Q), and a large value indicates that P performs worst than Q

(e.g., some points of P must be moved further away in an attempt to dominate Q).
The ϵ-indicators also measure the minimum value added to one solution set to

make it dominated by another set. However ϵ-indicators does not try to use all in-
formation available. One simple case, proposed in [Li and Yao, 2017], can be easily
examplify the situation: consider two 10-objective solutions, such as p1 = {0, 0, 0, .., 1}
and q1 = {1, 1, 1, .., 0}. In this case, ϵ-additive(p1, q1) = ϵ-additive(q1, p1) = 1.

The dominance move indicator is based on the properties of dominance relation
among solutions trying to dominate each other, considering all available information
(all solutions and objectives). These solutions’ efforts scale in a bottom-up manner
from the solutions to the set relations. In this sense, the authors claimed that DoM
possesses some properties that are enumerated in the following proposition [Li and Yao,
2019]:

Proposition 1. Consider the solution sets P , Q, A, B, C ⊂ Θ and the points p,
q ∈ Θ:

a) P = Q ⇐⇒ DoM(P ,Q) = DoM(Q,P ) = 0;

b) P ◁ Q (P is better than Q) ⇐⇒ DoM(P ,Q) = 0 ∧DoM(Q,P ) > 0;

c) DoM(P ,Q) ≥ DoM(P ∪ p,Q) and DoM(P ,Q) ≤ DoM(P,Q ∪ q);
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d) Let p ∈ P and q ∈ Q. If ∃p′ ∈ P ,p′ ≺ p then DoM(P ,Q) = DoM(P /p,Q).
Also, if ∃q′ ∈ Q, q′ ≺ q or ∃p′ ∈ P ,p′ ≺ q then DoM(P ,Q) = DoM(P ,Q/q)

e) If A ⪯ B, then DoM(A,C) ≤ DoM(B,C) and DoM(C,B) ≤ DoM(C,A);

f) DoM(A,B)+DoM(B,C) ≥ DoM(A,B ∪C) and DoM(A,B)+DoM(A,C) ≥
DoM(A,B ∪C).

Proof. Propositions (a)–(d) follow directly from the dominance move definition.
(e) By the definition of DoM(B,C), for any c ∈ C, there exists one b ∈ B moving
to b′ to dominate c in DoM(B,C). Since A ⪯ B, for b there exists one a ∈ A)

which dominates b. This means that the value of any objective of a is either equal
to or smaller than that of b. Therefore, the move distance from a to b′ is equal to
or smaller than that from b to b′. Given this and b′ ⪯ c , we can construct a move
for A to dominate A whose total distance is equal to or smaller than DoM(B,C).
In addition, by the definition of the dominance move, this distance is greater than or
equal to DoM(A,C). Thus DoM(A,C) ≤ DoM(B,C).
The second inequality is proven analogously.
(f) Let AB be the new position to which A moves in DoM(A,B). Then AB ⪯ B. By
the proposition (e), DoM(AB,C) ≤ DoM(B,C) follows. Let ABC be the position
to which AB moves in DoM(AB,C). Now, we can obtain a path from A to AB

and then from AB to ABC (for A to dominate B ∪ C), whose move distance is
equal to or smaller than DoM(A,B) + DoM(B,C). Likewise, by the dominance
move definition, this distance is greater than or equal to DoM(A,B ∪ C). Thus
DoM(A,B) +DoM(B,C) ≥ DoM(A,B ∪C).

Proposition (b) implies a fundamental binary quality indicator in comparing
two solution sets: whenever one solution set P is better than another set Q, then
DoM(P ,Q) < DoM(Q,P ). Proposition (e) brings the relation of two solution sets
when they are individually compared with a third set.

The number of possibilities to find P
′ is numerous. Any combination of some

P
′ can dominate Q, considering (3.1). Let P∗(Q) be a set composed of all possible

subsets from Q, excluding the empty set. For determining each element of P ′, p′
i, it

is necessary to associate the corresponding element of P to elements of P∗(Q). The
number of all possible associations, η, is the product of |P | and |P∗(Q)| and is given
by
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η = |P |
|Q|∑
g=1

(
|Q|
g

)
︸ ︷︷ ︸

|P∗(Q)|

,

= |P |
((|Q|

1

)
+
(|Q|

2

)
+ . . .+

(|Q|
|Q|

))
,

= |P |(2|Q| − 1).

(3.2)

Let Qs be an element of P∗(Q) for s = {1, . . . , |P∗(Q)|}, in which P∗(Q) represents the
power set excluding the empty set (P∗(Q) ∪ ∅ = P(Q)). Observe that pi will be used
as a reference point to generate p′

i. In this way, p′
i may dominate Qs

Regardless of this challenge, the original DoM paper also proposes an exact cal-
culation method for the bi-objective case, which is meticulously detailed in Li and Yao
[2019]. For the sake of completeness and clarification, an overview of the algorithm is
described next. The algorithm employs the concept of inward neighbor :

Definition 6. Inward neighbor: Consider P a solution set, a ∈ P , b ∈ P , and
b ̸= a. nR(·) is a function which determines b as the inward neighbor of a, de-
noted as b = nR(a), if b has the smallest dominance move distance to a, that is
b = argminp∈P \a d(p,a).

Using the inward neighbor concept, the DoM algorithm, as presented in Li and
Yao [2019], can be outlined as:

Step 1: Remove the dominated points in both P and Q, separately. Remove the
points of Q that are dominated by at least one point in P .

Step 2: Denoting R = P ∪Q, each point of Q in R is considered as a subset. For
each point of Q, find its inward neighbor r = nR(qj) in R. If the point r ∈ P ,
then merge r into the subset of qj , otherwise r does not belong to the subset, or
it is already owned by a subset. At the first case, qj and r are merged into the
subset. At the second case, there is nothing to do.

Step 3: If there exists no point qj ∈ Q such that qj = nR(nR(qj)) (i.e., there is
a loop between the points) in any subset, then the procedure ends and there is
an optimal solution to the case.

Step 4: Otherwise, there is a loop in one or more subsets, then replace these
solutions by their ideal solution (formed of the best of each objective in each
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solution inside the loop or subset). This leads to a new Q denoted as Q′, then
find the inward neighbor of such ideal point P ∪Q′ and group then. Return to
step 3 until finish.

The definitions, theorems, and corollaries to prove that this algorithm is correct
in the bi-objective case are presented in Li and Yao [2019]. Furthermore, DoM is Pareto
dominant compliant, and any prior problem knowledge and pre-defined parameter are
not necessary. However, due to the combinatorial nature of the problem, the authors
stated that there is no solution for three or more objectives.

3.3 The MIP dominance move calculation

approach

3.3.1 The model intuition

The main goal is to create a DoM formulation to deal with problems having three or
more objective functions. Our DoM calculation perspective is based on the view that
the problem is, in fact, an instance of an assignment problem with two levels and some
restrictions. It is considered that to treat the question, we have to find an assignment
of P to Q with the restrictions that every qj must be assigned to exactly one pi with
the minimum distance. Nevertheless, in classic assignment problems, it is not possible
that points in P change their own features, such as changing positions to alter their
distances. In the proposed DoM calculation, this issue is considered.

The problem can be modeled as a mixed integer linear programming (MIP) ap-
proach and using the DoM definition. P and Q are sets of points, with points pi,
i ∈ {1, . . . , |P |} and points qj, j ∈ {1, . . . , |Q|}, respectively. Each pi is composed
of p(i,m) components, 1 ≤ m ≤ M in which M is the number of objective functions.
Analogously, each qj is composed of q(j,m) components, 1 ≤ m ≤M .

Given P and Q, P ′ is a set of points, in which each p′
i is generated from pi after

some updates in one or more objectives to dominate a Qs (an element of P∗(Q)). It is
important to note that if P already dominates Q, then p′

i = pi for all i. Observe that
P ′ must dominate Q, resulting in a better distance such as expressed in Equation (3.1).

The proposed MIP model calculates the distance d(pi,p
′
i). In order to calculate

this distance, a new point, p̂i, is obtained and there is strict relation between p̂i and
p′
i. At the end, the MIP-DoM model calculates the final p′

i using p̂i.
Figure 3.1 illustrates the intuition behind our proposal in a bi-objective prob-

lem. The d(pi,p
′
i) is composed of two terms, zp(i,m) and zpq(i,j,m). The summation
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Figure 3.1. An example that shows up the intuition behinds the MIP-DoM approach.
Consider two sets, P = {(2.0, 2.5), (3.0, 1.9)} and Q = {(2.2, 2.0), (3.0, 1.5)}. The DoM value
indicates the total movement for P to dominate Q. A typical vertical movement, zp(1,2) = 0.05
represents an improvement in f2 objective generating p̂1. However, p̂1 does not dominate q1.
There is still a movement to be done in f2 objective, represented by zpq(1,1,2) = 0.45, so
that p′

1 will dominate q1. Observe that point p2 does not dominate q2, so it is vertically
moved obtaining p̂2, in an attempt to dominate q2. With this vertical movement, indicated
by zp(2,2) = 0.40, p̂2 dominates q2, becoming p′

2. The DoM value is the total distance using
the terms zp(1,2), zp(2,2), and zpq(1,1,2). Limits on p′ movements (lower (lp(i,m)) and upper
bounds (up(i,m))) are also indicated.

of all zp(i,m), ∀ m ∈ {1, . . . ,M} results in d(pi, p̂i), Analogously, the summation of
all zpq(i,j,m), ∀ m ∈ {1, . . . ,M} ∀j ∈ {1, . . . , |Q|} results in d(p̂i,p

′
i). p̂i, indicated as

unfilled circles, represents the point after the first movement. For each pi and each
m-th objective, there are a lower (lp(i,m)) and upper (up(i,m)) bounds constraining p̂i’s
movement. The bounds are generated considering that the p̂(i,m) needs to be smaller
or equal to the minimum value in the Q taking the m-th objective into account (lower
bound), and cannot be greater than p(i,m) (upper bound). The component p̂(i,m) acts
as an extra variable in our MIP model that leverages the calculation. After finding
a p̂(i,m) within the corresponding bounds, zp(i,m) represents the extent of movement.
In Figure 3.1, there are p̂1 and p̂2, represented as unfilled circles and there are some
improvements in f2 objective generating the zp(1,2) = 0.05 and zp(2,2) = 0.40.
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The zpq(i,j,m) defines the move in m-th objective for the i-th component of p̂(i,m) to
generate the p′(i,m). In Figure 3.1, the improvement generated by the p̂2 is good enough
to dominate q2. In that case, zpq(2,2,1) and zpq(2,2,2) are equal to zero, considering that
p̂2 = p′

2. The same does not happen for p̂1; there is still a distance such that p̂1 must
be moved to dominate q1. This distance is indicated by the zpq(1,1,2) = 0.45. The final
p′
1 is obtained using p̂1 and zpq(1,1,2).

In a way to clarify the relationship between zp, zpq and p̂ variables and their
roles, the example in Figure 3.1 is slightly changed. In Figure 3.2 there are two sets, P
= {(2.0, 2.5), (3.0, 1.9)} and Q = {(2.2, 2.0), (3.0, 1.5), (1.95,2.45)}. A new solution in
Q given by q3 = (1.95, 2.45) is added, compared with the base case shown in Figure 3.1.
Therefore, considering the Figure 3.2, for calculating the total minimum movement for
P to dominate Q, p1 moves to dominate q1 and q3. The zp variables take the following
values: zp(1,2) = 0.50, and zp(2,2) = 0.40. The zpq variables take the following value:
zpq(1, 3, 1) = 0.05. Finally, MIP-DoM(P,Q) = 0.95.

Based on the Figure 3.2, one first question would be whether it is possible to
solve the problem using only the zpq variable. Using these approach, the answer is
no. The reasons will be indicated using Figure 3.3.

In Figure 3.3, the total movement value for calculation DoM is a zpq summation.
For each member of Q, there is a zpq component which represents the move that a
member of P ′ does to dominate a Q member. For example, p′

1,1 is generated from p1

to dominate q1 with a zpq(1,1,1) = 0 and zpq(1,1,2) = 0.50. At the same way, the p′
1,3

is generated to dominate q3 with a zpq(1,3,1) = 0.05 and zpq(1,3,2) = 0.05. Finally, this
happens as well with p′

2,2 generated from p2 to dominate q2 with zpq(2,2,1) = 0 and
zpq(2,2,2) = 0.40.

Observe that the total zpq summation does not represent the minimum move-
ment value. A decrease in this value is possible if zpq(1,3,2) and zpq(1,1,2) share the same
extent of 0.05. Geometrically, it is possible to use zpq(1,1,2) = 0.50 which dominates
q1, from that point, a new improvement can be done to dominate q3. Considering this
point of view, it is necessary to share information that p1 will dominate q1 and q3 at
the same time, thus sharing some extent of movement.

The zpq variable can not deal with this situation because it informs explicitly
what members of P and Q are used to calculate the movement.

As an attempt to solve the problem raised in the last paragraph, some new
variables are introduced in the model: zp and p̂. The idea is: whenever there is an
opportunity to share some extent of movement, it must be done. The p̂ is proposed to
perform such task, and zp measure the extent of movement.

A first observation is how the zp movement can be done. In Figure 3.4, the gray
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Figure 3.2. A slightly altered example based in Figure 3.1. Consider two sets, P = {(2.0,
2.5), (3.0, 1.9)} and Q = {(2.2, 2.0), (3.0, 1.5), (1.95,2.45)}. The DoM value indicates the
total minimum movement for P to dominate Q. A typical vertical movement, zp(1,2) = 0.50
represents an improvement in f2 objective generating p̂1. However, p̂1 does dominate q1,
but not dominate q3. There is still a movement to be done in f1 objective, represented by
zpq(1,3,1) = 0.05, so that p′

1 will dominate q1 and q3. Observe that point p2 does not dominate
q2, so it is vertically moved obtaining p̂2, in an attempt to dominate q2. With this vertical
movement, indicated by zp(2,2) = 0.40, p̂2 dominates q2, becoming p′

2.

box shows the area in which each zp can take values. For p1, for example, zp(1, 1) and
zp(1, 2) can be extended considering the whole gray area indicated. The same happens
to p2, using zp(2, 1) and zp(2, 2).

Conceptually, the zp will store some movement extent in which some p is doing
as indicated in the gray area. In fact, the zp variable is applied to ‘reuse’ such extent
of a movement. For example in Figure 3.2, there is p1 and p̂1 with zp(1, 2) = 0.50.
If a comparison is made with Figure 3.3, in which only zpq are used, it is possible
to observe a reduction of 0.05 considering the moves related to q1 and q3. Therefore,
the final solution will be composed by a movement represented in zp(1, 2) = 0.50 that
dominates q1 and a extent zpq(1,3,2) = 0.05 that dominates q3.

In this sense, there is a MIP-DoM value composed by: zp(1, 2) = 0.50, zpq(1,3,2) =
0.05 from p1 and zp(2, 2) = 0.40 from p2.
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Figure 3.3. A distance value using only the zpq variable. Using only this variable there
is zpq value for each dominance from P to Q in each objective. From p1, the p′

1,1 and
p′
1,3 are generated in a move to dominate q1 and q3, respectively. The same happens in p2,

generating p′
2,2 to dominate q2. Observe that the total summation does not represent the

minimum summation move.

In general, the motivation for zp and its role in the model can be stated as: It
represents a partial movement generating a p̂ constrained to a box interval, as indicated
in the gray box in Figure 3.4.

Observe that the zp variable does not carry any directly information from Q, in
a dominance sense. We argue that it is not possible to solve the problem using only
zp. In fact, the zp variable will be directly connected with p̂. All values in zp come
from the p̂’s alternatives.

The p̂ values are calculated inside the model. It represents a partial movement
generating a p̂ and the extent of movements expressed in zp.

The zpq is still related to p̂, since there are some constraints relating both
variables. In fact, if a p generates p̂, the movement is expressed in zp, and, if there is
some extent of movement to dominate any Q, it will be expressed in the zpq variable.
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Figure 3.4. The zp possibilities are indicated in the gray boxes. Each zp is linked to its p
and the extent of the movement is constrained by the box areas.

3.3.2 The mathematical model

To facilitate the presentation, we first summarize our notation below.

Index:

i : i -th solution from P ;

j : j -th solution from Q;

m: m-th objective in M .

Variables:

zp(i,m): Manhattan distance from p to p̂ on the i -th solution on m-th
objective;

zpq(i,j,m): Manhattan distance from p̂i to qj in the i -th solution from P ,
j -th solution from Q, on m-th objective;

p̂(i,m): an improvement made in p(i,m) on the i -th solution on m-th objective;

xp(i): a binary variable indicating that the i -th solution from P is been
used or not;



3.3. The MIP dominance move calculation approach 49

xpq(i,j): a binary variable indicating that the i -th solution from P is dom-
inating or not the j -th solution from Q;

xpqd(i,j,m): binary variable to guarantee that p̂(i,m) will have a value less
than q(j,m).

Parameters:

Mi,j,m: Maximum value between 0 and p(i,m) − q(j,m);

upi,m: It assumes the upper bound to p̂(i,m) equal to p(i,m) ;

lpi,m: It assumes the lower bound to p̂(i,m) as Min(p(i,m), Min(q(1..|Q|,m))).

minimize
|P |∑
i=1

M∑
m=1

zp(i,m) +

|P |∑
i=1

|Q|∑
j=1

M∑
m=1

zpq(i,j,m) (3.3)

subject to:{
zp(i,m) ≥ p(i,m)xp(i) − p̂(i,m),

zp(i,m) ≤ p(i,m)xp(i),
∀i, ∀m, (3.4)

zpq(i,j,m) ≥ p̂(i,m) − q(j,m) − p(i,m)(1− xpq(i,j)),

zpq(i,j,m) ≤ p̂(i,m) − q(j,m) + (M(i,j,m) − lp(i,m) − q(j,m)).(1− xpqd(i,j,m)),

zpq(i,j,m) ≤M(i,j,m)(xpqd(i,j,m)),

∀i, ∀j,∀m,

(3.5)

{
lp(i,m) ≤ p̂(i,m) ≤ up(i,m), ∀i, ∀m (3.6){
xp(i) ≥ xpq(i,j), ∀i, ∀j (3.7){
xp(i) ≤

|Q|∑
j=1

xpq(i,j), ∀i, (3.8)

{
|P |∑
i=1

xpq(i,j) = 1, ∀j, (3.9)
xp(i) ∈ {0, 1},
xpq(i,j) ∈ {0, 1},
xpqd(i,j,m) ∈ {0, 1},

∀i, ∀j,∀m, (3.10)

where, i = 1, . . . , |P |, j = 1, . . . , |Q|,m = 1, . . . ,M.

The distances are calculated using an MIP model expressed from Equation (3.3)
to (3.10). The model contains continuous z-variables (zp and zpq) and binary x-
variables (discussed later), and a number of constraint sets, which are combined in an
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attempt to find the minimum DoM value. The objective function uses z-variables. In
a practical sense, the inclusion of zp and zpq avoids equality constraints in the model,
transforming an equality constraint into an inequality one. There is a constraint set
related to zp(i,m), and it is expressed in the set of Equations (3.4). Essentially, it must
be greater than or equal to zero and it must be less than p(i,m) and, finally, it must be
greater than or equal the difference between p(i,m) and p̂(i,m).

In the same way, the variable zpq(i,j,m) represents the difference that each p̂(i,m)

still have to improve to generate the p′(i,m) candidate in an attempt to be less than or
equal to some q(j,m). The zpq(i,j,m) can be zero if p̂(i,m) is equal to p′(i,m), or greater
than zero if p̂(i,m) is greater than p′(i,m). In fact, zpq(i,j,m) variable can be seen as a
penalty value for those solutions that still do not dominate a Qs.

The constraint set in Equation (3.5) ensures that if p̂(i,m) is not less than or equal
to q(j,m), then there is a valid value in zpq(i,j,m). It will receive max(0, p̂(i,m)− q(j,m)), if
the difference to be less than q(j,m) or 0, otherwise. A binary variable, xpq(i,j) is used to
reach out this model condition. Thus, xpqd(i,j,m) assumes 1 to guarantee the maximum
value; otherwise, the solution will be infeasible. Moreover, we have used a linearization
technique to obtain the maximum function.

The p̂(i,m) is a continuous variable and the constraint set expressed in Equation
(3.6) presents the interval in which p̂(i,m) lies within.

Constraints represented in Equations (3.7) and (3.8) associates the binary vari-
ables xp(i) and xpq(i,j) guaranteeing that if xp(i) is ‘active’, at least one xpq(i,j) would
be ‘active’ as well. Equation (3.7) asserts that a candidate p̂i coming from pi will try
to dominate Qs, and in this sense, xp(i) will be equal to one and some xpq(i,j) will be
also equal to one.

The constraints which exclusively deal with binary variables can be initially for-
mulated using propositional logic. The model needs to know which pi is trying to
dominate qj . The binary variables xp(i) and xpq(i,j) are used to guarantee this infor-
mation. We are interested in the unique association between xp(i) and xpq(i,j), and it
can be expressed as xpq(i,j) ↔ xp(i). Observe this is a bi-conditional logical connective,
implying xpq(i,j) → xp(i) and xp(i) → xpq(i,j) are both valid.

The constraint described in Equation (3.7) of our model ensure that if xp(i) is
‘active’, at least one xpq(i,j) must be ‘active’ as well (xpq(i,j) → xp(i)). In propositional
logic, this can be written as

|Q|∨
j=1

xpq(i,j) → xp(i).

Applying some logic rules, the inequality represented by Equation (3.7) can be derived
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as in Equation 3.11.

|Q|∨
j=1

xpq(i,j) → xp(i)

(Implication in terms of ∨),

⇔ ¬

 |Q|∨
j=1

xpq(i,j)

 ∨ xp(i), ∀i

(DeMorgan’s Laws)

⇔
|Q|∧
j=1

(
¬xpq(i,j)

)
∨ xp(i), ∀i

(Distributive Law)

⇔
|Q|∧
j=1

(
¬xpq(i,j) ∨ xp(i)

)
, ∀i

⇔
(
1− xpq(i,j) + xp(i)

)
≥ 1, ∀i, ∀j,

⇔ xp(i) ≥ xpq(i,j), ∀i, ∀j. (3.11)

Analogously, the conditional proposition xp(i) → xpq(i,j) is valid and written in
propositional logic as

|Q|∨
j=1

xpq(i,j).

Applying some logic rules, we can obtain the inequality expressed in Equation
(3.8) of our model as in Equation (3.12):

xp(i) →
|Q|∨
j=1

xpq(i,j)

(Implication in terms of ∨)

⇔
(
¬xp(i)

)
∨

 |Q|∨
j=1

xpq(i,j)

 , ∀i

⇔
(
1− xp(i)

)
+

|Q|∑
j=1

xpq(i,j) ≥ 1, ∀i
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⇔ xp(i) ≤
|Q|∑
j=1

xpq(i,j), ∀i. (3.12)

It completes the unique association between xp(i) and xpq(i,j). These two binary
variables can give the information about which pi and qj are involved in the optimal
solution.

Finally, the constraint set in Equation (3.10) presents all the binary variables
used in the model. The xp(i) is used to guarantee that if a p̂(i,m) is used in the model,
we will know exactly which p(i,m) has generated it. In the same way, xpq(i,j) indicates
that pi generated p̂i and is trying to dominate a qj. These two binary variables are
used to guarantee that at least one pi will be associated with a qj.

Different MIP solvers can compute the proposed model such as CPLEX [Klotz
and Newman, 2013], GUROBI [Gurobi Optimization, 2019], and SCIP [Gamrath et al.,
2020], just to name a few. However, there is no guarantee that the problems can be
solved optimally in a non-prohibitive computational time. Just to have an idea of the
model size regarding the number of variables and constraints, consider the problem
having P = {(2.0, 2.5), (3.0, 1.9)} and Q = {(2.2, 2.0), (3.1, 1.5)}, depicted in Figure
3.1. In this case, the model has 16 continuous variables, 22 binary variables, and 60
constraints (including non-negativity constraints). Considering a generic problem, the
number of continuous variables, binary variables, and constraints are detailed in the
Equations (3.13) to (3.15), respectively:

# continuous variables = (2 + |Q|)(|P |M), (3.13)

# binary variables = (|P |(1 + |Q|(1 + 2M)), (3.14)

# constraints = |Q|+ |P |(1 + 3M)+

((|P ||Q|)(3 + 4M)). (3.15)

As an example, considering M = 5, |P | = |Q| = 200, there are 202,002 continuous
variables, 440,200 binary variables, and 923,400 constraints, making the MIP problem
a relatively large-sized optimization problem.
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3.4 Experiments

3.4.1 Bi-objective case

The first test aims to show how MIP-DoM calculation addresses the four quality indi-
cator facets: convergence, spread, uniformity, and cardinality [Li and Yao, 2019]. The
same experiments proposed in [Li and Yao, 2017] to solve DoM in the bi-objective case
are adopted to verify the model.

Figure 3.5 presents the controlled experiments for assessing the model correctness.
Each facet of quality indicators, convergence, cardinality, uniformity, and spread, is
represented in a ‘row’ in Figure 3.5. Each row has two plots corresponding to the two
examples. The examples are slightly different from one another. In each plot, there
are two solution sets, P and Q.

Convergence is an important factor to reflect Pareto-dominance compliance of
sets. This behavior is shown considering two examples in Figure 3.5, first row: test
= convergence. In Examples I and II, the number of points in P and Q are equal,
but some points of P dominate some points of Q. In plot I, P completely dominates
Q, hence, dominance move from P to Q, DoM(P ,Q), is zero. In plot II, since some
points of Q are dominated by P , DOM(P ,Q) is smaller than (Q,P ). There is still a
movement sign (gray arrow) in plot II indicating the movement for one set to dominate
the other. Observe that q4 needs to move to q′

4, thereby dominating P . On the same
way, p1 needs to move to p′

1 to dominate Q. Importantly, these are the minimum
movement needs to achieve a dominance between the two sets.

DoM prefers solutions with a different cardinalities in P and Q. In Figure 3.5,
test = cardinality, graphics III and IV, it can be observed that the solution sets have
the same convergence, and spread. In graphic III, Q has one more point than P . In
graphic IV, P has one more point than Q. The DoM values of both graphics reflected
the cardinality aspect.

Uniformity indicates the preference for evenly distributed points. The solution
sets in Figure 3.5, test = uniformity, presented this feature. The sets have the same
convergence, spread, and cardinality. In graphics V and VI, the set P is distributed
uniformly, and Q has a random distribution. The DoM values show that Q needs
a bigger move value (DoM) to dominate P . In graphic VI, the density of points in
set Q increased gradually from bottom to top (considering the f1). Again, a more
uniformly distributed set of points needs a smaller DoM to move to a more non-
uniformly distributed set of points.

Finally, DoM must exhibit its preference for solutions having a better spread.
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Figure 3.5. Experiments proposed in [Li and Yao, 2017] to assess the four facets of quality
indicators: convergence, cardinality, uniformity, and spread.

A set with better extensity (more extreme points) has a smaller dominance move
compared to its competitor. In Figure 3.5, test = spread, considering graphic VII, set
Q was generated by shrinking P a little (more concentrated in the middle). In graphic
VIII, set P was distributed uniformly in the range, while Q assumed five right bottom
points. The graphic VIII still presents the q1 movement generating q′

1 to dominate
some elements from P , which were not yet dominated. On the same way p1, p2 and
p4, generate p′

1, p′
2 and p′

4 to dominate Q.



3.4. Experiments 55

The MIP-DoM approach results are the same as the results reported in [Li and
Yao, 2017] obtained using the proposed bi-objective algorithm.

3.4.2 Multi- and Many-objective Problems

Following the initial and controlled test problems, it is crucial to test the MIP-DoM
model with standard test problem sets. First, a problem set with three objectives is
compared with existing indicators, such as the additive ϵ-indicator, hypervolume (HV),
IGD+, and visual plots to assess the results. Second, an attempt to solve problems
with five, ten, and more objectives are made. In all tests, algorithms such as IBEA,
MOEA/D, NSGA-III, NSGA-II, and SPEA2 are used to generate the solution sets. It
is essential to highlight that the goal is to assess the proposed MIP-DoM approach’s
effectiveness and not compare the algorithm’s performance, so any other algorithms
could have been applied to generate the solution sets.

For each problem set, the population size for the algorithms needs to be initially
chosen. We argue that this choice is relevant for the proposed model and is closely
related to Equation (3.2). Considering a good approximation set of the Pareto front,
in terms of convergence and uniformity, the number of non-dominated solutions grows
exponentially concerning the dimension of the objective space. However, some works
in many-objective optimization do not strictly follow this concept. In [Tian et al.,
2018], for example, the number of objectives M is 3, 5, and 10, and the population size
L is 105, 126, and 275, respectively. In [Yang et al., 2019], an efficient hypervolume
calculation is provided, and some tests are done with M set to 3, 4, 5, and L between
10 and 200. Likewise, in CEC’2018, a competition on many-objective optimization
[Cheng et al., 2018] M was chosen to be 5, 10, and 15, and the maximum population
size was set to 240. Generally, in practical situations, the fronts are not so large.

Since Equation (3.2) plays an important role in the proposed model, related to
the number of domination moves possible (Equations (3.3) to (3.10)), we have decided
to validate DoM using M = 3, 5, 10, and 15 and |P | = |Q| = 50, 100, 170, and 240
indicating the final Pareto front approximation size.

All experiments are done using Platypus [Brockhoff and Tušar, 2019], PyGMO
[Izzo, 2012], and pymoo [Blank and Deb, 2020a] to generate the problem sets and to
calculate the IGD+ and ϵ-indicator. Hypervolume is calculated using the Walking Fish
Group based algorithm [While et al., 2012] (considering its worst-case complexity as
O(M × 2L)). The model (Equations (3.3) to (3.10)) is implemented using Python and
it is solved using GUROBI [Gurobi Optimization, 2019] (version 9.0.0 build v9.0.0rc2)
running on a Linux 64 bits operational system with 8 CPU’s (Intel Xeon E5-2630 v4
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2.2GHz) and 32Gb of RAM. Some GUROBI solver parameters [Gurobi Optimization,
2019] are altered: the minimum gap = 10−6% , and the MIPFocus = 3, which help
to improve the best bound during the execution. For all models tested, the optimal
solutions are always reached with the established gap.

3.4.2.1 Multi-objective Problems

To test our proposed approach, we select some well-known problem test sets in three
dimensions, which come from DTLZ and WFG families. Some algorithms are used
to generate the approximated Pareto front, and using the outcomes, the MIP-DoM
indicator is compared to other quality indicators. Embedded with a similar experiment
purpose presented in Li et al. [2019a], the NSGA-III and MOEA/D algorithms (Pareto-
based and decomposition approach, respectively) are firstly chosen, and, afterwards,
IBEA [Zitzler and Künzli, 2004], SPEA2 [Zitzler et al., 2001], and NSGA-II [Bradford
et al., 2018]. All the approximation sets are shown in Figure 3.6.

In our experiments, the maximum number of fitness evaluations is set to 10,000,
and each algorithm is executed 21 times. Three unary quality indicators, the additive
ϵ-indicator, hypervolume (HV), and the inverted generational distance plus (IGD+),
are calculated for each run. It is mandatory to have a reference point or a reference set
to calculate the indicators, and this task is a challenging one [Ishibuchi et al., 2018],
or it is sometimes provided by the user [Yang et al., 2019]. We use the maximum
values amongst all algorithm solutions for HV. For additive ϵ-indicator and IGD+, the
reference set is a joint Pareto front, which comes from the algorithm’s results (it can
be viewed in the last column of Figure 3.6).

The MIP-DoM quality measure is a binary indicator. Using MIP-DoM as a unary
indicator is still feasible; a straightforward idea merely uses a joint Pareto (created from
other algorithm solution sets) or the real Pareto front. The MIP-DoM is then calculated
using the joint Pareto as a reference set for each problem. We use this approach to
facilitate a comparison with some unary indicators, such as HV and IGD+.

Table 3.1 shows average values of three unary quality indicators, the additive
ϵ-indicator, hypervolume (HV), and the inverted generational distance plus (IGD+).
MIP-DoM has also been calculated. In this table, the algorithms are sorted taking
into account the ascending order of MIP-DoM results. It can be noted from the table
that DTLZ1 and DTLZ3 have the HV values inflated by the presence of the dominance
resistant solutions [Li and Yao, 2019], which are non-dominated solutions with a poor
value in one objective but with good values in others.

For the DTLZ1, the algorithms presenting the best HV, ϵ-indicator, and MIP-
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Figure 3.6. Solution sets with |P | = |Q| = 50 solutions and three objectives, M = 3, gen-
erated by IBEA, MOEA/D, NSGA-III, NSGA-II, and SPEA2 algorithms applied to DTLZ1,
DTLZ2, DTLZ3, WFG1, WFG2, WFG3 and WFG9 problem sets. The Pareto front is gen-
erated by the collecting non-dominated solutions from all algorithms.

DoM values are IBEA and NSGA-III. For the HV indicator, the comparison is difficult
due to inflated values. For IGD+, the results indicate NSGA-III and NSGA-II are the
best algorithms. For MIP-DoM, the top two algorithms are IBEA and NSGA-III with
0.312 and 0.551, respectively. In the DTLZ2 problem, HV, IGD+, ϵ-indicator, and
MIP-DoM indicate MOEA/D as one of the best results. For HV and IGD+, there is
a tie between NSGA-III and MOEA/D. DTLZ3 results for ϵ-indicator, HV, and MIP-
DoM classify IBEA and NSGA-III as the best algorithms. Again, considering HV, due
to some extreme points, the values are next to each other. The best algorithms are
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Table 3.1. MIP-DoM(P ,Q) values for the DTLZ and WFG families for comparison among
IBEA, MOEA/D, NSGA-III, NSGA-II, and SPEA2 algorithms. It must be noted that P is
the solution set generated by the algorithm and Q is the non-dominated solution set from all
algorithm’s results combined. HV, IGD+, and additive ϵ-indicator are also presented. The
algorithms are sorted according to worse performance by MIP-DoM.

Problem Algorithms MIP-DoM HV IGD+ additive ϵ-
indicator

DTLZ1 IBEA 0.312 0.999 0.089 0.001
NSGA-III 0.551 0.999 0.032 0.001
MOEA/D 1.630 0.999 0.052 0.009
NSGA-II 6.422 0.998 0.041 0.027
SPEA2 11.139 0.984 0.089 0.064

DTLZ2 MOEA/D 0.970 0.641 0.065 0.089
IBEA 1.000 0.632 0.074 0.130
NSGA-III 1.004 0.641 0.065 0.106
NSGA-II 1.013 0.607 0.076 0.193
SPEA2 1.021 0.595 0.082 0.162

DTLZ3 IBEA 0.0491 0.999 0.129 0.000
NSGA-III 18.652 0.999 0.017 0.045
MOEA/D 25.374 0.998 0.077 0.065
NSGA-II 51.208 0.984 0.099 0.142
SPEA2 150.870 0.706 0.342 0.369

DTLZ7 NSGA-III 1.402 0.198 0.085 0.175
IBEA 1.468 0.210 0.064 0.082
MOEA/D 1.695 0.196 0.073 0.123
NSGA-II 1.782 0.181 0.071 0.167
SPEA2 2.184 0.141 0.112 0.185

WFG1 IBEA 1.230 0.342 0.192 0.257
MOEA/D 1.557 0.371 0.105 0.243
SPEA2 1.659 0.256 0.289 0.425
NSGA-III 1.822 0.286 0.248 0.326
NSGA-II 1.944 0.343 0.134 0.272

WFG2 IBEA 1.503 0.864 0.054 0.110
NSGA-III 1.571 0.824 0.062 0.201
MOEA/D 1.683 0.834 0.057 0.134
NSGA-II 1.687 0.790 0.075 0.184
SPEA2 1.859 0.777 0.080 0.216

WFG3 IBEA 1.889 0.410 0.060 0.111
NSGA-III 2.609 0.383 0.069 0.264
NSGA-II 2.630 0.392 0.060 0.241
MOEA/D 2.820 0.375 0.083 0.282
SPEA2 3.178 0.373 0.079 0.211

WFG9 IBEA 1.965 0.312 0.085 0.156
NSGA-III 2.194 0.324 0.074 0.095
MOEA/D 2.331 0.290 0.089 0.161
NSGA-II 2.601 0.304 0.074 0.123
SPEA2 2.759 0.289 0.085 0.171

indicated as IBEA, NSGA-III, and MOEA/D (there is a full agreement between MIP-
DoM and HV, considering algorithms’ ranking). For IGD+, there is an indication of
NSGA-III and MOEA/D as the best ones. Finally, for the DTLZ7 problem set, IBEA
is pointed to as the best one for HV, IGD+, and ϵ-indicator. However, NSGA-III is
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the best one, according to MIP-DoM, and the second one in HV.

The same experiment is done for the WFG family. For WFG1 in Table 3.1, the
algorithm with the best value is MOEA/D for HV, IGD+, and ϵ-indicator. For MIP-
DoM, the best algorithms are IBEA and MOEA/D. For WFG2, the best values for HV,
IGD+, and ϵ-indicator and MIP-DoM indicate IBEA as one of the best algorithms. HV,
IGD+, and MIP-DoM rank these three algorithms as the best ones: IBEA, MOEA/D,
and NSGA-III. In the same way, for WFG3, IBEA generates the best solution sets
for all indicators. Again, there is an agreement amongst them. For IGD+, the best
algorithms are IBEA and NSGA-II, presenting a tie between these two algorithms.
Finally, for the WFG9 problem set, considering HV, IGD+, and additive ϵ-indicator
NSGA-II is the best algorithm. MIP-DoM points out IBEA and NSGA-III as the best
ones. For IGD+, there is a tie between NSGA-III and NSGA-II.

3.4.2.2 Correlation with Existing Indicators

Our propose is to introduce the MIP-DoM as an alternate performance indicator. Next,
we calculated the Pearson correlation coefficient of the MIP-Dom indicator with HV,
IGD+, and additive ϵ-indicator. A Pearson correlation coefficient (ρ) is calculated in
Table 3.2 to assess if there is a linear relation among the indicators. We measure the
correlation coefficient using the problem sets individually, the problem set families,
and the general correlation among all indicators. To assess the statistical significance
of the results, a null Pearson correlation hypothesis test with a significance level of
0.05 is carried out. Values which are not statistically significance are indicated as * in
Table 3.2. All values are normalized before the calculation of correlation coefficients.

We use the negative HV in the correlation for simplicity since it is the only
indicator for which a larger value means better. It is observed that there is a reasonably
strong correlation between MIP-DoM and HV, and with additive ϵ-indicator, taking
into account all problems. Concerning the DTLZ family, the correlation between MIP-
DoM and HV and additive ϵ-indicator is even stronger, 0.90 and 0.82, respectively. For
the WFG family, the correlations between MIP-DoM and HV and additive ϵ-indicator
are different from the DTLZ family. We argue that WFG1 is responsible for decreasing
the correlation values since the correlation between MIP-DoM and HV is high for
WFG2 and WFG3.

In general, the correlation between MIP-DoM and HV is high for most problems.
This gives us the confidence of its use as an alternate performance indicator for set-
based multi-objective optimization algorithms.
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Table 3.2. The Pearson correlation coefficient (ρ) to assess the linear relationship between
MIP-DoM and other indicators (HV, IGD+, and ϵ-indicator).

MIP DoM correlation with
additive

Problem set -HV IGD+ ϵ-indicator

DTLZ1 0.896 0.347* 0.989
DTLZ2 0.770* 0.769* 0.783*
DTLZ3 0.964 0.887 0.998
DTLZ7 0.942 0.720* 0.502*
Combined DTLZ 0.895 0.681 0.818
WFG1 0.265* 0.019* 0.256*
WFG2 0.860 0.815* 0.626*
WFG3 0.945 0.747* 0.684*
WFG9 0.627* 0.093* 0.226*
Combined WFG 0.674 0.372* 0.448
Combined All 0.784 0.526 0.633

* We applied a hypothesis test for the correlation coefficient with a significance level
of 0.05. The * shows that the calculated p-value is over 0.05, and it is not possible to
reject the null hypothesis that ρ = 0.

3.4.2.3 Many-Objective Problems

Next, the goal is to test if the MIP-DoM approach can be applied in many-objective
scenarios. Inspired by the issues raised in the multi-objective experiments and the well-
known quality indicators’ weaknesses, our motivation to apply DoM in many-objective
scenarios can be summed up as:

1. HV is hard to exactly calculate in many-objective problems [Guerreiro et al.,
2021]. Yet, it is sensitive to extreme points and dominance resistant solutions,
such as observed in the last experiment for DTLZ1 and DTLZ3 cases;

2. In many-objective problem sets and real cases, it is hard to obtain a Pareto front
or reference set that is evenly distributed such as vital to IGD+, for example;
The same happens to HV, in [Ishibuchi et al., 2018], for example, some experi-
ments have shown that a slightly worse point than the nadir point is not always
appropriate for problem sets comparison;

3. Considering the DoM definition and its calculation proposal, it is still relevant
to note that it try to use all the information available in DoM definition. This is
an essential feature to a quality indicator, mainly considering problem sets with
high number of objective functions and cardinality.
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In this sense, we would like to observe how the MIP-Dom model behaves in such
scenarios, and analyze its characteristics. The same problem sets from the previous
experiment are used, and two algorithms are chosen to compare and observe the quality
indicator features. We choose MOEA/D and NSGA-III to generate the approximation
sets. It is relevant to emphasize that any other algorithm could have been selected,
however, the rationale behind this choice is due to specificity of these algorithms to deal
with many-objective problems. The object of our study here is the quality indicator,
and the aim is to assess how it behaves with different many-objective test cases.

In the same manner as the CEC’2018 competition [Cheng et al., 2018] we establish
L = 100, 170, and 240 and M = 3, 5, 10, and 15, respectively.

Table 3.3. Using the solution sets generated by MOEA/D and NSGA-III algorithms, MIP-
DoM value for the many-objective experiments for DTLZ and WFG families. The number
of points in the final non-dominated set is set to L = 100, 170, and 240, and the number of
objectives, M = 5, 10, and 15.

Value
Problem MIP-DoM(P , Q) L=100 L=170 L=240

M=5 M=10 M=15
DTLZ1 (MOEA/D, NSGA-III) 1463.461 560.182 594.894

(NSGA-III, MOEA/D) 3401.332 6315.371 9944.266
DTLZ2 (MOEA/D, NSGA-III) 3.943 1.175 1.065

(NSGA-III, MOEA/D) 3.804 8.972 16.665
DTLZ3 (MOEA/D, NSGA-III) 2839.942 1878.871 2040.851

(NSGA-III, MOEA/D) 6418.077 15532.120 23735.510
DTLZ7 (MOEA/D, NSGA-III) 2.502 5.543 4.745

(NSGA-III, MOEA/D) 1.148 2.948 2.950
WFG1 (MOEA/D, NSGA-III) 0.270 0.279 0.124

(NSGA-III, MOEA/D) 0.464 0.707 0.775
WFG2 (MOEA/D, NSGA-III) 2.001 1.179 1.137

(NSGA-III, MOEA/D) 1.571 2.423 3.665
WFG3 (MOEA/D, NSGA-III) 4.524 4.678 1.955

(NSGA-III, MOEA/D) 5.170 14.160 22.981
WFG9 (MOEA/D, NSGA-III) 3.183 2.177 0.524

(NSGA-III, MOEA/D) 4.450 13.583 31.296

In Table 3.3 the MIP-DoM values are presented. The algorithm solution sets
are compared in pairs and both directions. For DTLZ1 with L = 100 and M =

5, the MIP-DoM(MOEA/D, NSGA-III) = 1463.461, and the MIP-DoM(NSGA-III,
MOEA/D) = 3401.332, indicating that the approximation set generated by MOEA/D
is better than that by NSGA-III. For DTLZ2, while MIP-DoM(NSGA-III, MOEA/D)
is smaller than MIP-DoM(MOEA/D, NSGA-III) with M = 5, but with 10 and 15
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objectives, MOEA/D’s performance is better. From the table, we observe that MIP-
DoM has an agreement about the best algorithm for some problem sets, independent
of the parameter M and L. DTLZ1, DTLZ3, WFG1, WFG3, and WFG9, for example,
MOEA/D set is better than that in NSGA-III. On the other hand, for DTLZ7, NSGA-
III provides lower values. There is a disagreement found in DTLZ2 and WFG2 for
L = 100 and M = 5. Furthermore, for the DTLZ2, for example, the values are similar
for both algorithms. However, our goal here is to show that it is possible to use and
calculate MIP-DoM regardless of the number of points (L) in the solution set and the
number of objective functions (M , and compare two or more EMaO algorithms.

On the other side, the maximum number is 9, 8, and 26 in the experiments for L =

100 and M = 5, L = 170 and M = 10, and L = 240 and M = 15, respectively. This
fact denotes that the MIP-DoM value is more suitable for many-objective scenarios.

3.5 Further Studies with MIP-DoM

Having compared the MIP-DoM indicator with popular existing indicators on multi-
and many-objective optimization problems, we now analyze and reveal several other
properties of the MIP-DoM quality indicator.

3.5.1 Computational Time

Every MIP-DoM computation requires solving a mixed-integer linear programming
problem stated in Equations (3.3) to (3.10). In cases in which most points of Q are
dominated by some point in P exist, the number of required MIP iterations is small
and the computational time to solve the MIP problem is also small. However, in our
experiment, the worst-case scenario spends approximately ∼ 208 hours, for example,
using MOEA/D to solve WFG1 with L = 240 and M = 15. In this case, the pre-
processing method is not feasible, and the number of simplex iterations is very large,
as well as the number of explored nodes.

The time spent in seconds by the solver is an important aspect to analyze. Fig-
ure 3.7 presents an experiment using DTLZ1 problem, as an example. We generate 50
random approximation set as P and the Pareto front as Q to calculate MIP-DoM(P ,Q)
(the distance of movement which a random approximation set needs to dominate the
Pareto front). Our intention is to assess how the computational time increases with an
increase in number of population size for 5, 10, and 15 objective problems. In Figure
3.7, the y axis is in log scale, and the x axis is represented with L = 50, 100, 200, 300
and 400 solutions.
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Figure 3.7. A polynomial increase in computational time with population size. Fifty exper-
iments are done with L = 50, 100, 200, 300 and 400 solutions using the DTLZ1 problem. The
data set is randomly generated, and the objective function is analytically calculated.

In Figure 3.7, considering M = 5, 10 and 15, we can observe a polynomial time
behavior for DTLZ1 considering the solutions number (≈ O(L3.311), O(L2.888) and
O(L2.833), respectively).

Another aspect to verify is how the time behaves if M is increased for many-
objective problems. In Figure 3.8, using the DTLZ1, values of M = 7, 10, 12, 15,
20, 25 and 30 are adopted and we generate random solutions, and calculate its ob-
jective functions using its analytical function. The Pareto front is generated, and our
experiments measure the time spent to calculate MIP-DoM(P , Q), with random ap-
proximation set as P , and the Pareto front as Q. For each M , fifty experiments are run
with L = 200 solutions in the approximation set. In Figure 3.8, both axes are in log
scale, representing a polynomial time behavior (≈ O(M0.686). Each box-plot graph is a
test set with its associated M . The figure reveals that the MIP-DoM indicator can be
useful for large number of objectives, as it demands a small increase in computational
time for an unit increase in the number of objectives.

A burdensome scenario for MIP-DoM is when there is no a priori dominance
between the points in each solution set, and the density of the two solution sets used
are high. In areas with high density, there are many options among pi trying to
dominate some Qs. The branch-and-bound dynamic becomes more challenging in these
situations, combining the p̂ possibilities, between its lower and upper bound, and the
binary variables. This fact must be better investigated and exploited in a future work.
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Figure 3.8. A boxplot with the time spent to solve the MIP-DoM model as a function
of number of objectives. For each box-plot, fifty experiments are done with L = 200 using
the DTLZ1 problem set definition. The data set is randomly generated, and the objective
function is analytically calculated.

3.5.2 MIP-DoM as a Running Performance Indicator

Popular performance metrics (such as, GD, IGD, IGD+, and also HV in some sense)
require the knowledge of true Pareto front so that a reference set can be obtained.
This severely restrict their usage in arbitrary problems. But, a recently proposed
running performance metric method [Blank and Deb, 2020b] can be used for handling
an arbitrary problem. At a generation t, all non-dominated (ND) solutions from all
past generations from the initial population is first collected and the resulting ND set
is used as the reference set for metric computation. Then, at generation t + ∆t, the
whole process can be repeated (∆t can be suitably chosen) and the time-varying plot
can be made to indicate how the metric changes with generation.

In Blank and Deb [2020b], IGD+ is used as an example of the running quality
indicator. The IGD+ indicator demands a reference set, such as the true Pareto front.
We show the use of running metric for two purposes: (i) termination criteria in a pair
algorithm comparison and (ii) a detailed algorithm behavior view in the quality indi-
cator perspective. Our goal is to test if MIP-DoM can be used as a running quality
indicator, and what are their characteristics. Figure 3.9 presents six curves. We calcu-
late each one using the solution set from each generation as P and, at the generation
10, 20, 30, 40, and 50, solution sets from its generation as Q in the MIP-DoM(P , Q)
calculation.The final solid line is computed using the known Pareto front solutions, to
demonstrate the running indicator’s behavior.
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Figure 3.9. MIP-DoM as a running performance quality indicator. The data refers to
the DTLZ1 problem set, with two objectives using NSGA-II algorithm with 50 generations.
We calculate MIP-DoM using P as each generation solution set and Q as solution sets at
generations 10, 20, 30, 40, 50 and the final Pareto front.

Figure 3.9 can be analysed from different manners. First, there is a monotonic
decrease in each MIP-DoM curve, indicating that MIP-DoM can correctly indicate
the monotonic improvement of IGD+ with generations. It is not surprising that each
intermediate running indicator curve drops to zero at the pivot generation at which the
indicator was calculated. Since the population at this pivot generation is expected to
be best compared to earlier generation populations, MIP-DoM(Pt, Pt) = 0. Second,
consider the two consecutive running indicator curves (say at generations 30 and 40).
The DoM value calculated at generation 30 using the 40-th generation ND set is higher
than that calculated using the 30-th generation ND set. This indicates that the 40-th
generation ND set is better than the 30-th generation ND set. Third, notice that for
up to about 35 generations, DoM calculated using the Pareto front is almost equal to
DoM calculated using ND set at generation 50. By checking with a threshold value of
MIP-DoM, a termination of an EMO/EMaO run can be adopted.

Another use of the running MIP-DoM indicator can come in comparing two or
more EMO/EMaO algorithms generation by generation. In Figure 3.10, a comparison
between NSGA-II and NSGA-III is made. We calculate MIP-DoM(NSGA-II, combined
solutions) in a dashed line and MIP-DoM(NSGA-III, combined solutions) in a solid
line. The combined solutions represent the non-dominated solutions from NSGA-II and
NSGA-III results at generation 50. We use the DTLZ1 with two-objective functions
and 30 solutions. Each point in each algorithm curve indicates the MIP-DoM value
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at the specific generation calculated using the combined solutions. We can observe
a similar monotonic drop behavior. In the beginning, until generation 4, NSGA-II
presents a better value than NSGA-III. From generation 8 onward, there is a change,
and NSGA-III is better than NSGA-II.
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Figure 3.10. An algorithm comparison between NSGA-II and NSGA-III using the MIP-
DoM running quality indicator. The data refers to DTLZ1 problem set, with two objective
functions and 30 solutions in each set. We calculate MIP-DoM using P as each generation
solution set and Q as a joint solution set(non-dominant solutions) from the NSGA-II and
NSGA-II 50 generation.

These plots indicate how the MIP-DoM can be employed as a running quality
indicator, as termination criteria and as a comparison indicator without the knowledge
of the true Pareto solutions.

3.5.3 Parametric Study with Gap in Computing MIP-DoM

In the branch-and-bound formulation, some information can be obtained using the
function value of the linear programming relaxation and the function value of the
integer program. A valid upper bound on the optimal solution is a proper integer
solution with the best value found in the branch-and-bound procedure in a minimiza-
tion problem. On the opposite side, we also can have a valid lower bound during
the branch-and-bound. It comes from the linear programming relaxation, taking the
minimum of all current leaf nodes’ optimal objective values. The difference between
the upper and lower bounds is known as gap. In general, when the gap = 0, we have
reached optimality.
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The question raised is whether MIP-DoM is affected by a gap variation, such as
gap = 5% or 10%? To investigate this issue, we repeat the same experiment in the
multi-objective section, in which the Pearson correlation coefficient between MIP-DoM
and some indicators are calculated. The idea is to observe how the gap will influence
the MIP-DoM results and how a change affects the correlation coefficient.

We vary the gap parameter, such as posed in our initial question. In Table 3.4,
not only the original results are presented, but also the results with gap = 5% and 10%

are added. We can observe that the gap parameter introduces a small perturbation in
the Pearson correlation coefficient. For example, the HV has a change in the correlation
coefficient of less than one percent comparing the values at gap = 0% and 10%. Similar
behavior happens to IGD+ and additive ϵ-indicator.

On the other hand, when we analyze the effect in the model’s time, we can
observe a clear impact in all cases. In Table 3.4, the mean and standard deviation (std
deviation) of times for each problem set are presented. The gap has good impacts on
the time spent. In some cases, the difference lies in one order of magnitude.

Additionally, there are differences in the time spent amongst the problem sets.
At this experiment, it must be noted that the reference set has different sizes (number
of solutions in the joint Pareto), and this influences the time spent by the model, as
discussed before. For DTLZ1, DTLZ2, DTLZ3 and DTLZ7 are 79, 207, 93 and 154
solutions, respectively. Considering WFG1, WFG2, WFG3, and WFG9, the values are
104, 124, 151, and 179. Even considering just one problem set, the times spent by
MIP-DoM still can show relevant variations among the algorithms. In our experiments
IBEA and NSGAIII present the highest times, considering the DTLZ2 and WFG3.

The gap information can help in the binary quality indicator context. If one is
interested in a provably optimal solution, it is necessary to wait until the gap reaches
zero. Usually, in the quality indicator context, optimality is not an issue, and “P is
better than Q” is the only question to be answered. Moreover, a faster answer would
be better. Motivated by these issues, different gaps are analyzed and the time spent
to decide whether “P is better than Q” is computed in each case. Considering Table
3.3 in the many-objective experiments, some high times are also found, for example,
DTLZ7 and WFG1 for MOEA/D with L = 240 and M = 15. For these cases, and
in the context of a binary quality indicator, it is not mandatory to obtain an optimal
solution, providing the statement is valid. Taking, for example, DTLZ7 for NSGA-III
and MOEA/D with L = 240 and M = 15, it took ∼ 1, 818 seconds to calculate MIP-
DoM(NSGA-III, MOEA/D) = 4.475. Similarly, the solver took ∼ 198, 795 seconds to
calculate MIP-DoM(MOEA/D, NSGA-III) = 2.950. However, the solver presented a
MIP-DoM valid interval search between 6.188 and 3.101, with gap = 50% at 98,294
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seconds.

3.6 Final observations and notes

The DoM binary quality indicator considers the minimum move of one set to dominate
the other set, meaning that every element of the second set is either dominated or
identical to at least one element of the first set. The indicator is Pareto compliant and
does not demand any parameters or reference sets.

We have presented that MIP-DoM also brings some other advantages as a binary
quality indicator. For example, it appeared to have a highly Pearson correlation with
HV and also showed a monotonic decrease in its value when the first set (Q) was fixed
and the second set (P ) approaches towards the Pareto front.

We have done initial experiments showing that our approach was corrected com-
pared to the original proposal on artificial bi-objective examples. The other results
have also made the sensitivity of the DoM indicator on dominance, diversity, cardi-
nality, and other issues related to two non-dominated set comparisons. Furthermore,
experiments using multi- and many-objective scenarios showed that the formulation
could be used in such cases. We have also presented how the MIP gap information
can be used to improve the time spent by the model with a slight change to the DoM
value. Finally, we have presented additional use of MIP-DoM as a running performance
indicator.

We have proposed the mathematical programming approach to calculate perfor-
mance quality indicators, and we have provided a detailed MIP formulation of the
DoM calculation indicating how the number of variables increases with the number of
objectives and population size. The handicap of DoM was its requirement to solve a
mixed-integer linear programming problem, making it apparently time-consuming to
be applied to problems with many objectives and large population sizes.





Chapter 4

MIP-DoM: a new compact
formulation

4.1 Introduction

One MIP-DoM’s drawback is related to its computational time. In the last Chapter,
some reasons were investigated and discussed. In this Chapter, we are starting to deal
with the computational time model issues. As previously discussed, it depends on, for
example, I) the number of solutions and II) the number of objectives. Additionally, the
model’s time is more impacted by the number of solutions and even presenting evidence
about a polynomial relation between them; in some cases, the model calculation takes
so many hours.

Another issue is related to the model’s complexity and interpretability. It comes
with the perspective that to solve DoM, we use an assignment model approach. It is a
way to solve the question; however, it brings additional complexity to DoM modeling.
The number of variables and constraints is significant, affecting the time search for
optimal solutions. Therefore, a question emerges in a model critical assessment: Is this
possible to model MIP-DoM most straightforwardly?

This Chapter presents a new compact formulation for MIP-DoM, initially pro-
posed by Prof. Dr. Carlos Fonseca. First, a discussion about DoM models’ charac-
teristics will be briefly treated. Next, the compact model is introduced and discussed.
Subsequently, some experiments comparing the results from the two models are shown,
emphasizing how fast the compact one can be in dealing with increments in the num-
ber of solutions and objectives. Finally, we investigate some limits of this model using
some large problem set instances.

71
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4.2 DoM model’s approach

The first idea presenting DoM is related to PCI [Li et al., 2015b]. The question related
to DoM calculation is associated with the number of possibilities to find P

′ , which is
numerous. Therefore, any combination of some P

′ must be tested, and some of them
can dominate Q, regarding Equation (3.1).

A second approach to calculated DoM is based on the observation that the prob-
lem is, in fact, a particular case of an assignment problem [d. V. Lopes et al., 2020].
Unfortunately, this approach cannot scale and solve models with more than 20 solutions
in each set.

In the last Chapter, the DoM calculation as a mixed-integer linear programming
model was presented. But, it is still an extension of the assignment perspective. The
MIP model calculates the distance d(pi,p

′
i) inside the model, unlike the model pre-

sented in d. V. Lopes et al. [2020]. A new auxiliary variable is introduced, p̂i, and
there is a strict relation between p̂i and p′

i. At the end, the MIP-DoM model cal-
culates the final p′

i using p̂i. This point introduces an additional complexity to the
model, but allow that the d(pi,p

′
i) can be calculated as an assignment approach.

The MIP model contains continuous variables that represents each objective so-
lution in p̂i. Additionally, there is binary variables that indicates if each pi is active
and generates a p̂i to dominate some q. Additional constraints are used on binary and
continuous variables to solve the final problem.

Given the model size and complexity, there is no guarantee that the problems
can be solved optimally in a non-prohibitive computational time. Despite all the new
ideas brought by the last Chapter, some hard instances show that the computational
time and model’s complexity are open issues.

4.3 MIP-DoM new compact formulation

Based on a model assessment proposed by Prof. Dr. Carlos Fonseca, this Chapter
brings another model to calculate DoM. This model does not come from an assignment
abstraction but is based on the inner DoM characteristics to calculate the d(pi,p

′
i) as

a Manhattan distance.

Two main variables are used: z(i,m) and x(i,j), in which i ∈ {1, . . . , |P |}, m ∈
{1, . . . ,M}, and j ∈ {1, . . . , |Q|}. The first variable represents the extent of movement
that must be done using p(i,m) as a starting point to dominate some q(j,m). In this
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sense, z(i,m) is a continuous variable. x(i,j) is a binary variable and it controls whether
pi dominates qj or not. It will assume 1 if p′

i dominates qj, and 0 otherwise.

In this compact model there is no explicitly declaration of p′
i,m variable. However,

it is implicitly used in the model. In fact, the expression p′(i,m) = p(i,m)− z(i,m) is valid,
but not directly used in the model (there is no p′(i,m) continuous variable in the final
model).

The model is presented in Equation (4.1) to (4.5).

minimize
|P |∑
i=1

M∑
m=1

z(i,m) (4.1)

subject to:

z(i,m) ≥ 0, ∀i,∀m (4.2){
p(i,m) − z(i,m) ≤ q(j,m)) + (1− x(i,j))U

∀i,∀j,∀m
(4.3)

|P |∑
i=1

x(i,j) ≥ 1, ∀j (4.4)

x(i,j) ∈ {0, 1},
z(i,m) ∈ R,

. ∀i, ∀j,∀m (4.5)

where, i = 1, . . . , |P |, j = 1, . . . , |Q|,m = 1, . . . ,M.

The objective function is shown in Equation (4.1). The goal is to minimize the
‘effort’ that one or more solutions from P must do to dominate all elements in Q. The
z(i,m) variable represents this move from the i -th element in P on the m-th objective.

Constraint (4.2) indicates that this movement must be positive, because this value
will be decreased from each value found in pi,m. Constraints in (4.3) indicate the use
of p′(i,m) obtained from the difference between pi,m and z(i,m). It must be less than qj,m

to assure that p′
(i) will dominate qj. In this sense, we have the binary variable x(i,j)

that assumes one when p′
(i) dominates qj, and zero otherwise. One last detail is about

the U that is a parameter assuming an arbitrary great value.

In 4.4, we guarantee that every qj must be dominated by at least one p′
(i). Finally,

in 4.5, we just emphasize the continuous and binary model variables.

As comparison with the former model discussed in last chapter, the Equations
4.6 to 4.8 present the number of variables and constraints of this compact formulation:
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# continuous variables = M(|P |), (4.6)

# binary variables = (|P |)(|Q|), (4.7)

# constraints = M(|P |)(1 + |Q|) + |Q|. (4.8)

Taking again the example which has M = 5, |P | = |Q| = 200, there are 1,000
continuous variables, 40,000 binary variables, and 201,200 constraints in this compact
formulation. Compared with its former formulation there is a significant reduction,
mainly in terms of the number of continuous variables.

4.4 Computational experiments

The new formulation test is the main issue. Therefore, the same experiments proposed
in Chapter 3 have been executed in a way to check the model’s results. Initially, some
problems sets in the multi-objective scenario were tested. These problems involve the
same instances from DTLZ and WFG problem families. The results found are all equal
to the former model, considering the final objective value function, or the MIP-DoM
value.

Considering the solution set P ′ generated as the optimal model solution, the
former and the new compact formulation present some differences. There are some
problems in which the result set is equal, but in others, the models produce different
result sets. This comes from the fact that some problems can have multiple optimal
solutions. Since the models are different, they treat DoM calculation from different
perspectives.

4.4.1 Many-objective problems

Our next test involves many-objective problems. Additionally, we want to verify how
the compact formulation tackles the former model’s computational time issues. In this
sense, we reproduce the same experiment that describes a test case that takes almost
208 hours to be solved.

The experiment proposes a comparison between MOEA/D and NSGA-III (i.e.,
just as an example), as in Chapter 3. The problem set parameters are set to L = 100,
170, and 240 and M = 3, 5, 10, and 15, respectively, for many-objective test problems
from DTLZ and WFG families. We use the same solver, GUROBI Gurobi Optimization
[2019], installed in a workstation with 24 virtual processors and 96 Gb of RAM.
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Table 4.1. Solution sets are generated by MOEA/D and NSGA-III algorithms. MIP-DoM
value and the time spent in seconds are presented, for the many-objective experiments for
DTLZ and WFG families. The number of points in the final non-dominated set is set to L
= 100, 170, and 240, and the number of objectives, M = 5, 10, and 15.

Problem MIP-DOM(P,Q) Value Time Spent (seconds)

Former
formulation

Compact
formulation

L=100
M=5

L=170
M=10

L=240
M=15

L=100
M=5

L=170
M=10

L=240
M=15

L=100
M=5

L=170
M=10

L=240
M=15

DTLZ1 (MOEA/D, NSGA-III) 1498.491 854.421 953.162 206.79 12889.29 418881.64 1.98 25.78 193.73
(NSGA-III, MOEA/D) 3351.770 6021.131 9688.700 352.02 1967.04 33323.49 3.19 19.75 117.08

DTLZ2 (MOEA/D, NSGA-III) 3.952 1.176 1.065 382.39 240.65 563.79 4.25 4.03 2.97
(NSGA-III, MOEA/D) 3.795 8.971 16.670 123.86 3150.55 24484.10 8.08 19.25 53.47

DTLZ3 (MOEA/D, NSGA-III) 2902.071 1879.789 2037.103 204.13 427.43 2141.41 2.67 2.92 10.16
(NSGA-III, MOEA/D) 6377.133 15381.813 23720.072 253.17 3273.67 25957.61 4.46 36.86 778.44

DTLZ7 (MOEA/D, NSGA-III) 6.850 5.169 9.880 545.03 26897.59 42416.19 7.01 172.51 134.44
(NSGA-III, MOEA/D) 0.000 23.154 58.337 3.14 3499.59 14684.85 0.04 6.02 7.83

WFG1 (MOEA/D, NSGA-III) 0.493 0.052 0.000 233.02 426.71 15.40 3.30 2.60 0.20
(NSGA-III, MOEA/D) 0.256 0.996 1.764 304.56 10007.41 22170.58 1.83 29.62 120.10

WFG2 (MOEA/D, NSGA-III) 2.255 0.970 0.089 421.62 1800.84 280.47 3.54 15.54 6.21
(NSGA-III, MOEA/D) 1.327 2.657 5.115 141.63 9026.51 89008.71 0.97 20.68 52.62

WFG3 (MOEA/D, NSGA-III) 4.838 9.519 12.310 8837.06 12837.96 59110.23 69.94 45.34 439.47
(NSGA-III, MOEA/D) 5.168 10.233 18.568 2561.97 4491.16 23590.15 26.31 14.80 76.82

WFG9 (MOEA/D, NSGA-III) 3.793 2.456 3.799 1057.01 2642.87 43607.81 3.97 12.87 39.71
(NSGA-III, MOEA/D) 4.020 13.605 31.157 810.48 9935.47 23662.07 5.16 62.47 42.98

In Table 4.1 the results are presented. The DoM value and the time spent by
the two formulations are shown. Considering the former formulation, one case related
to DTLZ1 takes almost 117 hours to complete. The same problem using the compact
formulation takes 194 seconds. There is no case where the compact formulation is worse
than the former. In general, based on the experiment, the behavior of the compact
formulation is a few hundred times better than the former model.

4.4.2 Computational time

MIP-DoM computation demands a mixed-integer linear programming instance execu-
tion. Considering the two formulations, we would like to compare how these formula-
tions behave related to a number of objectives and solutions. A formulation that can
use a small number of explored nodes, simplex iterations, or, in summary, a short time
computation is desirable. In this sense, an experiment comparing the two formulations
can emphasize how the formulations are different using computational time.

The time spent in seconds by the solver is the aspect to assess in our compu-
tational time study. Figure 4.1 presents an experiment using DTLZ1 problem, as an
example. We use 50 random solution sets as P , and the Pareto front Q is analytically



76 Chapter 4. MIP-DoM: a new compact formulation

calculated. The formulation as MIP-DoM(P , Q) is computed using these solution sets.
The question is to analyze how the formulations behave: an increment in population
size impacts the computational time, considering 5, 10, and 15 objective problems. In
Figure 4.1 a Log-log plot is presented, the y axis is the time spent by the model, and
the x axis is represented with L = 50, 100, 200, 300 and 400 solutions.
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Figure 4.1. Considering the former and compact formulation, an increase in computational
time with population size. Fifty experiments are done with L = 50, 100, 200, 300, and 400
solutions using the DTLZ1 problem.

In Figure 4.1, considering M = 5, 10 and 15, we can observe a polynomial-time
behavior for DTLZ1 in both formulations. Former model with O(L2.999), O(L3.137), and
O(L2.888), respectively considering M , and the compact model is O(L1.972), O(L2.134),
and O(L2.500). One drawback of the former formulation is the increment in the number
of solutions. The compact formulation alleviates this limitation. In Figure 4.1, inde-
pendently of the number of objectives, it is possible to see a significant decrease in the
solver time spent. The compact formulation general behavior is still polynomial, but
the reduction magnitude is relevant, mainly considering M = 5 and 10. In practical
situations, this behavior is substantial, and the observed reduction facilitates the use
of DoM.

Another computational time perspective proposed in Chapter 3 is related to
the model’s behavior if M is increased for many-objective problems. In Figure
4.2, the DTLZ1 problem set is used again, but in this case we vary values of
M = 7, 10, 12, 15, 20, 25 and 30 generating random solutions as P , and being Q ana-
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lytically calculated. As the same as before, our experiments measure the time spent
to calculate MIP-DoM(P ,Q), considering the former and compact formulation. For
each M , 50 experiments is executed with L = 200 solutions in the set. In Figure 4.2,
both axes are in log scale, and each box-plot graph is a test set with its associated M .

Figure 4.2 shows some interesting issues. Again, there is an improvement in the
time spent comparing the former and the compact formulation. The time spent is
O(L0.768), indicating that the former model formulation brings a linear relation to time
spent and the number of objectives. The compact formulation slope is more inclined,
and the complexity is O(L2.012), pointing out that there is polynomial relation between
the time spent and M .
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Figure 4.2. A time spent boxplot showing the results from the former and compact formu-
lation. For each boxplot, fifty experiments are done with L = 200 using the DTLZ1 problem
set definition.

4.4.3 Possible limits for the compact formulation

The compact formulation alleviates the time spent to calculate DoM. However, we
would like to explore more practical model limits and mainly advise a user about these
limitations. In such a way, we want to test significant cases and observe how the
compact model will perform.

The idea is to use different problems with big values for N and M , and assess
how the model will behave. We discussed the time complexity for the DTLZ1 problem
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in last chapter, but it was generated using random solutions. We want to test some
other problems using standard algorithms.

After some tests, we decide to use three different problem sets with N = 600

and M = 10: DTLZ1, C2-DTLZ2 [Jain and Deb, 2014], and MaF07 [Li et al., 2018]
using MOEA/D and NSGA-III algorithms. C2-DTLZ2 and MaF07 are irregular many-
objective problems, and besides other features, it brings clusters in their Pareto front.
We used the same MIP solver and workstation as described before in these experiments.
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Figure 4.3. Box-plots for compact MIP-DoM computational times for problems C2-DTLZ2,
DTLZ1, and MaF07. Data are obtained from 50 runs. The time spent by the model is in
seconds using a log scale on y axis.

Figure 4.3 present the box plot with the time executions for each problems. Data
are obtained from 50 runs. Small circles indicate some outliers. The maximum values
from the small circles are ≈ 26 hours, ≈ 35 minutes, and ≈ 24 hours for C2-DTLZ2,
DTLZ1, and MaF07, respectively. It exemplifies a case in practical limits when a user
will use MIP-DoM; the time spent in some cases for C2-DTLZ2 and MaF07 is still
high. Again, it poses a remaining question: Is it possible to calculate DoM with an
approach that can be less time-consuming?

4.5 Concluding remarks

In Chapter 3 we have discussed the first MIP model to compute DoM (based on the
assignment problem perspective). However, this formulation was complex and brought
a drawback related to the model time spent as the number of solutions in each set
increases.
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In this Chapter, a new compact formulation has been presented. This formulation
is more concise and straightforward. Moreover, compared to the former formulation,
the model has shown a reduced number of binary, continuous variables and the number
of constraints.

Experiments have assessed the compact formulation behavior. First, a validity
comparison with the former model has been made. Afterward, a time spent comparison,
in which we verify that the compact formulation improves some orders of magnitude in
time spent. It mainly occurred when there were increments in the number of solutions,
but there were still improvements concerning the relationship between the time spent
and the number of objectives.

However, even with the compact formulation improvement, we have observed a
polynomial behavior regarding the number of objectives, while the former model has
presented a linear relation. This fact has motivated us to investigate some situations
where there could be some practical limits to the compact model. This test has shown
us that there were cases where the compact formulation still took hours to compute.

Besides this fact, we believe that the improvement in time spent was relevant,
and the new compact formulation for the general MIP-DoM may be easily understood
by the EMO/EMaO community. Furthermore, we hope the compact model could help
address a broader number of scenarios.





Chapter 5

An approximate MIP-DoM
Calculation

5.1 Introduction

In Chapter 4, a compact MIP model to calculate DoM was discussed. It brought
an appropriate time spent reduction. Some computation instances take minutes, but
others still take hours. This fact is inherent to the number of objectives, cardinality,
and some inner characteristics involving the two solution sets, P and Q. A question
was posed: Is it possible to calculate DoM with an approach that can be less time-
consuming? In this chapter, we want to address this question and present an algorithm
that is able to calculate DoM using a MIP-DoM model while maintaining a trade-off
between time-consuming and accuracy.

For simplicity and to explain your motivation, let us assume that the number
of elements in P and Q are equal and given by L. The time complexity function is
defined by T = αLβ, in which α and β are two coefficients obtained using a linear
regression in a log-log plot with T and L. The primary motivation is to explore some
methodology that can reduce T . The main idea is related to a ‘divide and conquer’
approach to deal with the combinatorial nature of DoM.

The initial hypothesis behind an approximate MIP-DoM computation is to use
a preliminary cluster strategy. Based on this, it is possible to establish the plain
Proposition 2:

Proposition 2. Let P and Q be two solution sets with an equal number of elements
defined by L, a DoM(P , Q) calculation with a complexity function defined by T = αLβ,
in which α and β are two positive coefficients. Assuming C as the number of non-

81
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overlapping clusters, with the same number of elements, formed by elements from P

and Q. Then, the new complexity time function can be defined as TC = C
[
α
(
L
C

)β]. If
β ≥ 1, then TC ≤ T .

Proof. By contraposition, suppose that TC > T . In this way,

TC > T ⇒α

(
L

C

)β

C > αLβ(
Lβ

Cβ

)
C > Lβ

1

Cβ−1
> 1

C1−β > 1.

Then, we have that 1− β > 0⇒ β < 1.

The MIP-DoM calculation for some problem set instances has found β > 1,
considering the former model or the compact model. For example, for 5, 10 and 15-
objective in compact formulation in DTLZ1 problems, β ≈ 1.972, 2.134, and 2.500,
respectively.

Proposition 2 represents the rationale behind improving the MIP-DoM time spent
calculation, or the ‘divide’ phase of our proposition. A complement to this proposition
is related to the ‘conquer’ phase. It proposes a new MIP-DoM execution using the
P ′ points with some penalization information coming from the ‘divide’ phase. Conse-
quently, it is essential to observe that |P ′| << |P |, which alleviates the time spent by
this phase and shows that the merge phase does not represent a bottleneck (as will be
presented in our test sets).

Some research questions (RQs) and their implementation details regarding the
Proposition 2 must be addressed:

1. RQ1: How to cluster the solution sets P and Q?

2. RQ2: How to associate clusters of two P and Q?

3. RQ3: How to compute an approximate DoM value from individual cluster-wise
DOM values?

These questions are addressed in this chapter. RQ1 is related to clustering the
solution sets. We have tested some different algorithms such as affinity propagation
[Wang et al., 2019], mean-shift [Yizong Cheng, 1995], and K-means [Pham et al., 2005].
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The affinity propagation algorithm presents some context properties such as numerical
stability and deterministic behavior. RQ2 should try to assign each cluster from P

to each cluster from Q; we solve the problem as an assignment problem. Finally,
RQ3 discusses a two-phase approach in which MIP-DoM approximation maintains the
exact MIP-DoM values and properties. Considering the experiments performed, it can
generate values with an estimated error of less than 0.40% on average and reduce the
time spent by up to 5400 times.

This chapter is organized as follows: Section 5.2 presents some additional con-
cepts to our final approach: our justification of the final choice related to the affin-
ity propagation cluster algorithm, the assignment problem formulation, and the two-
phased proposal to the problem. In Section 5.3 our algorithm is presented with a
further discussion and some relevant details that deal with the approximate MIP-DoM
calculation. Section 5.4 brings some multi- and many-objective experiments to vali-
date the approximate MIP-DoM using affinity propagation with the optimal MIP-DoM
value and compare the time spent by the models. The final considerations and com-
ments are presented in Section 5.5.

5.2 Algorithm background

5.2.1 RQ1: Clustering

We discuss the first research question on how to cluster the solution sets P and Q. As
discussed in Chapter 2, clustering aims to divide the data points into subsets in such
a way that the elements belonging to the same subset are similar to each other.

Taking our context into consideration, we would like to have some clustering
method properties:

• Parameters : typically, clustering methods involve some parameters as inputs.
The difficulty is how to pick settings for those parameters. In this sense, we
would like algorithms that have as fewer parameters as possible;

• Clustering determinism: some cluster algorithms have a stochastic component
(e.g., a random initialization or a sampling approach). Our preference is related
to stable methods. We want reproducible results because if we run the same
algorithm using the same parameters, we always need to get the same clusters
and, consequently, the same final results. Still, if we vary some parameters, we
want a change in a somewhat stable, predictable manner. It is a fundamental
requisite for our approximation method in a way to reduce its variability;
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Algorithm 1: Affinity propagation
Input: S, λ, pr, Ta

Output: {c1, . . . , cC}
1 R,A ← 0, 0
2 t← 0
3 ∀k : s[k, k]← pr
4 while t < Ta do
5 // propagating responsibility

6 ∀i, j : ρ[i, j]←

(i ̸= j), s[i, j]− max
∀k:k ̸=j

(a[i, k] + s[i, k])

(i = j), s[i, j]− max
∀k:k ̸=j

(s[i, k])

7 // propagating availability

8 ∀i, j : α[i, j]←


(i ̸= j), min(0, r[j, j] +

∑
∀k:k ̸=i,j

max(0, r[k, j]))

(i = j),
∑

∀k:k ̸=i

max(0, r[k, j])

9 // updating responsibility
10 ∀i, j : r[i, j]← (1− λ)ρ[i, j] + λr[i, j]
11 // updating availability
12 ∀i, j : a[i, j]← (1− λ)α[i, j] + λa[i, j]
13 t← t+ 1

14 end
15 ∀i : c[i]← argmax

k
(r[i, k] + a[i, k])

16 return {c1, . . . , cC}

• Performance: a clustering algorithm with a computational complexity function
better than our Proposition 2 is a suitable choice for the problem. Moreover, we
should prefer a clustering algorithm that can scale up to large data sets.

Based on those criteria, we review some clustering methods. Unfortunately, k-
Means and Mean-shift do not present the numerical stability feature suitable for the
MIP-DoM approximation. Yet, for our calculation approach, this is a fundamental
requisite. As an alternative, affinity propagation clustering is a deterministic algorithm
(regarding its initial parameters) and is described next.

The clustering algorithm treats all points as potential cluster centers. The process
starts with the similarity matrix (S), which is constructed in a pairwise manner using
a similarity function, such as the negative Euclidean distance (values near zero indicate
similarity otherwise, the degree of dissimilarity between the points) [Wang et al., 2019].

Given S, the method tries to find ‘exemplars’ that maximize the net similarity.
The algorithm is a graphing approach and can be viewed as a message-passing process
through edges with two kinds of messages exchanged among data points. The respon-
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sibility matrix R with r[i, j] elements in with i, j ∈ {1, . . . , L}, means how well suited,
in an accumulated way, is the point j to be an exemplar to i. The availability matrix
A with a[i, j] elements in with i, j ∈ {1, . . . , L}, is a message from data point j to i

reflecting how appropriate it would be for data point i to choose data point j as its
exemplar.

The whole process is detailed in Algorithm 1. All responsibilities and availabilities
are initialized at 0. The λ parameter is a damping factor used to avoid numerical
oscillations. High value leads to slow run time but avoids numeric oscillations. There
is an interval recommendation to λ ⊆ [0.5, 1.0].

Another critical parameter is the preference pr, which is used to fill up the matrix
diagonal and indicates how appropriate the i-th point is to be selected as an ‘exemplar’.
High preference values will cause the method to find many clusters. Contrarily, low
values will generate a small number of clusters. Preference can be set as the median
similarities value.

The propagating responsibility between point i and j is indicated by ρ[i, j]. The
expression in line 7 of Algorithm 1 indicates the update using the similarity value
between points i and j minus the best value for a point i. The diagonal matrix values are
updated, as well, using the preference minus the second-best similarity value. Similarly,
α[i, j] is the propagating availability. Finally, the diagonal matrix is updated, reflecting
the accumulated evidence that the point j is suitable as an ‘exemplar’, based on the
positive responsibilities of k other elements.

The messages are updated and kept until convergence is met or the iteration
reaches a specific number.

The original algorithm has O(L2 Ta) time complexity . However, some variants
can improve it [Wang et al., 2019].

We decide to use the affinity propagation clustering algorithm in our approach
to approximate MIP-DoM calculation.

5.2.2 RQ2: Assignment

Considering each cluster from P and Q how to assign the subsets to calculate the
MIP-DoM for each subset assignment? The classical assignment problem is used in
many works in mathematical programming and management sciences, as discussed in
Chapter 2.

In Figure 5.1 we can see a bipartite graph with two sets CP and CQ which are
the clusters centroids/‘exemplars’ created from P and Q, respectively. Our problem
leads to an unbalanced version of the assignment problem. Here, our objective is to
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assign to all members of CQ one member from CP with the minimum cost, represented
by the edges. The unbalanced version indicates that a member of CP could not be
used in the final solution. Figure 5.1 presents an example, and a valid assignment from
CP to CQ representing our case.

The mathematical model for the assignment problem presented in Figure 5.1 can
be given by the Equation (5.1). Concerning the cluster number, it is given by |CP | and
|CQ|. The xij = 1 indicates if the i -th member of CP is assigned to the j -th member
of CQ, and 0 otherwise. The cij represents the distance to j -th assigned to the i -th.
The first constraint ensures that every member in CQ is assigned to only one member
of CP .

Minimize
|CP |∑
i=1

|CQ|∑
j=1

cijxij,

subject to:


|CP |∑
i=1

xij = 1 ∀j ∈ {1, 2, . . . , |CQ|},

xij = 0 or 1.

(5.1)

It is worth emphasizing that xij is a binary variable.
The time complexity in the assignment problems can vary due to problem speci-

ficity. We use the Hungarian method to solve the linear model detailed in Equa-
tion (5.1). It presents the following complexity: the O(ms + s2 log(r)) in which
m = |CP ||CQ| as the number of edges from P to Q, r = min(|CP |, |CQ|), and
s = max(|CP |, |CQ|) [Ramshaw and Tarjan, 2012] .

Cp1

Cp2

Cp3

Cq1

Cq2

Cq3

Cq4

Figure 5.1. One possible example of assignment between CP and CQ . The edges indicating
the assignment can be computed using the minimum distance from members CP to CQ.

5.2.3 RQ3: A Two-phase Approximate DoM Approach

How to use the MIP-DoM values in a ‘divide and conquer’ approach and guarantee that
it preserves the original MIP-DoM value? Based on the combinatorial nature of DoM
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a method that uses clustering followed by an assignment step to calculate DoM values
will probably, generate a solution with a little chance of being a good approximation.
The hypothesis is to improve the intermediary values from the ‘divide’ phase turning
the final value even better in the ‘conquer’ phase. We present more details in the next
section. In this way, it makes sense to observe that the approximation should always
be greater than the original MIP-DoM value.

5.3 Affinity propagation with a two-phase

MIP-DoM calculation

The MIP-DoM compact formulation, added with the affinity propagation, and the
assignment model are the building blocks of our approximation method. Hereafter, all
the referenced methods will be put together to explain the two-phase approach to the
problem.

5.3.1 Geometric Intuition

A simple and graphical example can illustrate our approximation proposal. Consider
two solution sets P and Q in the bi-objective space, and with four solutions in each
set, see Figure 5.2 plot 1. Our intention is to calculate MIP-DoM(P , Q) in a two-phase
manner, which mimics a ‘divide and conquer’ approach.

In Phase 1, the first step is to apply the clustering algorithm in both sets.
For that task, affinity propagation cluster is used in P and Q, separately. In Fig-
ure 5.2, plot 1, it is possible to observe that we have three clusters generated by
the method. Let us call |CP | and |CQ| the number of clusters generated, in plot 2,
|CP | = |CQ|, but it is not a requirement of our proposal. Lets call {P 1, · · · ,P |CP |}
as a set formed with all the subsets created in the cluster procedure. The assertion in
which P 1

⋃
P 2
⋃
· · ·
⋃

P |CP | = P is valid. The similar assertion is true to Q.

After the cluster method we have LP 1+· · ·+L
P |CP | = LP and LQ1+· · ·+L

Q|CQ| =

LQ. In Figure 5.2, phase 1, plot 1, we can observe three clusters from P and Q,
respectively, {P 1, P 2, P 3} and {Q1,Q2,Q3}. Each solution set member, now is a
member belonging to a cluster. Affinity propagation elects a solution as an ‘exemplar’
to represent the cluster. However, we decide to use the ideal point to represent each
cluster: constructed by each objective’s best value for all solutions owned by the cluster.
The ideal points are depicted in Figure 5.2, phase 1, plot 2.
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Figure 5.2. A bi-objective example of how the two-phase approximate MIP-DoM using a
clustering algorithm works. There are two phases and five plots in order. Plot 1 defines the
two solution sets P and Q and the clusters created for each one. In plot 2, using the clusters,
the ideal points are generated, and the assignment is done using such ideal points: built by
each objective’s best value for all solutions owned by each cluster. Plot 3 shows the original
MIP-DoM calculated for each cluster. It generates a MIP-DoM value for each cluster. The
generated MIP-DoM value is retained, and it is associated with each P ′ generated. Plot 4,
phase two is started, and the approximate MIP-DoM will be calculated, but a new parameter
is related to the intermediary MIP-DoM value, which comes from the first phase execution
(plot 3). Finally, plot 5 presents the approximate MIP-DoM and the final solution calculated
using the distance values.

The next step is how to assign the clusters ‘exemplars’ using CP and CQ sets.
Here, the assignment problem does not use the generated ‘exemplars’; instead, the ideal
point coming from each cluster is used. In plot 2, these points are emphasized. With
such points, the assignment is done using the Equation (5.1). The cij is calculated
using the Manhattan distance and represent the distance between the i -th cluster ideal
points from P to j -th cluster ideal points from Q.

The original MIP-DoM (compact formulation) is calculated for each assigned pair
of clusters, generating intermediary MIP-DoM values. The method returns the MIP-
DoM value and P ′ for each assigned cluster pair. In plot 3, Figure 5.2, the values
generated by each MIP-DoM execution are shown. In a ‘divide and conquer’ approach,
the first estimate appears in phase 1. Then, considering the problem, MIP-DoM is
calculated by summing the parts obtained from assignments. The first value is 4.4.

In plot 4, phase 2 is started, and now the P solution set is substituted by the
P ′ coming from all MIP-DoM cluster executions in phase 1. It is relevant to note that
the MIP-DoM offers not only a quality indicator value. The P ′ is a new solution set
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that can or can not dominate Q completely (it can not dominate totally because the
cluster approximation makes MIP-DoM ‘blind’ for the whole solution set). However, if
we re-execute MIP-DoM using the new solution set P ′ and the distance coming from
phase 1, it is possible to improve the final solution. An approximate MIP-DoM receives
an additional parameter, the intermediary value, indicated by Distance in plot 4.

Finally, the approximate MIP-DoM is calculated. It is shown in Figure 5.2, phase
2, plot 5, with the final solution (using the Distance MIP-DoM value and the new
P ′). Considering the MIP-DoM model, a new component is added to the objective
function. It works as a penalization strategy using the MIP-DoM execution values
as a parameter in this approximated MIP-DoM run (associated with each P ′ subset
comes from the first execution, we have a distance that represents a penalization for
the movement already done). The results from the approximated MIP-DoM are the
same as before. It generates the new, improved value (now with 3.4) and the new P ′,
which now dominates Q completely.

5.3.2 Proposed algorithm

With the algorithm’s intuition explained, it is possible to discuss other details. Addi-
tional aspects are presented in Algorithm 2. The P and Q solution sets are the first
two input parameters, and the pr, λ, and Ta are the last ones, and related to affinity
propagation clustering.

The first step is related to the similarity matrix calculation: SIMILARITYMA-
TRIX. As suggested in the affinity propagation algorithm, we use the negative Eu-
clidean distance. The total number of pairwise comparisons to calculate the pairwise
distance matrix is ⌈L(L− 1)/2⌉, and each comparison can be a vector operation with
M summations.

Secondly, we create the clusters using the affinity propagation, as detailed in
Algorithm 1: AFFINITYPROPAGATION. We use the similarity matrix obtained from
the last step. As we want the numerical stability, in a try and error approach, we decide
the damping factor λ to 0.9. The pr is another clustering parameter received in the
approximation MIP-DoM function, which will be better discussed afterward. The final
affinity propagation parameter is the maximum number of iterations. It is used as
a default value of Ta = 200. The affinity propagation method has the worst time
complexity as O(L2Ta).

The next step is how to assign the clusters from P to every cluster from Q. The
ASSIGNMENT method has two parameters related to clusters from P and Q which are
formed by the elements in each cluster, including the ‘exemplars’. The ASSIGNMENT
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method calculates the ideal points in each cluster. The number of clusters is |CP | and
|CQ| meaning the number of clusters suggested by the affinity propagation clustering
method. Assuming |CP | = |CQ|, the time complexity for this assignment in the worst
case is O(|CP |3). It is important to note that |CP | << L, which emphasizes the use
of the assignment formulation.

From the assignment step, we have tuples which indicate the clusters from P

assigned to every cluster from Q. For each tuple in the assignment, it is possible
to execute the model to calculate the MIP-DoM value: MIPDoM function in line 14
Algorithm 2. Dc is the intermediary MIP-DoM value, and P ′

c are the solution sets
generated by MIP-DoM. These values and solution sets are retained for the next and
final step.

The approximate MIP-DoM step involves the use of D values and P ′ solution
set: APPROXIMATEMIPDoM in line 20. The APPROXIMATEMIPDoM differ from
MIPDoM function in line 14, just by the D vector added in the objective function, all
the other details remained the same.D is a penalization vector used in the objective
function in APPROXIMATEMIPDoM

The cardinality of P ′ is much smaller than P , in other words, LP ′ ≪ LP . It
is relevant to note that if at least one solution in P ′ already dominates all Q, the
approximate MIP-DoM, APPROXIMATEMIPDoM, the value will be the same as the
MIP-DoM, MIPDoM, the value previously executed, using the D values as the final
result. The time complexity is decreased due to the P ′ cardinality.

Concerning all complexity time component functions in the Algorithm 2, we ex-
pect that our approximate approach has, in the worst case, a O(L2) complexity time.

5.4 Experiments

The first group of experiments intends to show how the approximate MIP-DoM be-
haves compared to MIP-DoM compact formulation. We would like to understand the
differences between MIP-DoM values and how fast the approximate can be. The sec-
ond group of experiments tries to deal with the limits for the compact formulation
presented in Chapter 4.

5.4.1 Multi-objective comparisons

To validate our propositions, some multi-objective benchmark problems are selected.
We use the same test sets as in Chapter 3 and 4. These problem test sets have three
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Algorithm 2: Approximate MIP-DoM with affinity propagation
Input: P ,Q,pr,λ,Ta

Output: ApproximateV alue
1 // PHASE 1
2 // calculating the similarity matrix
3 SP ← SIMILARITYMATRIX(P )
4 SQ ← SIMILARITYMATRIX(Q)
5 // generating the clusters from P and Q
6 P clusters← AFFINITY PROPAGATION(SP , λ, pr, T )
7 Q clusters← AFFINITY PROPAGATION(SQ, λ, pr, T )
8 // assigning clusters using the ideal points
9 Assignment← ASSIGNMENT (P clusters,Q clusters)

10 // calculating the MIP-DoM for each assigned cluster
11 P ′ ← ∅
12 D ← ∅
13 foreach {(pc, qc)} ∈ Assignment do
14 Dc,P

′
c ←MIPDoM(pc, qc)

15 P ′ ← P ′⋃P ′
c

16 D ←D
⋃

Dc

17 end
18 // PHASE 2
19 // final calculation using the approximate MIP-DoM
20 ApproximateV alue← APPROXIMATEMIPDoM(P ′,Q,D)
21 return ApproximateV alue

objectives and come from DTLZ and WFG families. We use DTLZ1, DTLZ2, DTLZ3,
and DTLZ7.

Some algorithms are used to generate the approximated Pareto front and use the
MIP-DoM indicator outcomes. We use IBEA, NSGA-II, NSGA-III, MOEA/D, and
SPEA2 to generate solution sets. The maximum number of fitness evaluations in the
experiments is set to 10,000, and each algorithm is executed 21 times.

We intend to compare two main factors: the time spent by the original MIP-DoM
(’exact‘) vs. our approximate approach and the error added at the value calculated by
our approximation.

A critical parameter in the affinity propagation MIP-DoM approximation is the
preference, pr, which highly influences the number of clusters. This parameter is input
in Algorithm 2. In the initial tests, we observe that the preference value significantly
influences the final result; in general, the median value is used. Therefore, we decide to
use a brute force strategy to assess the best testing of some percentile. It can represent
values near minimum, median, and maximum value of pr. Therefore, we establish
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0.01 meaning the minimum, 0.05, 0.5 as the median, 0.95 and 0.99 percentile as the
maximum (this value is calculated using the similarity matrix).

In Table 5.1, the experiment results are presented. This table is ordered by the
best algorithm results obtained by each algorithm in each problem set. In this table,
the values obtained from the exact MIP-DoM model are labeled as ‘Exact’ while the
values obtained in the best MIP-DoM approximation using affinity propagation, using
the best preference value, are labeled as ‘Approx.’ In the same manner, table shows
the time spent by each execution. The time spent in the ‘Approx.’ column summates
all preference percentiles.
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Table 5.1. Exact MIP-DoM(P ,Q) and Approximate MIP-DoM(P ,Q) values for the DTLZ
and WFG families for comparison among some algorithms. Observe that P is the solution
set generated by the algorithm, and Q is the non-dominated solution set from all algorithms
results combined. The two column’s groups detail the MIP-DoM values (Exact vs. Approxi-
mate) and time spent in seconds.

ProblemAlgorithms MIP-DoM Time spent (s)
Exact Approx. Exact Approx.

DTLZ1 IBEA 0.312 0.312 32.59 22.24
NSGA-III 0.551 0.551 7.21 10.87
MOEA/D 1.630 1.630 22.25 27.08
NSGA-II 6.422 6.422 4.49 4.45
SPEA2 11.139 11.139 5.04 2.47

DTLZ2 MOEA/D 0.970 0.970 1138.66 65.77
IBEA 1.000 1.000 9980.85 286.50
NSGA-III 1.004 1.004 10875.98 288.71
NSGA-II 1.013 1.013 3950.80 253.25
SPEA2 1.022 1.022 1129.99 72.73

DTLZ3 IBEA 0.049 0.049 16.72 5.00
NSGA-III 18.652 18.652 14.15 7.86
MOEA/D 25.374 25.374 122.72 3.94
NSGA-II 51.208 51.208 26.78 5.55
SPEA2 150.870 150.870 12.63 6.56

DTLZ7 NSGA-III 1.402 1.402 3345.07 364.33
IBEA 1.468 1.508 8075.00 135.76
MOEA/D 1.695 1.695 2520.99 23.90
NSGA-II 1.782 1.791 8260.20 363.03
SPEA2 2.184 2.184 2040.71 21.74

WFG1 IBEA 1.230 1.230 60.27 22.33
MOEA/D 1.557 1.557 158.81 36.62
SPEA2 1.659 1.659 341.12 78.79
NSGA-III 1.822 1.822 950.14 126.53
NSGA-II 1.944 1.944 184.51 60.14

WFG2 IBEA 1.503 1.503 283.05 39.53
NSGA-III 1.571 1.571 181.02 50.57
MOEA/D 1.683 1.683 328.40 17.25
NSGA-II 1.687 1.687 140.20 50.57
SPEA2 1.859 1.859 879.41 24.47

WFG3 IBEA 1.889 1.889 1368.77 269.54
NSGA-III 2.609 2.609 2334.96 855.45
NSGA-II 2.630 2.630 3491.16 440.10
MOEA/D 2.820 2.820 2238.82 1009.81
SPEA2 3.178 3.178 2119.42 425.97

WFG9 IBEA 1.965 2.024 673.26 23.05
NSGA-III 2.194 2.194 348.48 25.25
MOEA/D 2.331 2.331 263.90 20.80
NSGA-II 2.601 2.601 2898.88 22.89
SPEA2 2.759 3.030 748.76 27.74
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The difference between the Exact vs. Approximate value in some problem sets did
not exist. This is the case for DTLZ1, DTLZ2, DTLZ3, WFG1, WFG2, and WFG3.
The approximation value is always greater than the exact values. The first difference
appears to DTLZ7 for the IBEA algorithm, the difference is 2.72%, and for NSGA-II
the percentual difference is 0.51%. The next one is related to WFG9 for IBEA, and
SPEA2, with the values of 3.00%, and 9.82%. Regarding all the problem sets, the
experiment average difference is 0.40%.

Regarding the time spent, there is just one problem set in which the ‘Approx.’ is
higher than the Exact time spent: DTLZ1 for NSGA-III and MOEA/D. The first obser-
vation is that DTLZ1, in general, does not represent a critical demand/improvement in
the time spent considering the exact MIP-DoM. However, the approximation approach
maintained a similar time spent behavior compared with the exact MIP-DoM. The
differences are subtle, and the values are next to each other.

For all other problem sets, there are improvements in the time spent. The most
time-consuming problem sets are DTLZ2, DTLZ7, and WFG3. Regarding this problem
sets, there is an improvement range from ∼ 2 to ∼ 5105 times better, which happens
to WFG3 and DTLZ2 for MOEA/D.

As an approximation approach, the method is influenced by parameters. In the
approximate MIP-DoM, this parameter comes from the affinity propagation algorithm:
preference as pr. It is relevant to assess the behavior of this parameter in the experi-
ments.

A brute force strategy is used with some preference percentiles search space.
Table 5.2 tries to uncover the method behavior due to the preference parameter. The
two time-consuming problem sets of each family are exposed in more detail: DTLZ2
and WFG3.

Table 5.2 has three main columns exposing the MIP-DoM values, the number of
clusters, and the time spent. All these columns are detailed by the respective percentile
preference. The first observation related to preference is the non-monotonic behavior;
MIP-DoM values, the number of clusters, or the time spent; all of them present it.
For example, in WFG3 for NSGA-III, the percentile 0.01 and 0.05 shows the same
MIP-DoM value 3.034, it decreases with percentile 0.50, but it is increased again with
percentile 0.99.

Another interesting observation is that sometimes different percentile generated
the same number of clusters and produces the same MIP-DoM value. In fact, in these
cases, the same clusters were generated, resulting in the same final solution. This kind
of ‘memory’ is one of the improvements in the iterative call of the Algorithm 2. In
other words, the AFFINITY PROPAGATION is called before, and if the method
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generates the same clusters in which the results are known, there is no necessity to call
the Algorithm 2 again. This is a relevant fact; for example, let us consider the WFG3
for the IBEA algorithm, the total spent time presented in Table 5.1 do not compute
the percentile 0.05 , as it has generated the same clusters for percentile 0.01, as showed
in Table 5.2.

In Table 5.2, it is possible to observe that in some cases, the number of clusters
is 1. It happens for WFG3 in all algorithms but in different percentile preferences.
It means that the MIP-DoM will solve the exact problem with the same number of
solutions in each set. It happens for the DTLZ1 as well, for example. The exact MIP-
DoM computation must be avoided and treated. An early stopping procedure was
adopted in the approximate MIP-DoM, specifically in Algorithm 2 line 17: if there is
no improvement during 180 seconds, the MIP-DoM terminates and returns the current
solution. The early stopping is an additional parameter, and it must be specified for
each case.

One last interesting observation comes from the SPEA2 in both problem sets,
and in DTLZ2 for NSGA-III algorithm. The exact value is always obtained, and the
percentile variance is innocuous considering the MIP-DoM value.

5.4.2 Extending limits in many-objective scenarios

In the last chapter, we discussed possible limits for the proposed compact MIP-DoM
formulation. It was observed that some instances, even using the compact formulation,
can spend some hours to compute. This behavior can make the use of MIP-DoM
unfeasible in practical situations. Using the MIP-DoM approximation, we intend to
provide an alternative for this issue.

Again, as in Chapter 4, we use C2-DTLZ2, DTLZ1, and MaF07 problem sets. We
want to observe the MIP-DoM value differences and the total time the methods spend,
comparing the approximation method with the compact formulation. Experiments
using 50 runs each were executed with C2-DTLZ2, DTLZ1, and MaF07 problem in-
stances, N = 600, and M = 10 were set. The solution sets were generated with
MOEA/D and NSGA-III algorithms.

Figure 5.3 present three different plots for C2-DTLZ2 problem set. Starting left
to right, the first plot shows the MIP-DoM values obtained from 50 runs considering
the approximation method, labeled as ‘Approx.’, and the compact formulation, labeled
as ‘Exact’. We can see that there are 3 points in which the values obtained by the
approximation method are indicated as outliers. Disregard these 3 cases, all the other
values are near each other. These outliers compromise the Box plot view due to the
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Figure 5.3. A comparison between the approximate method and the compact formulation
using the C2-DTLZ2 problem set with 50 runs, N=600 and M=10. Plots with comparisons for
DoM values and time spent by the methods. The last box plot shows a percentage difference
between the methods.

plot scale; in Figure 5.4 we extract the outliers to give a better view. We can observe
that the ’Approx.‘ median value is higher than the MIP-DoM ’Exact‘ median, which
is an expected behavior.

Approx. Exact

0.0000

0.0002

0.0004
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0.0008

+1 DoM Values

Figure 5.4. A comparison between the approximate method and the compact formulation
using the C2-DTLZ2 problem set with 50 runs, N=600 and M=10. Plots with comparisons
for DoM values without outliers.

The second plot in Figure 5.3 shows the time spent by the two methods, and we
can observe 3 extreme cases in the compact model. They are the same cases pointed
out in the first plot on the ‘Approx.’ Box-plot. It indicates that the compact model
calculated these 3 cases, and the approximation method just did part of the job, and
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it could not get the final and correct MIP-DoM value. However, the improvement
in time spent comparing the approximation method with the compact formulation is
significant. The median values are ∼ 1200 and ∼ 22000 seconds, respectively.

Finally, the last plot in Figure 5.3 shows the distribution of the difference between
the MIP-DoM values from the exact to the approximation method. In all experiments,
we observed that the approximation method’s value is always greater than or equal to
the value calculated by the compact formulation. This plot exhibits that the median
difference is roughly zero percent, disregarding 3 previously mentioned cases.

Following, we test the DTLZ1 problem set. Figure 5.5 show the 3 plots again.
Considering the DoM Values, there were no discrepant cases at this time, and we
can observe an alignment between the Box-plots, taking the minimum, first quartile,
median, third quartile, and maximum quite similar. Considering the second plot,
detailing the time spent, we can observe a significant reduction. It is possible to
observe two outliers in‘Approx.’ case, they are next to the value of 1250 seconds,
and they have an equivalent behavior on the compact formulation, but with the time
spent greater than 1750 seconds. The last plot shows the same information as the first
plot, so there is a small percentage difference between MIP-DoM values from compact
formulation to approximate method.
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Figure 5.5. A comparison between the approximate method and the compact formulation
using the DTLZ1 problem set with 50 runs, N=600 and M=10. Plots with comparisons for
DoM values and time spent by the methods. The last box plot shows a percentage difference
between the methods.

The final experiment uses the MaF07 problem set. It is depicted in Figure 5.6,
on the first plot is possible to see that the median from ‘Approx.’ method is greater
than the ‘Exact’ method. As said before, it is expected behavior. The time spent
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on the compact formulation presents some outliers, the worst of them reaching more
than 80,000 seconds. The median time spent is ∼ 308 for the ‘Approx.’ method and
∼ 6705 for the ‘Exact’ compact formulation. Considering the MIP-DoM percentage
difference, the median is less than 0.78%. However, there are still some cases in which
the ‘Approx.’ method could not generate good approximations. Considering 50 runs,
there were 4 cases in which the percentual difference was more than five percent. It
must be taken into account when using the approximate method.
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Figure 5.6. A comparison between the approximate method and the compact formulation
using the MaF07 problem set with 50 runs, N=600 and M=10.Plots with comparisons for
DoM values and time spent by the methods. The last box plot shows a percentage difference
between the methods.

5.5 Concluding remarks

This chapter has analyzed and proposed an approximate MIP-DoM calculation using
the affinity propagation cluster algorithm. The results from our experiments have in-
dicated that the proposed Approximative MIP-DoM is computationally faster than
the exact MIP-DoM compact formulation model. In addition, there were some im-
provements in time spent with ranges from ∼ 2 to ∼ 5, 000, favoring the Approximate
MIP-DoM. Moreover, the Approximate MIP-DoM provided accurate estimates for the
exact MIP-DoM with a tiny average approximation error.

We also empirically presented the effects of the preference parameter. Our results
demonstrated that this percentile parameter had played an essential role in using a
brute force approach in the approximation method. In the future, a better way should
perform different strategies to find a better preference, such as the irace approach
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López-Ibáñez et al. [2016]. Nevertheless, it is still possible to predict these values
based on inner solution set features. Similarly, a parametric study could further show
the influence of λ and Ta, if any, in the approximation quality result.

Finally, we have explored some limits of the compact formulation. The approx-
imate method could alleviate the hard instances, bringing an interesting trade-off be-
tween the error rate and the time spent by the model. The general recommendation
was to run a set of trials, consider the experiment’s design, and use the median value
to avoid some possible outliers. It is also possible to improve the Hungarian method
used in the assignment step.

This MIP-DoM approximation approach has drastically reduced the computa-
tional cost of DoM. Therefore, we believe this approximate computation method can
enhance DoM’s applications in more EMO/EMaO use cases.
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Chapter 6

A Multi-Stage
Reference-vector-based Framework

6.1 Introduction

Evolutionary algorithms are regularly being used to find a set of trade-off Pareto-
optimal solutions for multi- and many-objective optimization problems. The use of
reference direction or reference points is not new [Zhou et al., 2009; Deb and Jain,
2014]. Using a reference point allows the algorithm to focus the search on more ‘pre-
ferred’ regions, potentially saving considerable computational resources. However, even
with the help of such information, there are some known shortcomings of EMO and
EMaO algorithms, as discussed in Chapter 2. Such drawbacks have been recognized
in the literature and still stay as open issues that require to be solved with systematic
approaches.

First, since EMO and EMaO algorithms are stochastic in nature, a single appli-
cation may not always produce a reproducible well-distributed and well-converged set
of non-dominated (ND) solutions over multiple applications. EMO researchers often
use multiple runs, each starting with a different initial population and present a me-
dian or average performing result. This is achieved by presenting the ND set obtained
by the median or mean-performing hypervolume (HV) or inverse generational distance
(IGD) run Ishibuchi et al. [2015a], or by using a more sophisticated attainment surface
method Fonseca et al. [2005].

Second, EMO and EMaO algorithms are expected to produce a prescribed number
of ND solutions, usually dictated by the chosen population size N (and/or number of
reference vectors R) Deb and Jain [2014]; Zhang and Li [2007], although the number of
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solutions needed to adequately represent a ND set may not be known a priori. But every
EMO or EMaO run may not produce the exact number of ND points as desired. This
can be mainly due to two reasons. First, the stochasticity involved in an algorithm’s
operators may have failed to find an ND solution for every specified reference vector
(RV). Second and more likely, since the exact location and shape of the efficient set
are not known before a run, all specified reference vectors may not associate with an
efficient solution, thereby causing less than |R| ND solutions to be found at the end of
the run. These issues make a comparison between two sets of ND solutions difficult.
For example, a reliable comparison using the HV metric or any uniformity measure
expects both sets to have an identical number of ND solutions. Moreover, since a
RV-based EMO or EMaO algorithm is designed to process |R| (usually equal to the
population size N) reference vectors, fewer ND solutions in a population cause a waste
of overall computational effort and memory.

Third, a set of ND solutions may indicate certain gaps in the apparent ND front
discovered by an EMO or EMaO algorithm. A gap in the ND front may artificially
arise from discovering fewer points in a certain area of the efficient front or a gap may
truly exist in the efficient front. Usually, a gap-confirming method [Pellicer et al., 2020]
with a focused EMO [Deb and Sundar, 2006] or focused EMaO [Vesikar et al., 2018]
is employed to confirm the true existence of a gap. However, if the true or artificial
existence of gaps can be confirmed and repaired during the optimization process, and
not as a post-optimal process, the resulting EMO/EMaO application is expected to be
more efficient and reliable.

Thus, although these known shortcomings are addressed with certain other ad-
ditional execution of specific tasks, it would be desired if the EMO/EMaO algorithms
are able to find a more reliable and reproducible ND set having exactly the desired
number of a uniformly distributed set of points on the entire efficient set with a clear
indication of true gaps and holes, if any.

In the recent past, EMO researchers have emphasized making a balance between
convergence and diversity in finding ND solutions and proposed multi-phase EMO and
EMaO algorithms. Balanced NSGA-III (B-NSGA-III) Seada et al. [2019] approach
identified one of the three possible stages – extreme point identification phase, uni-
form diversity enforcement phase, and local improvement phase. A recent study Tian
et al. [2021a] has followed three different distinct phases – convergence phase, diversity
preservation phase, and convergence-diversity phase. These approaches focus on iden-
tifying gaps and holes within their obtained ND front either explicitly or through their
innovative diversity evaluation performance indicators. But, none of these methods has
focused on finding a pre-specified number of ND solutions, which are evaluated during
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the optimization process to possess the convergence and diversity properties without
any artificial holes or gaps as a collection of final solutions with a given number of
solution evaluations.

This chapter attempts to address these issues by proposing a three-stage frame-
work to improve the performance of existing evolutionary multi and many-objective
optimization algorithms.

The first stage attempts to find a set of ND solutions roughly on the entire efficient
set by using a standard EMO or EMaO algorithm. Based on the achieved distribution of
solutions, the second stage focuses on to fill the apparent gaps and holes not covered by
the first stage. In the third stage, solutions from both stages are combined, and a final
EMO/EMaO algorithm is run in two iterations with a well-estimated population size
to arrive at the exact desired number of ND solutions having a better convergence and
uniformity. Later stages use populations obtained at the previous stages to maintain
continuity and also to reduce overall computational complexity. Moreover, repeated
emphases at critical regions of the search space ensure that the obtained solutions are
reliably close to the true efficient front.

In the remainder of this chapter, we briefly review of the main focus in EMaO
algorithms and motivate the need for a multi-stage framework involving EMaO al-
gorithms for reliably finding a specific number of ND solutions in Section 6.2. The
multi-stage framework is presented in detail next in Section 6.3 with the help of a
constrained test problem and a unconstrained practical problem. Results on a number
of three to 10-objective problems are presented in Section 6.4. A parametric study of a
single hyper-parameter of the proposed framework is presented in Section 6.5. Finally,
conclusions of this proposal are summarized in Section 6.6.

6.2 Shortcomings in identifying efficient fronts

reliably

Evolutionary algorithms have a clear niche in finding multiple efficient solutions for
multi- and many-objective optimization problems in a single run [Deb, 2001; Coello
et al., 2002; Shukla and Deb, 2005] compared to their traditional counterparts which
mostly work by finding a single efficient solution in a generational manner [Kaisa, 1999;
Steuer, 1986]. In EMO and EMaO algorithms, usually an emphasis for non-dominated
solutions to achieve convergence and an emphasis for diverse objective solutions to
achieve a uniform distribution are established either hierarchically or simultaneously.
In EMaO algorithms, a set of pre-specified normalized reference vectors (RVs) are
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used to help achieve a better distribution of solutions. Despite their ever-increasing
popularity in both developmental and application studies, there are a few shortcomings
which we highlight here, handling of which becomes the main motivation of this multi-
stage framework.

6.2.1 Reliable Convergence and Uniform Distribution of

Solutions

EMO and EMaO algorithms start with an initial population and use stochastic search
operators to iteratively improve two aspects – convergence towards the efficient frontier
and maintain a uniform distribution of solutions in the objective space. Convergence
aspect is achieved mostly by providing more selection pressure for non-dominated solu-
tions. Diversity of solutions is achieved by various means, including a crowding measure
estimating the number of solutions in the neighborhood. Original MOEA/D [Zhang
and Li, 2007] proposed the diversity maintenance through a pre-defined uniform set of
reference vectors in the objective space originating from the ideal point and preferring
solutions that are close to RVs and also close to the ideal point. This revolutionary
idea has been particularly found to work well for many-objective problems.

Some recent studies also suggested non-uniform distribution of reference vectors
based on Pareto-front shapes [Ma et al., 2020], [Ishibuchi et al., 2016], [Giagkiozis et al.,
2013], and [Jain and Deb, 2014]

While two aspects ‘convergence first, diversity second’ are undoubtedly the main
emphasis of any EMO and EMaO algorithms, their order and extent of use within
an algorithm are not yet settled. Some algorithms (such as, NSGA-II [Deb et al.,
2002], NSGA-III [Deb and Jain, 2014], SPEA2 [Zitzler et al., 2001] and others) use a
hierarchical ‘convergence first, diversity second’ strategy, whereas recent studies have
raised questions about this strategy. Too much focus on convergence early on may lead
to a loss of diversity in population members, thereby making a diversity enhancement
difficult in certain problems. It is clear that a ‘diversity first, convergence second’
strategy may not be that useful, as although a well-distributed set of solutions is
possible to achieve early on the search space far away from the efficient front, it may
be difficult to maintain the diversity all along towards the convergence phase of the
algorithm at the latter part of the run. However, a number of studies have proposed
the need to strike a balance between convergence and diversity from start to finish
during a run.

In chapter 2 some multi-stage or multi-phase algorithms was presented, such
as C-TAEA [Li et al., 2019b], MOEA/D-AWA [Qi et al., 2014], B-NSGA-III [Seada
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et al., 2019], CMOEA-MS [Tian et al., 2021b], CLIA [Ge et al., 2019], RVRL-EA
[Ma et al., 2021], and MSEA [Tian et al., 2021a]. These approaches generally divide
the optimization process into a certain number of stages and apply different selection
strategies in these stages. In this way, the diversity performance of the multi-stage
evolutionary algorithm is improved. Some algorithms deal with constraint problems;
others are integrated only with a decomposition-based algorithm, and all of them are
defined as new EMO or/and EMaO algorithm.

These existing multi-stage EMaO algorithms attempt to stress convergence, di-
versity, or both, whenever needed during the evolutionary process, but lack significant
actions towards reinforcing the true convergence and diversity of evolving solutions. In
the single-objective evolutionary algorithm literature, restarts are often employed to
help the algorithm to escape from premature convergence and also to reinforce conver-
gence to true optimal solutions. However, due to multi-faceted goals in multi-objective
optimization, restarts must have different goals. From a prematurely stuck existing ND
solution set, how would a restart be initiated so that convergence, diversity, or both
can be achieved in the next phase, depending on what is lacking in the stuck set of
population members? Such a restart strategy should not only be disruptive to the pre-
vious stuck phase and, if done properly, can address various aspects of multi-objective
problem solving in a systematic manner and help produce a more reliable set of ND
solutions. Our proposed multi-stage framework is a step toward this effort.

6.2.2 Fewer than Expected Number of Solutions

In an EMO or EMaO, we usually target a set (say N) of well-distributed and well-
converged ND solutions. The parameter N is user-supplied. If a run produces less than
N ND solutions at the end, there are at least two difficulties. First, it does not fulfill
the stated requirement and second, it may be difficult to compare or statistically come
up with a single performance measure for two or more competing such sets having
different number of points. No existing method guarantees this aspect and most often,
solutions from a big archive are chosen to find exactly N solutions. This may not
produce the best possible distribution achievable with N ND points and beats the
algorithmic spirit of search for N well-distributed solutions.

6.2.3 Gaps in the Obtained Non-dominated Front

Some algorithms were proposed to identify apparent gaps in obtained efficient set and
employ additional tasks to fill the gaps. In Pellicer et al. [2020], a three-step algorithm
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was proposed to deal with identifying and filling gaps in obtained ND fronts. In the first
step, a well-distributed and converged solution set is obtained (using an EMO/EMaO
algorithm). The second step tries to identify whether there are real gaps (based on
inner problem characteristics) or not. Two indicators are proposed to help in this step.
The third step attempts to fill the gap based on the outcome of the second step. This
study only attempted to find and fill gaps, but did not focus on finding a pre-defined
number of ND points, nor did the study make the steps use points from previous steps
to make the overall approach more computationally efficient.

Based on the above discussions, we set our goal of arriving at a multi-stage
framework involving an EMO/EMaO algorithm having the following properties:

1. A coherent and seamless three-stage algorithmic framework with a possibility
of skipping second or third stages completely based on the number of well-
distributed ND solutions achieved,

2. A multi-stage framework that attempts to find as close to the desired number of
ND points and having as uniformly distributed as possible on the entire feasible
efficient set,

3. A multi-stage framework that repeats its search among critical parts of the search
space to ensure a reliable set of well-converged and well-distributed ND points,
and

4. A multi-stage framework which is pragmatic in using existing seed solutions,
implementable with any existing reference vector based EMO/EMaO algorithm,
executed for a budget of solution evaluations, and controlled with a single well-
tuned parameter.

6.3 Proposed Multi-Stage Framework

Our multi-stage framework improves the performance of a specific reference vector
based EMO/EMaO algorithm (such as, NSGA-III Deb and Jain [2014] or MOEA/D
Zhang and Li [2007]) to find a prescribed number of repeatable, well-converged and
well-distributed set of efficient solutions (N). The chosen RV-based EMaO algorithm
uses a set of reference vectors (R) usually equal to the population size N , an initial
seed population P seed of any size, and the preset number of solution evaluations (SEs)
TS, and produces a set of non-dominated solution set S of size N . Note also that the
size of the supplied initial population P seed need not be same as N or |R|. The initial
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Algorithm 3: MuSt-EMaO Framework.
Input: EMaO (optimization algorithm), N (desired number of solutions),

TS = (T1, T2, T3) (number of solution evaluations), P seed (initial
population)

Output: S (a reliable and well-distributed ND solution set)
1 // Stage 1
2 R1 ← GenerateReferenceVectors(N);
3 S1 ← EMaO(R1, P seed, T1);
4 [ST1

1c , R1c] ← Classify(R1, S1);
5 if |ST1

1c | < N then
6 // Stage 2
7 S2 ← EMaO(R1c, S1, T2);
8 S12 ← NonDominance(ST1

1c ∪ S2);
9 [S0

3c, R12c] ← Classify(R1, S12);
10 else
11 S2 = ∅, S0

3c = ST1
1c ;

12 T3 ← T2 + T3;
13 end
14 // Stage 3
15 S0

3 ← S1 ∪ S2;
16 N3 = N ;
17 for i = 1:2 do
18 N3 ← int

(
N(N3/|Si−1

3c |)
)

;

19 Ri
3 ← GenerateReferenceVectors(N3);

20 Si
3 ← EMaO(Ri

3, S
i−1
3 , T3/2);

21 Si
3 ← NonDominance(Si−1

3 ∪ Si
3);

22 [Si
3c, Ri

3c] ← Classify(Ri
3, Si

3);
23 end
24 if |S2

3c| < N then
25 S2

3c ← NonDominance(S1
3c ∪ S2

3c);
26 end
27 S ← Reduce(S2

3c, N);

population generation operator creates exactly N = |R| population members at the
first generation by the EMaO algorithm’s operators from P seed. The proposed MuSt-
EMaO uses three stages, dividing TS SEs among them satisfying TS = T1 + T2 + T3,
where Ts is the number of SEs for the s-th stage. The pseudo-code of the proposed
MuSt-EMaO is presented in Algorithm 3.

Stage 1 of MuSt-EMaO framework makes the first attempt to generate an evenly
distributed ND solution set using an existing reference vector based approach (the
baseline EMaO algorithm). We apply the Riesz s-energy method discussed in Blank
et al. [2021] to first create exactly N reference lines (R1) by GenerateReferenceVectors
operator in Line 2 and execute the EMaO algorithm for a maximum of T1 SEs (Line 3).
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EMaO starts by creating an initial population of size N from the supplied P seed of
any size. Applying the baseline EMaO algorithm, we obtain the first non-dominated
solution set (S1 of size N1 (≤ N)). The next task in Stage 1 is to classify the reference
vector set R1 into two classes: (i) active reference vector (ARV) set and inactive
reference vector (IRV) set by using the proposed Classify operator. This operator first
associates every member of S1 with a reference line based on the shortest normalized
Euclidean distance (identical to the d2 operator in MOEA/D [Zhang and Li, 2007]
or NSGA-III [Deb and Jain, 2014]). Then, all reference vectors for which there is an
associated member from set S1 are saved in the ARV set. Let us say that the solution
set ST1

1c (⊂ S1) is associated with the ARV set R1c. The remaining ND solutions of
S1 are saved as S1c = S1 \ ST1

1c and the corresponding reference vectors are saved in
the IRV set as R1c = R1 \ R1c. Note that the IRV set indicates the region on the
unit simplex for which no ND solutions are found in Stage 1.

If the cardinality of ST1
1c is less than the number of desired solutions (N), then

the MuSt-EMaO framework goes to Stage 2 (Line 5), in which a separate EMaO is
run to find ND solutions for IRVs from the Stage 1 using R1c. Solutions from Stages 1
and 2 are then combined, NonDominance operator finds the ND set in Line 8, and
the resulting ND set is classified to find associated points for the original R1 RVs,
generating S0

3c.
On the other hand, if Stage 1 is able to find an associated point for each R1 RV,

Stage 2 is omitted, and remaining T2 and T3 SEs are allocated to Stage 3.
Next, the MuSt-EMaO framework moves to Stage 3, irrespective of whether the

total number of ND points obtained from combined Stages 1 and 2 is still less than
N , or equal to N . In case of former, Stage 3 creates new ND points by increasing the
number of RVs beyond N , so that N points are found by Stage 3 EMaO execution,
and in case of latter, Stage 3 uses the remaining SEs (T3) with N RVs to improve the
obtained solutions. The first task in Stage 3 is to estimate the number of required
reference lines for this purpose. We suggest linearly scaling the population size by
making the argument that if N reference vectors have produced S0

3c ND points in the
combined Stages 1 and 2, how many reference vectors are needed to produce N ND
points? We calculate this estimate as N3 in Line 18. The first iteration of Stage 3
applies the same EMaO algorithm with a combined population S1 and S2 of all ND
solutions found in Stages 1 and 2 as an initial population. The EMaO algorithm is run
for N3 number of reference vectors (set R1

3 created in Line 19) for half of the allocated
SEs for Stage 3. This produces a new ND set S1

3 in Line 20. The associated ND
points are saved in set S1

3c. In order to not leave out any previously obtained better
distributed ND points, S1

3c is combined with S0
3c, and a better set S1

3 of size of |R1
3|
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is chosen in Lines 21-22. Since at least N RVs are used in Stage 3, it is likely that two
iterations will find N or more ND points at the end of Stage 3.

There is still a remote possibility that we are not able to have more than or equal
N points. Line 24-25 treats this case. Solutions from S1

3c and S2
3c are combined, the

NonDominance operator is used, generating a new S2
3c.

Finally, S2
3c set is then reduced to have exactly N final points in Line 27.

6.3.1 An Illustration

We illustrate the working of the proposed MuSt-EMaO framework with NSGA-III
through a simulation on three-objective C2-DTLZ2 constrained problem. Figure 6.1(a)
shows the active reference point set on the unit simplex by ‘+’ that have an associated
ND point from the final population of NSGA-III algorithm run with N = |R| = 100

reference points and other standard parameter settings [Deb and Jain, 2014]. The
respective ND objective vectors are shown with circles in Figure 6.1(b). A total budget
of solution evaluations of TS = 20, 000 is divided as T1 = T2 = 5, 000 and T3 = 10, 000.
It is clear that each ARV has at least one ND solution assigned to it. For this problem,
Stage 1 is able to find |ST1

1c | = 65 ND solutions. Each RV in the IRV set (35 RVs
represented with a ‘×’) does not have an ND solution associated with it in Stage 1.
This can be a failure on the part of the NSGA-III algorithm or the C2-DTLZ2 problem
does not possess any true efficient point associated with the IRVs. This is intended to
be verified at Stage 2 by executing NSGA-III again with a special focus in attempting
to find efficient solutions corresponding to the IRV set only. This makes the MuSt-
EMaO framework more reliable than a single algorithmic run with a focus on all RVs
on the entire unit simplex.

f1 f2

f3

(a) RV set R1 for Stage 1

R1c: ARVs R1c: IRVs

f1 f2

f3

(b) Stage 1 ND set

ST1
1c solution set

Figure 6.1. Stage 1 of MuSt-EMaO framework is illustrated on C2-DTLZ2 problem. Of
|R1| = 100 RVs, 65 ND points are obtained with T1 = 5, 000 SEs in Stage 1.

In Stage 2, the same EMaO algorithm is applied with the Stage 1 ND set S1 as
the initial population, but only with the inactive reference vector set R1c. This allows
to focus the search on the part of the efficient front left out at Stage 1 and finds a
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new ND set S2 in Line 7. In the illustrative problem, |R1c| = 35. Stage 2 NSGA-III
execution finds |S2| = 11 new ND points that were not found in Stage 1, as shown in
Figure 6.2. The non-dominated solutions of the ND sets of Stages 1 and 2 (ST1

1c and S2)
are identified and stored in S12 in Line 8. 65 and 11 (or |S12| = 76) ND solutions are
shown in Figure 6.2(b) with solid and open circles, respectively. The respective ARV
points (for Stage 2 solutions are shown in Figure 6.2(a) with a ‘+’ symbol. This ND
set is then classified using the original entire reference set R1 to identify the associated
points S0

3c and the IRV set R12c in Line 9. An explicit focus in undiscovered region
provides the reliability of the proposed framework, as depicted in the figure. The total
number of ND points found after Stages 1 and 2 are |S0

3c| = 76 for the C2-DTLZ2
example.

f1 f2

f3

(a) RV set R1 for Stage 2

R1c: ARVs R1c: IRVs

f1 f2

f3

(b) Stage 2 ND set

ST1
1c solution set S2 solution set

Figure 6.2. Stage 2 of MuSt-EMaO framework is illustrated on C2-DTLZ2 problem. 11
new ND points are found in Stage 2, making a total of 76 points (out of 100 original RVs)
obtained with T1 + T2 = 10, 000 SEs.

The first iteration of Stage 3 estimates that N3 = int (100(100/76)) = 131 refer-
ence vectors are needed. Figures 6.3(a) and (b) show that 96 ND solutions are found.
These points are denser but are all within the feasible region of the efficient set. How-
ever, the number of obtained points is close, but still not equal to the desired number
N = 100.

The above linear estimation procedure for an increased number of reference vec-
tors R1

3 does not require any complicated information on the region where more RVs
are required to be added, as proposed in the adaptive NSGA-III procedure Jain and
Deb [2014]. More RVs are simply placed on the entire unit simplex. In the second it-
eration, the required number of RVs is estimated to be N3 = int (100(131/96)) = 136.
Figures 6.3(c) and (d) show the obtained 100 ND points (equal to the desired number of
N = 100 points), which are slightly more packed compared to iteration 1 of Stage 3. It
is clear that without the iterative process, it would have been difficult to predict exactly
how many RVs were required to be chosen the desired number of efficient points.

One can argue that instead of going through two iterations within Stage 3, one
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(a) RV set R1
3 for Stage 3-1, N3 = 131

R1
3c: ARVs R1
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f1 f2
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(b) Stage 3-1 ND set
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3c solution set
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(c) RV set R2
3 for Stage 3-2, N3 = 136
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3c: ARVs R2

3c: IRVs

f1 f2
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(d) Stage 3-2 ND set

S2
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Figure 6.3. Two iterations of Stage 3 of MuSt-EMaO framework are illustrated on the C2-
DTLZ2 problem. 20 more ND points are found on Stage 3, Iteration 1 ((a) and (b)), making
a total of 96 points, and, finally, 4 more points are found on Stage 3, Iteration 2 ((c) and (d)),
making 100 points at the end. Both iterations of Stage 3 use T3 = 10, 000 SEs.

can double or triple the number of RVs and make a single iteration in Stage 3 and then
use the reduce operator to adjust the ND points to N . This alternate approach is not
viable in a few ways. First, as argued above, it is difficult to know beforehand how
many RVs are needed to produce N well-distributed ND points. Second, there is waste
of computational effort in dealing with unnecessarily large RVs. Our two-iteration
approach in Stage 3 makes a good compromise among the naive larger-than-required
RV approach and many meticulous iterations to slowly reach the desired number of
RVs.

Note that the proposed MuSt-EMaO framework does not demand too many crit-
ical parameters. The N is the desired number of ND solutions and is not a parameter.
The total SEs, TS, is also not a parameter, but two of the three SEs: T1, T2, and T3 are
the only required parameters to be set. In this sense, we intend to have only one param-
eter: γ is the proportion of TS to be set for T3: T3 = γTS. Therefore, T1 = T2 =

1−γ
2
TS.

Since that Stage 3 needs to find denser points, we suggest that Stage 3 should take the
lion’s share of TS. We perform a parametric study in Section 6.5 to suggest a suitable
value of γ.
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6.4 Results

In this section, first, a set of computational tests is designed aiming to assess the
performance of the proposed multi-stage approach with NSGA-III [Jain and Deb, 2014]
as an EMaO algorithm. In this case, well-known quality indicators are employed, and
the MuSt-NSGA-III is compared with the baseline NSGA-III approach on a set of
benchmark problems. Thereafter, the general applicability of the proposed MuSt-
EMaO approach is tested on other EMaO algorithms. In this case, our goal is to
investigate if the performance of different reference-based EMaO algorithms can be
improved by the multi-stage approach proposed in this study.
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Figure 6.4. NSGA-III and MuSt-NSGA-III results for the median HV run for MaF07
problem show a better distribution obtained by the latter with identical SEs.

6.4.1 Proof-of-Principle Results of MuSt-NSGA-III Approach

First, we integrate the proposed MuSt-EMaO framework with NSGA-III and attempt
to solve two-objective and three-objective problems to gain insights into the working
principle of the proposed multi-stage framework.

To demonstrate the distribution of final ND points obtained from NSGA-III and
MuSt-NSGA-III algorithms, we plot the efficient points from the median performing
runs for the three-objective MaF07 problem in Figure 6.4. In all cases, N is set to 100.
Both algorithms are implemented using the pymoo framework Blank and Deb [2020a].
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In all tests, both algorithms are executed with TS = 20, 000 for all problems, For MuSt-
NSGA-III, we use T1 = T2 = 5, 000, so that γ = 1/2. Other NSGA-III parameters are
set to their standard settings: pc = 1, pm = 1/n, ηc = 30, and ηm = 20. It is clear that
MuSt-NSGA-III is able to find a better distributed set of efficient points compared
to NSGA-III. This visual comparison is aided with quantifiable quality indicators in
Table 6.1.
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Figure 6.5. NSGA-III and MuSt-NSGA-III sample results for the crashworthiness problem.
50 runs are executed and the ND points from the median HV run are plotted for each case.

There are exactly 100 ND points spread almost uniformly on the four clusters of
the efficient front. Despite many reference vectors in the original set R1 not conforming
to any efficient solution, our MuSt-NSGA-III is able to find more active reference
vectors in Stage 3 and provide a well-distributed efficient point set with the same
number of SEs (TS = 20, 000) as the baseline algorithm.

Another example is the crashworthiness problem depicted in Figure 6.5. The
non-dominated solutions from the median HV over the 50 runs are shown. It is clear
from the figure that MuSt-NSGA-III procedure is able to find a better distribution with
more solutions. Similar behaviour is also observed for other problems, supporting the
superiority of the proposed multi-stage approach from the five uniformity indicators
used here.
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Figure 6.6. Active RVs from NSGA-III on unit simplex with 100 and 335 reference points,
respectively, at the top and bottom-left. Associated RVs for MuSt-NSGA-III ND solutions
are shown at the bottom-right, which uses the same 335 reference points on the entire unit
simplex. Each symbol on the plots indicates the number of solutions assigned to each RV.
MuSt-NSGA-III finds more active RVs

Clearly, with 100 RVs on the entire unit simplex in NSGA-III, only 38 RVs are
found to have associated population members. No matter how many generations are
executed, this number will not change much, but the objective vectors may come closer
to the RVs making the overall distribution better with generations. However, NSGA-III
does not put any specific emphasis in arranging the distribution of other ND solutions,
which are not the closest associated RV solutions. Thus, locations of these additional
ND solutions are not expected to make the overall distribution uniform. The top plot
in Figure 6.6 marks each of the active reference points on the unit simplex. First,
notice that there are many inactive reference points on the simplex, shown with a ‘−’.
Second, notice from the shape of the markers indicating the number of ND population
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members that are associated with each ARV is that some reference points have more
associated population members and some are not. All 100 ND points obtained by
NSGA-III are also shown in left plot in Figure 6.5, clearly depicting the non-uniform
density of points. This is expected to happen to problems in which not all RVs of the
unit simplex are expected to have an associated point.

However, in Iteration 2 of Stage 3, 335 RVs were estimated and used in the median
HV run. The left plot in Figure 6.6 shows all 335 reference points on the unit simplex
and associated reference points are marked with different markers according to the
number of neighboring ND population members associated with them. Now, 59 of
335 reference points are active. However, when the active reference points are marked
with MuSt-NSGA-III ND points, there are 87 reference points with one population
member, 9 reference points with two population members and two reference points
with 3 population members found. This makes a total of 100 points having a much
closer to uniform distribution than NSGA-III points. Since our density adjustments
are made on the entire unit simplex uniformly by increasing the number of reference
points, the uniformity in distributed points is also expected to be better on the efficient
frontier.
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Figure 6.7. Average hypervolume (solid lines) and the number of active RVs (dotted lines)
obtained using NSGA-III (calculated from two sets, closest for each ARV and all ND) and
MuSt-NSGA-III for the crashworthiness problem.
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A convergence behavior through HV can give us another perspective of how the
three stages of our proposed framework work compared to the baseline algorithm.
Figure 6.7 shows the average HV variation over a number of SEs from 50 runs for three
different cases of HV computation executed after every generation of each algorithm
with (i) the closest MuSt-NSGA-III ND population member to each associated RV,
marked as ‘MuSt-NSGA-III’, (ii) all NSGA-III ND population members, marked as
‘Extended NSGA-III’, and (iii) the closest NSGA-III ND population member to each
associated RV, marked as ‘NSGA-III’. The number of such population members are
also shown with values shown on the right vertical axis. For MuSt-NSGA-III, the
final population from the previous stages and the current population are combined
to find associated active points, and HV is computed from them. Thus, a solution
evaluation-wise HV variation is expected to be mostly monotonic, as can be seen in
Figure 6.7. It can also be seen that very early on, NSGA-III is able to find 100 ND
population members (shown by the gray dashed line). NSGA-III and MuSt-NSGA-III
find a similar number of active RVs until about 10,000 SEs (until the end of Stage 2).
This is not surprising because both these algorithms employ the same baseline NSGA-
III until then, and Stage 1 is able to capture most of the active RVs, and Stage 2 does
not add many new ARVs. However, due to the increase in total RVs using our proposed
estimation procedure, the number of ARVs drastically increase in Iteration 1 of Stage 3
and some more in Iteration 2. Stage 1 was saturated with 38 ARVs (our of 100 RVs),
and without these iteration-wise increases in RVs, as in original NSGA-III shown with
dotted line, the algorithm would not have increased the number of ARVs close to the
desired number (N = 100). It is also clear that Iteration 2 of Stage 3 is not able to
produce exactly 100 ARVs, but Line 24 to 27 of Algorithm 3 allows a combination of
both iteration’s points together to produce exactly 100 solutions at the end.

The HV variations reveal that NSGA-III and MuSt-NSGA-III perform almost in
the same manner during Stages 1 and 2. However, MuSt-NSGA-III improves the HV
by adding more ND points in both iterations of Stage 3, whereas NSGA-III’s HV does
not improve due to lack of denser active ND solutions in the population. But, if all ND
solutions are used to compute HV, marked with ‘Extended NSGA-III’, a slight increase
in HV from the HV computed with single active ND point, marked with ‘NSGA-III’ is
observed. The HV for ‘MuSt-NSGA-III’ is better due to a more uniformly distributed
set of increasingly denser points obtained by our multi-stage framework.

The above deeper analysis of the behavior of the proposed MuSt-NSGA-III com-
pared to the original NSGA-III makes a better understanding of the working principle
of the proposed approach. Furthermore, it provides us with confidence to apply the
approach to solve other problems and integrate with other EMaO algorithms.
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6.4.2 MuSt-NSGA-III Applied to Multi-objective Test

Problems

Next, we apply MuSt-NSGA-III to a number of multi-objective test problems. We use
some of the performance quality indicators discussed in Chapter 2:

• Hypervolume performance quality indicator with nadir point as the reference
point. Higher the HV value, better is the set in terms of convergence and diversity;

• MIP-DoM as a binary quality indicator. Smaller the value, better is the approx-
imation set;

• k-th nearest neighbor as a naive uniformity of ND solutions measure. We use
the mean and standard deviation of the (k = ⌊

√
M − 1⌋) values of ND solutions.

A large value of mean and a small value of standard deviation are desired;

• Spacing (SP) measures how uniform the ND solutions are according to the stan-
dard deviation of Euclidean distance from their nearest neighbors. Smaller spac-
ing values indicate better distribution;

• Uniform Distribution (UD) is a niching-based unary quality indicator that mea-
sures the standard deviation in niche count values of solutions. Larger the metric,
more uniform is the distribution. As discussed in Chapter 2 there is a user-
specified parameter, it is the σshare. In all simulations of this study, we have set
σshare as 20% of the maximum nearest neighbor distance of reference points on
the unit simplex;

• Finally, we use the Evenness (ξ) as an indicator to measure gaps, if any, by a
coefficient of variance measure of two critical neighbor distances of all ND points.
Smaller the value, the better is the evenness.

Using the above quality indicators, the computational experiments are designed
to assess the performance of the MuSt-NSGA-III for comparison to its baseline version
in 12 multi-objective problems. ZDT3 and MaF07 present disjoint efficient sets having
natural gaps in their respective efficient fronts. Crashworthiness and car side-impact
problems are practical problems and involve non-linearity and non-convexity features
of the efficient front. Other problems from the MaF benchmark suite (designed for
CEC’2018 MaOP competition) are selected: MaF01, MaF10, MaF11, and MaF12,
which present linear, non-separable, biased, convex/disconnected, and concave features.
A few DAS-CMOP family problems having multiple disjointed clusters in their efficient
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fronts are also selected. For DAS-CMOP7 to DAS-CMOP9 problems, the difficulty
triplets are set to (0.5,0.5,0.5).

Table 6.1 presents the average quality indicator values obtained by NSGA-III and
MuSt-NSGA-III over 50 runs of both algorithms on 12 problems. In all cases, N is set
to 100. In all tests, MuSt-NSGA-III is executed with TS = 20, 000 for all problems,
except for DAS problems, for which we use TS = 100, 000. For all problems, γ = 1/2

is chosen. The Wilcoxon signed-rank test with a significance level of 0.05 is applied to
assess the statistical significance of the obtained values. Data in italics means that the
p-value is more than 0.05, and it is not possible to reject the null hypothesis that the
distribution of the differences between NSGA-III and MuSt-NSGA-III is symmetric at
about zero. Data in bold indicates the best value between the approaches.

It is important to observe that in some problems, the base algorithm is not
able to generate N solutions as pre-specified, mainly due to the non-existence of an
efficient solution for every chosen RV. To make a fair comparison with our multi-stage
framework, and we use an extended solution sets which are ND solutions but are not
necessarily the closest point to each RV. This makes the total number of ND points
equal to N = 100, which is also set in MuSt-NSGA-III.

Table 6.1. Experimental results of baseline NSGA-III with extended ND solution set and
MuSt-NSGA-III. Seven performance indicators are used to statistically compare both algo-
rithms over 50 runs. Symbols ↑ and ↓ indicate better metric values for large and small values,
respectively.

Problem Algorithm M N HV MIP-DoM ↓ k-neighbors distance SP ↓ UD ↑ ξ ↓ #RVs
mean ↑ std dev ↓ mean ↑ std dev ↓ Stage 3, i=2

ZDT3 NSGA-III 2 100 0.4806 0.0038 0.1086 0.0071 0.0048 0.0068 0.6983 1.6641 -
MuSt-NSGA-III 100 0.4816 0.0006 0.1594 0.0083 0.0028 0.0040 0.9634 1.6300 177

DTLZ2 NSGA-III 3 100 0.7917 0.0000 0.7201 0.1049 0.0034 0.0052 1.0000 0.0858 -
MuSt-NSGA-III 100 0.7916 0.0002 0.7253 0.1031 0.0037 0.0061 0.9975 0.0902 100

MaF01 NSGA-III 3 100 0.0146 0.0002 1.7711 0.0175 0.0147 0.0227 0.5329 0.8066 -
MuSt-NSGA-III 100 0.0162 0.0001 1.7393 0.0439 0.0073 0.0102 0.9748 0.2392 343

MaF07 NSGA-III 3 100 0.2503 0.0150 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236 -
MuSt-NSGA-III 100 0.2551 0.0092 1.4508 0.0498 0.0133 0.0190 0.8781 0.6991 222

MaF10 NSGA-III 3 100 0.5153 0.0893 1.0939 0.0290 0.0171 0.0266 0.5922 0.8987 -
MuSt-NSGA-III 100 0.6177 0.0289 1.2600 0.0500 0.0141 0.0218 0.9359 0.7319 187

MaF11 NSGA-III 3 100 0.7273 0.0635 1.5877 0.0855 0.0198 0.0282 0.9030 0.2285 -
MuSt-NSGA-III 100 0.7371 0.0614 1.5133 0.0868 0.0146 0.0204 0.9868 0.2098 106

MaF12 NSGA-III 3 100 0.6640 0.0019 2.2017 0.0837 0.0192 0.0272 0.9049 0.2311 -
MuSt-NSGA-III 100 0.6646 0.0020 2.2286 0.0858 0.0141 0.0194 0.9951 0.2119 102

Carside impact NSGA-III 3 100 0.2288 0.0005 1.9857 0.0506 0.0334 0.0498 0.6919 0.4876 -
MuSt-NSGA-III 100 0.2303 0.0009 2.0307 0.0733 0.0118 0.0163 0.9671 0.2117 143

Crashworthiness NSGA-III 3 100 0.1101 0.0027 1.4844 0.0195 0.0166 0.0260 0.5440 0.9333 -
MuSt-NSGA-III 100 0.1139 0.0019 1.0682 0.0403 0.0112 0.0169 0.7991 0.6205 325

DAS-CMOP7 NSGA-III 3 100 0.7331 0.0074 0.9922 0.0778 0.0244 0.0359 0.8402 0.3194 -
MuSt-NSGA-III 100 0.7330 0.0060 0.9918 0.0794 0.0158 0.0237 1.0000 0.2881 109

DAS-CMOP8 NSGA-III 3 100 0.7148 0.0065 0.9917 0.0837 0.0199 0.0292 0.9017 0.2955 -
MuSt-NSGA-III 100 0.7156 0.0027 0.9963 0.0834 0.0161 0.0239 0.9975 0.2974 111

DAS-CMOP9 NSGA-III 3 100 0.2744 0.0513 0.4712 0.0139 0.0135 0.0209 0.4625 0.9744 -
MuSt-NSGA-III 100 0.2912 0.0509 0.5330 0.0194 0.0122 0.0183 0.4766 0.8128 396

The Wilcoxon signed-rank test with a significance level of 0.05 was applied to perform a statistical comparison between
the approaches. Thus, the data in italics means that it is not possible to detect differences between NSGA-III and
MuSt-NSGA-III. Data in bold indicates the best value between the approaches.



6.4. Results 121

Analyzing Table 6.1, some important features of the proposed multi-stage ap-
proach can be highlighted. First, we argue that the MuSt-EMaO maintains the inner
characteristics of the baseline reference-based algorithm. If the problem allows finding
all N solutions at Stage 1, like in ZDT3 and DTLZ2 problems, MuSt-NSGA-III and
the baseline NSGA-III perform precisely the same way. In three-objective DTLZ2,
there is no hole or clusters in the efficient front. Then, only Stage 1 of the multi-stage
approach is executed for the entire TS SEs. Hence, both baseline NSGA-III and MuSt-
NSGA-III are identical algorithms. The table shows that all quality indicators present
no statistical difference among the results. This degeneracy of our proposed algorithm
to the baseline algorithm was a desired feature.

Second, observing the hypervolume values, it is possible to observe that the MuSt-
NSGA-III always produce a larger hypervolume value than its baseline version, except
for DAS-CMOP7. However, the statistical test indicates that there is no statistical
difference between the algorithms on this problem. However, MuSt-NSGA-III is statis-
tically better on MAF01, MaF07, car side-impact, crashworthiness, DAS-CMOP8 and
DAS-COMP9 problems. For the MIP-DoM metric, except in ZDT3, MuSt-NSGA-III
is statistically better or equivalent to NSGA-III on all 11 problems. All other indi-
cators capture the reliability and uniformity of the ND solution set. MuSt-NSGA-III
clearly performs better than the baseline algorithm considering all the indicators. The
only exceptions are the k-nearest neighbor distance mean and Evenness indicators for
DAS-CMOP8 problem; however, the tests indicate no statistical difference between
their values.

Third, the standard deviation on HV shows that, in most problems, the variation
of HV over 50 independent runs has a much smaller standard deviation compared
to NSGA-III, meaning that the performance of MuSt-NSGA-III runs produce almost
similar set of 100 ND points. The coefficient of variation (standard deviation of HV
divided by the mean HV) varies between 0.0000 and 0.1748 with a median of 0.0072,
while NSGA-III values vary between 0.0001 to 0.187 with a median of 0.0119.

Fourth, the last column of the table presents the number of RVs needed in It-
eration 2 of Stage 3 of MuSt-NSGA-III to obtain N = 100 ND solutions. As it can
be seen, about four times more RVs than the required ND solutions are needed. For
the DTLZ5 problem shown in the Appendix A, about 19 times more RVs are needed.
These numbers are difficult to predict at the beginning and our proposed multi-stage
approach adaptively estimates a requisite number of RVs needed to find the desired
number of ND points.
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6.4.3 Multi-stage Framework Applied to Other EMaO

Algorithms

The computational results so far were achieved using the NSGA-III as the baseline
reference-vector based algorithm. However, the multi-stage approach can also be inte-
grated with any other reference-based EMaO as long as a requirement is met. Since
in the multi-stage approach, the initial population from Stage 1 must be used in Stage
2, and in Stage 3, the baseline algorithm must allow the user to set an initial popula-
tion instead of always a random one. Three additional reference-based algorithms are
included in this study: MOEA/D [Zhang and Li, 2007], C-TAEA [Li et al., 2019b],
and CLIA [Ge et al., 2019]. The algorithms have been implemented using pymoo and
PlatEMO frameworks, [Blank and Deb, 2020a; Tian et al., 2017].

Table 6.2. MaF01 problem set with M = 3. The experiment involves 50 trials, and each
algorithm is run with TS = 20, 000. Some selected quality indicators are tabulated for our
discussion here.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 100 0.0146 1.7711 0.0175 0.0147 0.0227 0.5329 0.8066
MuSt-NSGA-III 100 0.0162 1.7393 0.0439 0.0073 0.0102 0.9748 0.2392

MOEA/D 97 0.0129 1.7946 0.0261 0.0269 0.0409 0.4709 0.8589
MuSt-MOEA/D 100 0.0161 1.7473 0.0424 0.0085 0.0122 0.9282 0.2808

C-TAEA 100 0.0153 1.7449 0.0289 0.0130 0.0205 0.5552 0.5800
MuSt-C-TAEA 100 0.0162 1.7770 0.0450 0.0079 0.0108 0.9646 0.2233

CLIA 100 0.0164 1.8025 0.0345 0.0128 0.0198 0.7148 0.4338
MuSt-CLIA 100 0.0164 1.7332 0.0450 0.0085 0.0110 0.9687 0.2318

CLIA 100 0.0163 1.8537 0.0344 0.0128 0.0199 0.7123 0.4323
MuSt-CC 100 0.0164 1.6558 0.0438 0.0087 0.0120 0.9798 0.2466

The performance quality indicators – HV, k-neighbors distance mean, k-neighbors
distance standard deviation, Spacing, UD, and Evenness – are used as quality indica-
tors. The Wilcoxon signed-rank test with a significance level of 0.05 was employed to
assess the statistical significance of the values. Data in italics means the p-value is
more than 0.05, and it is not possible to detect difference between the values. Data in
bold indicates the best value between the multi-stage approach and its baseline.

Table 6.2 presents seven performance indicators obtained for five EMaO algo-
rithms with and without the multi-stage approach on three-objective MaF01 problem
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(similar to the inverted DTLZ1 problem). As described in Chapter 2, Section 2.1,
CLIA [Ge et al., 2019] is an algorithm which combines two interactive processes: Cas-
cade Clustering (CC) and Reference Point Incremental Learning. CC uses reference
vectors to create and sort the solutions, while the SVM model adjusts these references
throughout the evolutionary process. Therefore, we want to apply CLIA as a baseline
algorithm in MuSt-EMaO in two different contexts.
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Figure 6.8. MOEA/D and MuSt-MOEA/D ND solutions from the median HV run of 50
runs for MaF01 problem.

Initially, CLIA is applied as the reference-based algorithm in MuSt-EMaO just
like other EMaO algorithms (NSGA-III, MOEA/D, and C-TAEA). Thereafter, we in-
tegrate our multi-stage framework coupled with the Cascade Clustering (CC) of CLIA.
The rationale behind this idea is that although the SVM model in the incremental
learning phase improves the uniformity of adjusting the reference vectors, it presents
a quadratic computational cost related to the number of objectives. We argue that
the proposed multi-stage approach can improve the reliability and uniformity, when
coupled with CC. In this context, to assess the effectiveness of the reference vector
adjustments, we turn off the incremental learning approach from CLIA and integrate
our MuSt-EMaO framework with the Cascade Clustering process (MuSt-CC). Inter-
estingly, in all performance quality indicators, the respective multi-stage version has
obtained statistically better or equivalent performance.
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To show the distribution of obtained points, we plot MOEA/D obtained ND
points in the left plot of Figure 6.8. These points come from the median HV run.
The ND points from MuSt-MOEA/D are shown in the right plot. Clearly, the multi-
stage procedure is able to produce a much better distribution of points on the MaF01
problem.
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Figure 6.9. C-TAEA and MuSt-C-TAEA ND solutions from the median HV run of 50 runs
for MaF07 problem set.

Note from Table 6.2 that MOEA/D could not find 100 ND points. We allow a
5% less number of ND points that desired to compute the performance indicators. Any
further discrepancy in the number of ND solutions will not make the comparison be-
tween two vastly unequal sets fair. The experiment is extended for two more problems:
MaF07 and MaF11 in Tables 6.3, and 6.4, respectively.
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Table 6.3. MaF07 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented. MOEA/D
algorithm is not able to generate 100 solutions; hence, we do not compute and compare the
quality indicators with the multi-stage approach.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 100 0.2503 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236
MuSt-NSGA-III 100 0.2551 1.4508 0.0498 0.0133 0.0190 0.8781 0.6991

MOEA/D 85 - - - - - - -
MuSt-MOEA/D 100 0.2205 1.1091 0.0374 0.0148 0.0229 0.7366 0.7080

C-TAEA 100 0.2603 1.3762 0.0272 0.0224 0.0335 0.4616 1.1244
MuSt-C-TAEA 100 0.2702 1.3036 0.0467 0.0143 0.0211 0.8916 0.7503

CLIA 100 0.2076 1.5099 0.0314 0.0221 0.0341 0.4909 0.9842
MuSt-CLIA 100 0.2218 1.3957 0.0441 0.0110 0.0164 0.8425 0.7239

CLIA 100 0.2066 1.6067 0.0310 0.0225 0.0347 0.5065 0.9870
MuSt-CC 100 0.2162 1.2410 0.0436 0.0110 0.0163 0.8264 0.7390
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Figure 6.10. CLIA and MuSt-CLIA ND solutions from the median HV run of 50 runs for
MaF11.

It is important to note that MOEA/D could only find 85 ND solutions with
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100 RVs on the entire unit simplex for MaF07 (presented in Table 6.3) and MaF11
problems. The final population of MOEA/D does not have any more ND points to
increase the number of ND points to the desired number (100, in our case). Thus, we
do not compute the performance indicators to compare with its multi-stage version.

Analyzing the results from MaF01 problem, presented in Table 6.2, a similar pat-
tern observed in Table 6.1 also appears here. There is a significant statistical difference
favoring the multi-stage approach when the uniformity indicators are analyzed. For
MuSt-CLIA and MuSt-CC, regarding the HV indicator, there is no statistical difference
between the baseline algorithm and the multi-stage approach.

Table 6.4. MaF11 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented. MOEA/D
algorithm is not able to generate 100 solutions; hence, we do not compute and compare the
quality indicators with the multi-stage approach.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 100 0.7273 1.5877 0.0855 0.0198 0.0282 0.9030 0.2285
MuSt-NSGA-III 100 0.7371 1.5733 0.0868 0.0146 0.0204 0.9868 0.2098

MOEA/D 85 - - - - - - -
MuSt-MOEA/D 100 0.3593 0.7533 0.0535 0.0103 0.0162 0.6854 0.5377

C-TAEA 100 0.5782 1.3290 0.0608 0.0297 0.0446 0.7901 0.6010
MuSt-C-TAEA 100 0.7500 1.3526 0.0675 0.0174 0.0264 0.9696 0.4102

CLIA 100 0.7389 1.5326 0.0727 0.0264 0.0408 0.9729 0.4795
MuSt-CLIA 100 0.7406 1.5397 0.0737 0.0195 0.0303 0.9803 0.3794

CLIA 100 0.7398 1.5356 0.0723 0.0258 0.0399 0.9819 0.4827
MuSt-CC 100 0.7421 1.5423 0.0743 0.0188 0.0293 0.9893 0.3746

Figure 6.9 shows the ND points from C-TAEA and MuSt-C-TAEA. A better
distribution of ND points can be observed with the multi-stage procedure.

In Table 6.4, the results on MaF11 problem are presented. In this case, there is
a statistical difference in CLIA comparisons related to HV. However, considering the
k-neighbor distance mean, the pair-wise values are very close, and there is no statistical
difference. In Figure 6.10, it is possible to observe the CLIA and MuSt-CLIA solution
sets.

In the Appendix A, more results on other problems, such as, ZDT3, C2-DTLZ2,
MW14, some more MaF problems, and DAS-CMOP problems, are provided.
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6.4.4 MuSt-NSGA-III Applied to Many-objective Problems

Next, to analyze the effect of the number of objective functions on the proposed ap-
proach, MaF07 and C2-DTLZ2 are considered. For both problems, the number of
objective functions is set to M = 3, 5, 8, and 10 using N = 100, 200, 400, and 600,
and TS = 20, 000, 40, 000, 80, 000, and 120, 000, respectively. Only NSGA-III and
MuSt-NSGA-III are used in this study. Table 6.5 shows the average of performance
indicators over 50 runs on MaF07 problem.

Table 6.5. Number of objective functions is set to M = 3, 5, 8, and 10, with N = 100,
200, 400, and 600, and, TS = 20, 000, 40, 000, 80, 000, and 120, 000, respectively, for MaF07
problem. Average of quality indicators for 50 runs are presented.

Algorithm M N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 3 100 0.2503 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236
MuSt-NSGA-III 100 0.2551 1.4508 0.0498 0.0133 0.01900.87810.6991

NSGA-III 5 200 0.2284 3.3726 0.0970 0.0606 0.0760 0.6224 0.7188
MuSt-NSGA-III 200 0.2300 3.0803 0.1323 0.0392 0.05850.92120.4425

NSGA-III 8 4000.0528 5.4310 0.1489 0.0700 0.1234 0.6698 0.6098
MuSt-NSGA-III 400 0.0526 5.5817 0.1731 0.0518 0.08640.81190.4571

NSGA-III 10 6000.0323 5.5446 0.1982 0.0662 0.1382 0.6721 0.5454
MuSt-NSGA-III 600 0.0319 5.6760 0.2167 0.0359 0.06720.95000.3827

Considering HV and MIP-DoM, the results of MuSt-NSGA-III for M = 8 and 10

are not statistical different from NSGA-III. All other results bring evidences favoring
the multi-stage procedure. In Figure 6.11, a comparison of ND solutions for eight-
objective MaF07 problem from NSGA-III and MuSt-NSGA-III are shown on parallel
coordinate plots (PCPs). Visually, it is possible to observe a better regularity in the
position of the lines for MuSt-NSGA-III, particularly for objective functions f3, f7, and
f8.
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Figure 6.11. Parallel coordinate plots for NSGA-III and MuSt-NSGA-III for the MaF07
problem with M = 8. 50 runs are made and the presented results come from the median HV
run.

Table 6.6 shows the results for C2-DTLZ2. There is no statistical difference for
HV, MIP-DoM, and k-neighbors distance mean indicators, as the number of objectives
increase. All other indicators show a more uniform distribution for MuSt-NSGA-III,
as observed for the MaF07 problem.

Table 6.6. Number of objectives is set to M = 3, 5, 8, and 10, N = 100, 200, 400, and
600, and, TS = 20, 000, 40, 000, 80, 000, and 120, 000, respectively, for C2-DTLZ2 problem.
Average of quality indicators for 50 runs are presented.

Algorithm M N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 3 100 0.7379 0.9331 0.0573 0.0365 0.0540 0.6965 0.4780
MuSt-NSGA-III 100 0.7476 0.9221 0.0710 0.0140 0.0199 1.0000 0.3506

NSGA-III 5 200 0.9603 1.0005 0.1647 0.0459 0.0812 0.7818 0.4874
MuSt-NSGA-III 2000.9607 1.0004 0.1695 0.0268 0.03401.0000 0.4197

NSGA-III 8 4000.9812 1.0007 0.2036 0.0732 0.1199 0.7741 0.5038
MuSt-NSGA-III 400 0.9811 1.0013 0.2042 0.0464 0.0563 0.9969 0.4798

NSGA-III 10 6000.9612 1.0002 0.2255 0.0765 0.1247 0.7921 0.4951
MuSt-NSGA-III 6000.9612 1.0007 0.2314 0.0698 0.0815 0.0849 0.4437
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6.5 Parametric Studies

Algorithm 3 shows that four input are needed to execute the MuSt-EMaO framework.
Of them, the EMaO algorithm, desired number of ND solutions, and the overall number
of SEs are supplied by the user and are not algorithm parameters which can be set
in any way by the developer. The above section has shown how the proposed MuSt-
EMaO framework can be integrated with a number of EMaO algorithms to improve
their performance in terms of finding a well-distributed set of a pre-specified number
of desired ND point reliably. The use of three stages adaptively determines if the first
stage will continue until all pre-specified number of solution evaluations are completed,
or if the algorithm has to move to Stage 2 to ensure if any active RVs is left out, or if
the algorithm needs to produce denser points to come up the desired number of ND
points. The P seed is the initial supplied population, which is again an optional entity,
supplied by the user. If the user does not have any specific initial seed population to
supply, the algorithm can create a random population to start Stage 1. The proposed
multi-stage procedure requires only one parameter: γ, which determines the proportion
of total SEs to be dedicated to Stage 3, while the remaining SEs are equally distributed
between Stages 1 and 2. Therefore, the number of desired ND points (N) is truly not a
parameter for the algorithm but is the expected number that the user needs to provide.
In this section, first, we show that the MuSt-NSGA-III works well with N values other
than 100.

6.5.1 Effect of Number of Desired Solutions

The above experiments have attempted to find N = 100 ND solutions. Next, we
investigate the effect of number of desired solutions (N) on the performance of our
proposed multi-stage procedure. Table 6.7 presents the results on the MaF07 problem
for three different N values: 50, 100 and 200. We use a linearly proportionate SEs:
10,000, 20,000 and 40,000 for the three scenarios, respectively. We have also set γ = 0.5

in this study. It is clear from the table that MuSt-NSGA-III is able to produce a more
uniformly distributed set of efficient solutions compared to NSGA-III for the same
number of respective SEs over 50 runs. In most cases, MuSt-NSGA-III is statistically
superior to NSGA-III.

Next, we consider the crashworthiness problem and show the results for N =

50, 100 and 200 as well in Table 6.8. For this problem, MuSt-NSGA-III performs
statistically superior to NSGA-III over 50 independent runs, clearly indicating the
advantage of the multi-stage procedure.
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Table 6.7. Results using MaF07. Number of solutions are set to N = 50, 100, 200 and
M = 3, using TS = 10, 000, 20, 000, and 40, 000, respectively. Average of quality indicators
for 50 runs are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 50 0.2416 1.1875 0.0446 0.0367 0.0557 0.6489 0.7807
MuSt-NSGA-III 0.2421 1.0841 0.0692 0.0229 0.03370.79880.5837

NSGA-III 100 0.2503 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236
MuSt-NSGA-III 0.2551 1.4508 0.0498 0.0133 0.01900.87810.6991

NSGA-III 200 0.2546 1.5469 0.0170 0.0118 0.0183 0.5922 1.1038
MuSt-NSGA-III 0.2565 1.4665 0.0335 0.0078 0.01130.89900.8840

Table 6.8. Results using Crashworthiness. Number of solutions are set to N = 50, 100,
200 and M = 3, using TS = 10, 000, 20, 000, and 40, 000, respectively. Average of quality
indicators for 50 runs are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean ↑ std dev ↓

NSGA-III 50 0.1091 1.4982 0.0275 0.0246 0.0388 0.5625 0.9016
MuSt-NSGA-III 0.1132 1.3401 0.0592 0.0187 0.02830.78460.5409

NSGA-III 100 0.1101 1.4844 0.0195 0.0166 0.0260 0.5440 0.9333
MuSt-NSGA-III 0.1139 1.0682 0.0403 0.0112 0.01690.79910.6205

NSGA-III 200 0.1135 1.4164 0.0138 0.0110 0.0172 0.5268 1.0229
MuSt-NSGA-III 0.1162 0.9642 0.0281 0.0074 0.01080.82260.7266

6.5.2 Effect of the Solution Evaluation Budget on Each Stage

Next, we perform a parametric study with the γ parameter, that decides the individual
SEs for each stage. We assume that T1 = T2, providing two equal chances for the EMaO
algorithm to reliably find a set of ND solutions by first focusing on the entire efficient
set in Stage 1 and then focusing on the IRVs in Stage 2, that could not be covered
in Stage 2. Using TS as the total number of solution evaluations, we define T3 = γTS

and T1 = T2 = 1−γ
2
TS. Based on this setting, three different configuration tests are

designed with γ = 1/3, 1/2, and 2/3. Therefore, for example, considering 10,000 total
solution evaluations, a configuration set with γ = 1/2 will set T1 = 2, 500, T2 = 2, 500,
and T3 = 5, 000. Note that Stage 3 involves two iterations.

Our goal is to determine the statistically best setting considering all quality in-
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dicators and all problems used in this study. However, the usual multiple pairwise
comparisons, such as the ones done in the Wilcoxon test, suffers from the multiplica-
tive effect to control the family-wise error rate [García et al., 2010]. We adopt two
non-parametric statistical tests that are able to make multiple comparisons. The first
test, the Friedman test, ranks the algorithm’s performance for each problem and com-
putes the average performance among problems, and uses these rankings to test the
null hypothesis: the equivalence of median metric value for different γ values versus
the alternative hypothesis that two or more medians are different. The second test,
the Quade test [García et al., 2010], considers the difference among the problems. It
calculates the range of the problems as the maximum differences between the samples
and ranks the k problem ranges. Then, these ranks are assigned to the problems and
represent a weight to the ranks obtained by the Friedman method. Finally, it uses the
same null and alternative hypotheses as in the Friedman test.

Table 6.9 shows the Friedman test results using the HV values in the top part of
the table. The mean HV value and the ranking of each γ is shown for each problem
in brackets. The mean HV-based ranking is tabulated in the last row. While γ = 1/2

performs the best, the other two values are also statistically equivalent. Similar tables
are also produced for all other indicators. The complete Friedman table for each quality
indicator is shown in the Appendix A. Here, we show only the final ranking for the
other indicators.

The numbers indicate that it is not possible to reject the null hypothesis, conclud-
ing that there is an equivalence among all three γ values for the hypervolume metric.
We conduct the same test using the Quade ranking test, and even considering the differ-
ent problem difficulties, it is again impossible to reject the null hypothesis. Therefore,
the experiments present no statistical difference related to this quality indicator. The
same phenomenon happens to k-neighbors distance mean, UD, and Evenness, in which
it is not possible to observe statistical differences among different γ values.

Contrarily, k-neighbors distance std-dev and spacing have produced different re-
sults. Results indicate statistically significant differences among γ values, preferring
γ = 1/2 and 2/3.

The main drawback of the Friedman and Quade tests is that they can only detect
significant differences over multiple comparisons. A general recommendation approach
is: if the null hypothesis is rejected, we should proceed with a post-hoc procedure to
characterize these differences [Carrasco et al., 2020]. Then, applying a post-hoc test, we
can obtain a p-value that determines the degree of rejection of each pairwise hypothesis.
Therefore, we conduct a post-hoc analysis using the adjusted p-values calculated by
Shaffer’s procedure [Derrac et al., 2011].
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Table 6.9. Friedman ranks for HV mean for all config sets using γ = 1/3, 1/2, and 2/3.
For k-neighbors distance distance mean, k-neighbors distance std dev, SP, UD, and ξ quality
indicators, only the final ranking on all config tests are shown for brevity.

Problem sets
Config sets using γ

1/3 1/2 2/3
HV Friedman test rank

ZDT3 0.4817 (1) 0.4816 (2) 0.4815 (3)
MaF01 0.7275 (2) 0.7278 (1) 0.7272 (3)
MaF07 0.6813 (3) 0.6819 (2) 0.6823 (1)
MaF10 0.6792 (1) 0.6330 (2) 0.5543 (3)
MaF11 0.7386 (3) 0.7422 (1) 0.7392 (2)
MaF12 0.7700 (3) 0.7709 (1) 0.7701 (2)
Crashworthiness 0.7447 (3) 0.7460 (1) 0.7458 (2)
Carside impact 0.6823 (2) 0.6823 (3) 0.6826 (1)
DAS-CMOP7 0.7808 (1) 0.7794 (2) 0.7755 (3)
DAS-CMOP8 0.7884 (1) 0.7880 (2) 0.7845 (3)
DAS-CMOP9 0.5108 (1) 0.5015 (2) 0.4944 (3)

Ranking 1.90 1.72 2.36
k-neighbors distance mean Friedman test
Ranking 2.18 1.81 2.00

k-neighbors distance std dev Friedman test
Ranking 2.72 1.72 1.54

Spacing Friedman test
Ranking 2.90 1.54 1.54

UD Friedman test
Ranking 2.27 1.86 1.86

ξ Friedman test
Ranking 2.45 1.64 1.90

Table 6.10 makes a pair-wise comparison of three γ configurations for k-neighbors
distance standard deviation and spacing performance indicators on all problems. Con-
sidering a significance level of 0.05, it can be concluded that there is always a difference
in performance with γ = 1/3 compared to 1/2 or 2/3. However, the comparisons be-
tween γ = 1/2 and γ = 2/3 do not present a statistical difference for both quality
indicators. It leads us to conclude that a budget with a number of solution evaluations
greater than γ = 1/2 performs better. Since the final adjustments with increased num-
ber of RVs in Stage 3 determines the quality of the overall approach, the parametric
study finds that allocating more SEs at Stage 3 is a better strategy.
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Table 6.10. HV Shaffer’s adjusted p-values for tests considering multiple comparisons among
all methods. The data is sorted by the adjusted p-value.

Hypothesis Shaffer

k-neighbors distance std dev

Config test γ = 1/3 vs Config test γ = 2/3 0.0426

Config test γ = 1/3 vs Config test γ = 1/2 0.0426

Config test γ = 1/2 vs Config test γ = 2/3 0.7060

Spacing

Config test γ = 1/3 vs Config test γ = 2/3 0.0126

Config test γ = 1/3 vs Config test γ = 1/2 0.0200

Config test γ = 1/2 vs Config test γ = 2/3 0.5930

6.6 Final observations

Evolutionary algorithms are stochastic, thereby producing different outcomes in dif-
ferent runs. To make evolutionary multi-objective optimization algorithms reproduce
a desired number of non-dominated solutions repeatedly, this chapter has proposed a
three-stage reference vector (RV) based framework that takes multiple attempts to fo-
cus on various key aspects of multi-objective problem solving. The first stage attempts
to find a skeleton of active RVs that contain at least one associated non-dominated
(ND) solution. The second stage attempts to focus its search on inactive RVs to ensure
no true associated ND solutions are left out. Having identified all active RVs, the third
stage focuses on searching the desired number of ND points in two iterations by serially
increasing the number of RVs. While each of the three stages has its individual role, if
an earlier stage is able to find the desired number of ND points, the algorithm consumes
the remaining budget of solution evaluations to make the convergence and distribution
better without truly moving to the latter stages, thereby degenerating to a single-stage
original algorithm, if adequate. A later stage starts from the final populations of the
previous stages to make the overall algorithm more efficient.

The working principle of the multi-stage EMaO has been demonstrated on two-
objective and three-objective problems. After that, results on 12 multi-objective test
problems have shown the superiority of the multi-stage NSGA-III procedure in terms
of achieving a better distribution of points measured through seven performance indi-
cators. The multi-stage idea has been integrated with MOEA/D, C-TAEA, and CLIA
algorithms, with an improved performance in each case. Thereafter, the multi-stage
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NSGA-III was applied to many-objective problems having 5-10 objective problems.
Better performance has been reported compared to the original NSGA-III for the same
number of solution evaluations.

Parametric studies were then performed with a single parameter defining the
proportion of SEs dedicated to each stage. With statistical analysis, it has been shown
that the multi-stage concept works better with 50% or more total SEs assigned to
Stage 3, considering the problem sets tested. Furthermore, the multi-stage EMaO
has also worked well with different desired ND solutions, thereby making the overall
procedure generically applicable.

The multi-stage philosophy proposed here makes the approach practical, as users
are expected to execute the optimization algorithm for a known number of SEs allocated
to solve a problem with the desired number of non-dominated solutions as a target.
Multiple attempts to ensure that no critical non-dominated solutions are left out, and
a search for a uniformly dense set of solutions on the entire efficient frontier to produce
the requisite number of desired solutions stay as the hallmark of this proposal.
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Concluding remarks
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Chapter 7

Conclusion

7.1 Introduction

In this chapter, we present a global view of the contributions of this thesis. We have
summarised the research carried out within each chapter in Section7.2. Finally, we have
explained how we deal with the challenges of multi- and many-objective optimization
stated at the beginning of this work. Then, we outlined some directions for future
works enabling some research ideas in Section 7.3.

7.2 Summary of Results

In Chapter 3 we have introduced DoM indicator. The first mixed-integer programming
model to approach the DoM calculation has been discussed. Experiments were also
presented with comparisons using MIP-DoM , ϵ-indicator, IGD+, and Hypervolume
indicators. Some many-objective experiments have shown that our novel formulation
could deal with problem sets with 5, 10, and 15 objectives with till 240 members in
the solution sets. Some further extensions have been presented, showing the quality
indicator and its use in other situations.

Based on this extensive study, we have observed that MIP-DoM brings the fol-
lowing advantages as a binary quality indicator:

• It did not require any pre-defined set of points, such as, a reference point or a
reference set;

• It was not affected by dominance resistant solutions, unlike that in HV (it can
be affected by the reference point definition);
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• It considers all the solutions of both sets being used. In its calculation, there is
a try to use all the information available.

• DoM was sensitive in capturing the four performance facets between two sets:
convergence, spread, uniformity, and cardinality;

• It appeared to have a highly Pearson correlation with HV;

• It presented a monotonic decrease in its value when the first set (Q) is fixed and
the second set (P ) approaches towards the Pareto front;

However, the MIP-DoM quality indicator has still presented some drawbacks:

• MIP-DoM time calculation was polynomial to number of solutions;

• Although it could be used as a running quality indicator and presents a correct
ranking among curves, in some cases, the difference in MIP-DoM values between
two consecutive generations is in decimal places. Since MIP-DoM indicates the
minimum Manhattan distance move to make one set dominated by other, for two
close sets, the MIP-DoM can be very small, when compared to the change in
hypervolume or IGD+ performance indicators;

• It demands an efficient MIP solver in its calculation.

In Chapter 4 a MIP-DoM compact formulation was presented. It was a straight-
forward and fast formulation compared to the former one. Moreover, the compact
model brought a reduced number of binary and continuous variables, as well as a num-
ber of constraints. Experiments have assessed the compact formulation behavior with
a time spent comparison. There was a significant improvement in the time spent by the
model. However, even with the compact formulation improvement, we have observed a
polynomial behavior regarding the number of objectives (hours to be calculated) which
motivated us to investigate some situations with some practical limits that could be
imposed on the compact model. There were still some cases that took hours to be
computed.

Chapter 5 has finished our first part. It has analyzed an approximate MIP-DoM
calculation using a clustering algorithm. The results have shown that the proposed
approximation is computationally faster than the MIP-DoM compact model. Further-
more, the approximate MIP-DoM provided accurate estimates compared to the exact
MIP-DoM with a tiny average approximation error. We have also explored some limits
of the compact formulation, and we have observed that the approximate method could
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alleviate the hard instances, bringing an interesting trade-off between the error rate
and the time spent by the model.

In Part II, in Chapter 6 we have dealt with another challenge in the EMO/EMaO
area (as initially proposed by this work): how to balance convergence and diversity
while managing some common shortcomings. Our multi-stage proposal has produced
the desired number of non-dominated solutions with confidence. Some results have
been demonstrated on two and three-objective problems, testing on 12 multi-objective
test problems. It has shown the superiority of the multi-stage approach using different
base algorithms such as NSGA-III, MOEA/D, C-TAEA, and CLIA algorithms. Fur-
thermore, many-objective problems having 5-10 objective problems have been tested.
Compared to the original base algorithms, better performance has been reported for
the same number of solution evaluations.

7.3 Future research

Despite this extensive study on analyzing properties of the DoM indicator and our
EMO and EMaO multi-stage framework, several future studies are worth pursuing.

Investigate some inner solution sets characteristics in MIP-DoM, for
some experiments in our study with MIP-DoM, we observed high variability in the
computational time for the same problem size and population size. It was observed
that this fact was inherent to the distribution or density and some inner characteristics
involving the two solution sets, P and Q. This issue deserves to be better investigated
to improve a MIP-DoM model, creating, for example, new constraints in the MIP
model. Furthermore, in the MIP approach for DoM, other directions also deserve to
be investigated: i) How to efficiently calculate DoM using MIP and exploiting some
inherent solution set features, such as solution set density; and ii) How to define a priori
the minimum number of pi ̸= p′

i and what benefits it can bring to the MIP model, for
example.

Using the additional information generated by the MIP-DoM, besides
its use as a quality indicator, MIP-DoM generates a new solution set that dominates
another set, P ′. An evolutionary operator can use this information to create better
solutions for faster convergence. One way to accelerate the convergence of an EMO
or EMaO is by performing solutions improvement in the objective space [Adra et al.,
2009] and [Gaspar-Cunha et al., 2004]. In general, there are two main steps in the
methodology: 1) For some solutions, it must find a way to improve itself in the Pareto
front direction, and 2) This improvement in the objective space must be valid in the de-
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cision space as well; therefore, a validation and a possible correction must be done (the
process of seeking to map an objective vector onto its corresponding decision vector is
done approximating a ‘mapping’ using Neural Networks techniques, for example). A
convergence operator can use P ′ as improved solutions in the objective space; after-
ward, we could use an online procedure (no pre-trained model) to estimate the map
from the objective onto the decision space, for example.

Some other MIP-DoM ideas could explore using the DoM concept. For
example, it could be used in the selection operator and measure each individual’s
contribution towards the convergence. Furthermore, it could be possible to understand
how each individual helps in convergence and diversity using the dominance move
concept during each generation. Still, is it possible to extend MIP-DoM and turn it
into n-ary quality indicator in the performance quality indicator subject? In the end,
the user would like to compare multiple algorithms, not only in the pair-wise method.
An n-ary quality indicator would be helpful in many different scenarios.

Extending the muti-stage framework, in Part II Chapter 6, is possible. An
extensive study for finding a reliable set of the desired number of ND points could be
extended in various ways. First, the multi-stage concept could be extended to a strategy
that does not try to use RVs identified as inactive regions in Stage 2; this fact could
possibly improve the convergence by adding some SEs to Stage 3. Second, instead of
pre-fixing a γ parameter to allocate a fixed number of SEs for each stage, performance
indicators for stability in convergence and diversity could be used to terminate each
stage properly. Care must be taken to ensure that sufficient SEs are kept for later
stages, despite stability conditions not being met for earlier stages. Third, the effect of
more iterations in Stage 3 can be tried. Fourth, comparisons of our approach with other
shape-invariant EMaO algorithms may be studied as in Falcón-Cardona et al. [2019];
Ishibuchi et al. [2016]. Nevertheless, the multi-stage philosophy proposed has made
the approach practical, as users are expected to execute the optimization algorithm
for a known number of SEs allocated to solve a problem with the desired number of
non-dominated solutions as a target.

These ideas could continuously be evolved by applying such approaches to deal
with MOP and MaOP. Additionally, all the codes generated in this thesis are going
to be publicly available on my personal GitHub repository, enabling its use as an
extension.
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Appendix A

Supplementary results of
Multi-stage reference-vector-based
framework to identify efficient
fronts reliably

A.1 Introduction

This supplementary document provides additional discussions and results in support
to the multi-stage evolutionary algorithm framework proposed in Chapter 6. Each
section is self-explanatory and presents specific results related to the performance of
the proposed procedure.

A.2 Results with Different Total Solution

Evaluations

To investigate the performance of MuSt-EMaO on different SEs, we have considered
one smaller and one larger TS than 20,000 SEs used in the main study.

Table A.1 presents the average quality indicator values obtained by NSGA-III
and MuSt-NSGA-III over 50 runs of both algorithms on 12 problems. In all cases, N is
set to 100. In all tests, MuSt-NSGA-III is executed with TS = 10, 000 for all problems,
except for DAS problems, for which we use TS = 50, 000.

Table A.2 presents the average quality indicator values obtained by NSGA-III
and MuSt-NSGA-III over 50 runs of both algorithms on 12 problems. In all cases, N is
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Appendix A. Supplementary results of Multi-stage
reference-vector-based framework to identify efficient fronts

reliably
Table A.1. Experimental results of baseline NSGA-III with complete ND population (N =
100) and MuSt-NSGA-III. Seven performance metrics are used to statistically compare both
algorithms over 50 runs. In all tests, MuSt-NSGA-III is executed with TS = 10, 000 for all
problems, except for DAS problems, for which we use TS = 50, 000. Symbols ↑ and ↓ indicate
better metric values for large and small values, respectively.

Problem Algorithm M N HV MIP-DoM ↓ k-neighbors distance SP ↓ UD ↑ ξ ↓ #RVs
mean ↑ std dev mean ↑ std dev ↓ Stage 3, i=2

ZDT3 NSGA-III 2 100 0.4790 0.0012 0.0089 0.0065 0.0043 0.0062 0.7061 1.7793 -
MuSt-NSGA-III 100 0.4791 0.0024 0.5016 0.0071 0.0050 0.0040 0.8348 1.7914 232

DTLZ2 NSGA-III 3 100 0.7914 0.0002 0.9677 0.1013 0.0073 0.0104 .9901 0.1232 -
MuSt-NSGA-III 100 0.7909 0.0005 0.9939 0.0952 0.0104 0.0109 1.9975 0.1847 100

MaF01 NSGA-III 3 100 0.0148 0.0002 1.7403 0.0178 0.0147 0.0228 0.5321 0.7992 -
MuSt-NSGA-III 100 0.0163 0.0001 1.7822 0.0422 0.0078 0.0112 0.9387 0.2707 343

MaF07 NSGA-III 3 100 0.3346 0.0133 1.3347 0.0267 0.0194 0.0302 0.6309 0.9466 -
MuSt-NSGA-III 100 0.3385 0.0117 1.5228 0.0501 0.0133 0.0202 0.8889 0.7224 236

MaF10 NSGA-III 3 100 0.3138 0.0210 0.4571 0.0287 0.0144 0.0225 0.6138 0.6022 -
MuSt-NSGA-III 100 0.3067 0.0161 0.8077 0.0320 0.0112 0.0175 0.6907 0.4518 163

MaF11 NSGA-III 3 100 0.7190 0.0637 1.5394 0.0653 0.0196 0.0291 0.8304 0.3860 -
MuSt-NSGA-III 100 0.7262 0.0614 1.5053 0.0666 0.0135 0.0202 0.9707 0.3620 122

MaF12 NSGA-III 3 100 0.6361 0.0052 2.3250 0.0781 0.0217 0.0317 0.8589 0.2890 -
MuSt-NSGA-III 100 0.6366 0.0047 2.2829 0.0803 0.0138 0.0201 0.9923 0.2560 108

Carside impact NSGA-III 3 100 0.2235 0.0012 2.0859 0.0483 0.0311 0.0467 0.6927 0.4962 -
MuSt-NSGA-III 100 0.2243 0.0022 2.0044 0.0669 0.0130 0.0189 0.9452 0.2647 146

Crashworthiness NSGA-III 3 100 0.1177 0.0010 1.4018 0.0201 0.0171 0.0267 0.5426 0.9383 -
MuSt-NSGA-III 100 0.1210 0.0007 1.1126 0.0407 0.0109 0.0166 0.8194 0.6417 312

DAS-CMOP7 NSGA-III 3 100 0.6900 0.0402 0.9081 0.0549 0.0272 0.0408 0.7254 0.4819 -
MuSt-NSGA-III 100 0.6685 0.0625 0.9476 0.0593 0.0145 0.0225 0.9709 0.3947 186

DAS-CMOP8 NSGA-III 3 100 0.6710 0.0502 0.9437 0.0527 0.0284 0.0426 0.7166 0.5536 -
MuSt-NSGA-III 100 0.6682 0.0566 0.9642 0.0658 0.0201 0.0303 0.9693 0.4073 209

DAS-CMOP9 NSGA-III 3 100 0.3095 0.0533 0.4008 0.0112 0.0113 0.0175 0.4071 1.0796 -
MuSt-NSGA-III 100 0.3086 0.0447 0.4248 0.0138 0.0121 0.0196 0.4085 1.0543 523

The Wilcoxon signed-rank test with a significance level of 0.05 was applied to perform a
statistical comparison between the approaches. Thus, the data in italics means that it is not
possible to detect differences between NSGA-III and MuSt-NSGA-III. Data in bold indicates
the best value between the approaches.

set to 100. In all tests, MuSt-NSGA-III is executed with TS = 30, 000 for all problems,
except for DAS problems, for which we use TS = 150, 000.

For both cases, the results of MuSt-NSGA-III is better than the baseline NSGA-
III approach.

A.3 MuSt-EMaO Results on Further Test Problems

A.3.1 ZDT3 Problem

The ZDT3 problem Zitzler et al. [2000] has disjointed efficient front. Results are
presented in Table A.3 with three base EMO and multi-stage algorithms: C-TAEA,
MOEA/D, and NSGA-III. In Figures A.1 to A.3, solution sets for the median HV
run are depicted, respectively, for NSGA-III, MOEA/D and C-TAEA. Since MOEA/D
could not find N = 100 ND points, we do not compare MuSt-MOEA/D with the
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Table A.2. Experimental results of baseline NSGA-III with complete ND population (N =
100) and MuSt-NSGA-III. Seven performance metrics are used to statistically compare both
algorithms over 50 runs. In all tests, MuSt-NSGA-III is executed with TS = 30, 000 for all
problems, except for DAS problems, for which we use TS = 150, 000. Symbols ↑ and ↓ indicate
better metric values for large and small values, respectively.

Problem Algorithm M N HV MIP-DoM ↓ k-neighbors distance SP ↓ UD ↑ ξ ↓ #RVs
mean ↑ std dev mean ↑ std dev ↓ Stage 3, i=2

ZDT3 NSGA-III 2 100 0.4813 0.0023 0.1262 0.0073 0.0050 0.0071 0.6965 1.6376 -
MuSt-NSGA-III 100 0.4822 0.0004 0.1123 0.0086 0.0026 0.0037 0.9897 1.5951 161

DTLZ2 NSGA-III 3 100 0.7917 0.0000 0.6131 0.1055 0.0030 0.0048 1.0000 0.0816 -
MuSt-NSGA-III 100 0.7917 0.0000 0.4731 0.1053 0.0031 0.0050 1.0000 0.0832 100

MaF01 NSGA-III 3 100 0.0146 0.0002 1.7825 0.0119 0.0147 0.0229 0.5425 0.8209 -
MuSt-NSGA-III 100 0.0162 0.0001 1.7229 0.0455 0.0072 0.0099 0.9869 0.2305 341

MaF07 NSGA-III 3 100 0.2379 0.0185 1.5625 0.0250 0.0172 0.0267 0.6354 0.9222 -
MuSt-NSGA-III 100 0.2477 0.0066 1.3717 0.0504 0.0133 0.0193 0.8776 0.6922 224

MaF10 NSGA-III 3 100 0.5908 0.0553 1.2927 0.0403 0.0201 0.0225 0.6921 0.7454 -
MuSt-NSGA-III 100 0.6342 0.0184 1.4554 0.0595 0.0142 0.0217 0.9819 0.5063 153

MaF11 NSGA-III 3 100 0.7276 0.0654 1.6437 0.0759 0.0160 0.0228 0.9046 0.2902 -
MuSt-NSGA-III 100 0.7425 0.0610 1.5259 0.0792 0.0133 0.0186 0.9912 0.2732 103

MaF12 NSGA-III 3 100 0.6511 0.0025 2.1812 0.0864 0.0189 0.0267 0.9111 0.2152 -
MuSt-NSGA-III 100 0.6517 0.0016 2.1699 0.0876 0.0150 0.0206 0.9687 0.2041 102

Carside impact NSGA-III 3 100 0.2299 0004 2.0318 0.0514 0.0349 0.0518 0.6887 0.4875 -
MuSt-NSGA-III 100 0.2315 0.0015 1.9891 0.0745 0.0133 0.0183 0.9403 0.2149 141

Crashworthiness NSGA-III 3 100 0.1160 0.0010 1.4750 0.0192 0.0168 0.0262 0.5464 0.9664 -
MuSt-NSGA-III 100 0.1201 0.0019 1.0096 0.0412 0.0116 0.0174 0.8048 0.6368 295

DAS-CMOP7 NSGA-III 3 100 0.7358 0.0004 0.9875 0.0813 0.0224 0.0328 0.8735 0.2885 -
MuSt-NSGA-III 100 0.7355 0.0005 0.9957 0.0821 0.0172 0.0248 0.9951 0.2735 104

DAS-CMOP8 NSGA-III 3 100 0.7179 0.0004 0.9848 0.0877 0.0176 0.0255 0.9498 0.2604 -
MuSt-NSGA-III 100 0.7174 0.0004 0.99074 0.0828 0.0166 0.0245 0.9877 0.2918 102

DAS-CMOP9 NSGA-III 3 100 0.4752 0.0979 0.5567 0.0175 0.0152 0.0235 0.4933 0.92176 -
MuSt-NSGA-III 100 0.4554 0.0783 0.6120 0.0230 0.0114 0.0173 0.5552 0.7307 357

The Wilcoxon signed-rank test with a significance level of 0.05 was applied to perform a
statistical comparison between the approaches. Thus, the data in italics means that it is not
possible to detect differences between NSGA-III and MuSt-NSGA-III. Data in bold indicates
the best value between the approaches.

Table A.3. ZDT3 problem set. The experiment involves 50 trials, and each algorithm has
set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.4806 0.1086 0.0071 0.0048 0.0068 0.6983 1.6641
MuSt-NSGA-III 100 0.4816 0.1594 0.0083 0.0028 0.0040 0.9634 1.6300

MOEA/D 77 - - - - - - -
MuSt-MOEA/D 100 0.4630 0.1150 0.0069 0.0034 0.0049 0.8827 1.8220

CTAEA 100 0.4798 0.1346 0.0069 0.0076 0.0108 0.6721 1.6821
MuSt-C-TAEA 100 0.4805 0.1030 0.0079 0.0029 0.0041 0.9870 1.6385

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data in
italics means that it is not possible to detect differences between algorithms. Data in
bold indicates the best value.
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base MOEA/D algorithm. Figures show that the original algorithms find less dense
solutions for the left-most two efficient subsets, while the multi-stage version finds a
better distribution – a matter which is also clear from the table.
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Figure A.1. NSGA-III and MuSt-NSGA-III results for the ZDT3 problem. Results are
shown for the median HV run for each case.
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Figure A.2. MOEA/D and MuSt-MOEA/D results for the ZDT3 problem. Results are
shown for the median HV run for each case.



A.3. MuSt-EMaO Results on Further Test Problems 161

0.0 0.2 0.4 0.6 0.8

f 1

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

f
2

CTAEA

0.0 0.2 0.4 0.6 0.8

f 1

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

f
2

MuSt-CTAEA

Figure A.3. CTAEA and MuSt-C-TAEA results for the ZDT3 problem. Results are shown
for the median HV run for each case.

A.3.2 DTLZ2 Problem

The DTLZ2 problem Deb et al. [2002] has a continuous efficient front – octant of a
sphere. Ideally, every RV corresponds to an associated efficient point, hence theoret-
ically there is no need for Stages 2 and 3 for the multi-stage framework. Table A.4
shows that both NSGA-III and MuSt-NSGA-III produce almost an identical statistical
performance. The slight difference in performance metrics occur due to the classifica-
tion operator in Line 4 and an extra non-domination check between ST1

1c and ST23
1c in

Line 8 of the original MuSt-EMaO algorithm.

Table A.4. DTLZ2 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.7916 0.7101 0.1052 0.0050 0.0056 1.0000 0.0870
MuSt-NSGA-III 100 0.7916 0.7460 0.1035 0.0051 0.0055 1.0000 0.0897

MOEA/D 100 0.7879 0.7799 0.1045 0.0030 0.0042 0.4136 0.0887
MuSt-MOEA/D 100 0.7879 0.7668 0.1054 0.0032 0.0048 0.4212 0.0863

CTAEA 100 0.7913 0.7012 0.1006 0.0079 0.0106 0.4335 0.1295
MuSt-C-TAEA 100 0.7912 0.6958 0.1015 0.0072 0.0102 0.4338 0.1295
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A.3.3 DTLZ5 Problem

Results on the DTLZ5 problem Deb et al. [2002] are presented next. This problem has
a degenerate efficient frontier. Despite three objectives in the problem, the efficient
frontier is a single-dimensional curve. Objectives f1 and f2 are correlated to each
other, making a trade-off between f1 or f2 and f3. Table A.5 shows that MuSt-NSGA-
III produces a much denser set of efficient front compared to NSGA-III. MOEA/D and
C-TAEA are not able to find close to 100 ND solutions, as most of the RVs do not pass
through the efficient curve.

Table A.5. DTLZ5 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.0799 0.3560 0.0051 0.0068 0.0112 1.3111 1.2839
MuSt-NSGA-III 100 0.0814 0.2387 0.0069 0.0060 0.0122 1.4743 0.7454

MOEA/D 49 - - - - - - -
MS-MOEA 100 0.1251 0.1509 0.0063 0.0066 0.0241 0.4751 0.9384

CTAEA 90 - - - - - - -
MuSt-C-TAEA 100 0.0827 0.4171 0.0062 0.0070 0.0250 0.4238 1.1909

Interestingly, Iteration 2 of Stage 3 in MuSt-NSGA-III uses 1,844 RVs to find
100 ND points for this problem. This is because when only 100 RVs are initialized in
Stage 1, very few efficient solutions can be found. Most of the RVs do not end up with
any efficient point. When the number of RVs is increased to about 19 times to the
number of ND points required, the algorithm is able to find 100 uniformly distributed
ND points.

Figures A.4 to A.6 present the median HV solution sets, for NSGA-III, MOEA/D,
and C-TAEA, respectively. In all cases, the ND sets from the multi-stage framework
are better distributed than their baseline versions.
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Figure A.4. NSGA-III and MuSt-NSGA-III results for the DTLZ5 problem. MuSt-NSGA-
III uses 1,844 RV’s on Stage 3, i = 2. Results are shown for the median HV run for each case.
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Figure A.5. MOEA/D and MuSt-MOEA/D results for the DTLZ5 problem. MuSt-
MOEA/D uses 1,956 RV’s on Stage 3, i = 2. Results are shown for the median HV run
for each case.
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Figure A.6. CTAEA and MuSt-C-TAEA results for the DTLZ5 problem. MuSt-C-TAEA
uses 1,785 RV’s on Stage 3, i = 2. Results are shown for the median HV run for each case.

A.3.4 MaF01 Problem

Results on the MaF01 (same as the inverted DTLZ1 Deb and Jain [2014]) problem is
presented in Table A.6 with a number of base algorithms and their multi-stage versions:
NSGA-III, MOEA/Dm C-TAEA, two versions of CLIA.
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Figure A.7. NSGA-III and MuSt-NSGA-III results are presented for the MaF01 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Table A.6. MaF01 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.0146 1.7711 0.0175 0.0147 0.0227 0.5329 0.8066
MuSt-NSGA-III 100 0.0162 1.7393 0.0439 0.0073 0.0102 0.9748 0.2392

MOEA/D 97 0.0129 1.7946 0.0261 0.0269 0.0409 0.4709 0.8589
MuSt-MOEA/D 100 0.0161 1.7473 0.0424 0.0085 0.0122 0.9282 0.2808

C-TAEA 100 0.0153 1.7449 0.0289 0.0130 0.0205 0.5552 0.5800
MS-C-TAEA 100 0.0162 1.7770 0.0450 0.0079 0.0108 0.9646 0.2233

CLIA 100 0.0164 1.8025 0.0345 0.0128 0.0198 0.7148 0.4338
MuSt-CLIA 100 0.0164 1.7332 0.0450 0.0085 0.0110 0.9687 0.2318

CLIA 100 0.0163 1.8537 0.0344 0.0128 0.0199 0.7123 0.4323
MuSt-CC 100 0.0164 1.6558 0.0438 0.0087 0.0120 0.9798 0.2466

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data in
italics means that it is not possible to detect differences between algorithms. Data in
bold indicates the best value.
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Figure A.8. MOEA/D and MuSt-MOEA/D results are presented for the MaF01 problem.
50 trials are executed and the ND set for the median HV run is plotted.

Since MOEA/D is able to produce 97 ND points (close to desired number 100),
we compute the performance metrics. Not only does the MuSt-MOEA/D finds better
performance metrics, it also does so with more ND points.
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Figures A.7 to A.11 present the median HV solution sets , for NSGA-III,

MOEA/D, C-TAEA, CLIA and MuSt-CC , respectively. In all cases, the ND sets
from the multi-stage framework are better distributed than their baseline versions. ND
points from the original CLIA comes closer to MuSt-CLIA, but the points from the
latter is more uniformly distributed visually as well as with respect to the performance
metrics shown in Table A.6.
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Figure A.9. C-TAEA and MuSt-C-TAEA results are presented for the MaF01 problem. 50
trials are executed and the ND set for the median HV run is plotted.
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Figure A.10. CLIA and MuSt-CLIA results are presented for the MaF01 problem. 50 trials
are executed and the ND set for the median HV run is plotted.
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Figure A.11. CLIA and MuSt-CC results are presented for the MaF01 problem. 50 trials
are executed and the ND set for the median HV run is plotted.

A.3.5 MaF07 Problem
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Figure A.12. NSGA-III and MuSt-NSGA-III results are presented for the MaF07 problem.
50 trials are executed and the ND set for the median HV run is plotted.

Resuls on the MaF07 (same as the original DTLZ7 Deb et al. [2002]) problem is pre-
sented in Table A.7 for the five base algorithms and their multi-stage versions: NSGA-
III, MOEA/D, C-TAEA, and two versions of CLIA. This problem produces four dis-
jointed set of efficient points. Since MOEA/D cannot find close to 100 desired ND
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solutions, we do not compare its performance with its multi-stage version, which is
able to find 100 desired ND points.

Table A.7. MaF07 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.2503 1.4809 0.0254 0.0179 0.0279 0.6400 0.9236
MuSt-NSGA-III 100 0.2551 1.4508 0.0498 0.0133 0.0190 0.8781 0.6991

MOEA/D 85 - - - - - - -
MuSt-MOEA/D 100 0.2205 1.1091 0.0374 0.0148 0.0229 0.7366 0.7080

C-TAEA 100 0.2603 1.3762 0.0272 0.0224 0.0335 0.4616 1.1244
MS-C-TAEA 100 0.2702 1.3036 0.0467 0.0143 0.0211 0.8916 0.7503

CLIA 100 0.2076 1.5099 0.0314 0.0221 0.0341 0.4909 0.9842
MuSt-CLIA 100 0.2218 1.3957 0.0441 0.0110 0.0164 0.8425 0.7239

CLIA 100 0.2066 1.6067 0.0310 0.0225 0.0347 0.5065 0.9870
MuSt-CC 100 0.2162 1.2410 0.0436 0.0110 0.0163 0.8264 0.7390

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data in
italics means that it is not possible to detect differences between algorithm and MuSt-EMaO .
Data in bold indicates the best value.
MOEA/D algorithm was not able to generate 95 solutions. In this sense, we decide not
to compare the quality indicators.

For all problems, the performance of the multi-stage version is better or equivalent
than their original versions.

Figures A.12 to A.16 show the ND points for the median HV run for NSGA-III,
MOEA/D, C-TAEA, CLIA and MuSt-CC algorithms and their multi-stage versions,
respectively. Clearly, the distribution of points for each case is better (more points and
more uniformly distributed) than the original algorithm.
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Figure A.13. MOEA/D and MuSt-MOEA/D results are presented for the MaF07 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.14. C-TAEA and MuSt-C-TAEA results are presented for the MaF07 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.15. CLIA and MuSt-CLIA results are presented for the MaF07 problem. 50 trials
are executed and the ND set for the median HV run is plotted.
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Figure A.16. CLIA and MuSt-CC results are presented for the MaF07 problem. 50 trials
are executed and the ND set for the median HV run is plotted.

A.3.6 MaF10 Problem

Results on the MaF10 (similar to convex DTLZ2 Deb [2001]) problem are presented
in Table A.8 with five base algorithms and their multi-stage versions: NSGA-III,
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MOEA/D, C-TAEA, and two versions of CLIA. This problem produces a convex effi-
cient front.
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Figure A.17. NSGA-III and MuSt-NSGA-III results are presented for the MaF10 problem.
50 trials are executed and the ND set for the median HV run is plotted.

Table A.8. MaF10 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.5153 1.0939 0.0290 0.0171 0.0266 0.5922 0.8987
MuSt-NSGA-III 100 0.6177 1.2600 0.0500 0.0141 0.0218 0.9359 0.7319

MOEA/D 97 0.4156 1.2049 0.0666 0.0270 0.0425 0.8820 0.4619
MuSt-MOEA/D 100 0.4021 1.4494 0.0561 0.0142 0.0221 0.9667 0.5328

CTAEA 100 0.3046 1.4632 0.0503 0.0253 0.0384 0.7515 0.6150
MuSt-C-TAEA 100 0.3065 1.5278 0.0538 0.0180 0.0276 0.9141 0.4838

CLIA 100 0.7022 1.4997 0.0607 0.0434 0.0691 0.7532 0.6696
MuSt-CLIA 100 0.7065 1.4441 0.0670 0.0350 0.0567 0.9824 0.5187

CLIA 100 0.7463 1.4975 0.0738 0.0246 0.0379 0.9765 0.4759
MuSt-CC 100 0.7485 1.3939 0.0745 0.0192 0.0304 1.0000 0.3898

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data in
italics means that it is not possible to detect differences between algorithms. Data in
bold indicates the best value.
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Figure A.18. MOEA/D and MuSt-MOEA/D results are presented for the MaF10 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.19. C-TAEA and MS-C-TAEA sample results from MaF10. 50 trials are done,
and the presented sample comes from the HV median value sample.
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Figure A.20. CLIA and MuSt-CLIA results are presented for the MaF10 problem. 50 trials
are executed and the ND set for the median HV run is plotted.
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Figure A.21. CLIA and MuSt-CC results are presented for the MaF10 problem. 50 trials
are executed and the ND set for the median HV run is plotted.



174

Appendix A. Supplementary results of Multi-stage
reference-vector-based framework to identify efficient fronts

reliably

A.3.7 MaF11 Problem
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Figure A.22. NSGA-III and MuSt-NSGA-III results are presented for the MaF11 problem.
50 trials are executed and the ND set for the median HV run is plotted.

For this problem, some performance metrics are better for the original EMaO algorithm,
but in most cases the respective MuSt-EMaO algorithm produces a statistically better
or equivalent performance compared to their original versions.

In order to visualize the ND points, Figures A.17 to A.21 present obtained ND
points for the median HV run for NSGA-III, MOEA/D, C-TAEA, CLIA and MuSt-CC
algorithms, respectively.

Results on the MaF11 problem are presented in Table A.9 with five base algo-
rithms and their multi-stage versions: NSGA-III, MOEA/D, C-TAEA, and two versions
of CLIA.
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Table A.9. MaF11 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.7273 1.5877 0.0855 0.0198 0.0282 0.9030 0.2285
MuSt-NSGA-III 100 0.7371 1.5733 0.0868 0.0146 0.0204 0.9868 0.2098

MOEA/D 85 - - - - - - -
MuSt-MOEA/D 100 0.3593 0.7533 0.0535 0.0103 0.0162 0.6854 0.5377

C-TAEA 100 0.5782 1.3290 0.0608 0.0297 0.0446 0.7901 0.6010
MS-C-TAEA 100 0.7500 1.3526 0.0675 0.0174 0.0264 0.9696 0.4102

CLIA 100 0.7389 1.5326 0.0727 0.0264 0.0408 0.9729 0.4795
MuSt-CLIA 100 0.7406 1.5397 0.0737 0.0195 0.0303 0.9803 0.3794

CLIA 100 0.7398 1.5356 0.0723 0.0258 0.0399 0.9819 0.4827
MuSt-CC 100 0.7421 1.5423 0.0743 0.0188 0.0293 0.9893 0.3746

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data in
italics means that it is not possible to detect differences between algorithm and MuSt-EMaO .
Data in bold indicates the best value.
MOEA/D algorithm was not able to generate 95 solutions. In this sense, we decide not
to compare the quality indicators.
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Figure A.23. MOEA/D and MuSt-MOEA/D results are presented for the MaF11 problem.
50 trials are executed and the ND set for the median HV run is plotted.

MOEA/D could not produce close to 100 ND solutions; hence its performance is
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not compared with its multi-stage version. Performance for the multi-stage version of
each algorithm is statistically better than its original version.

Figures A.22 to A.26 present the ND points for the median HV run for NSGA-III,
MOEA/D, C-TAEA, CLIA and MuSt-CC , respectively.
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Figure A.24. C-TAEA and MuSt-C-TAEA results are presented for the MaF11 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.25. CLIA and MuSt-CLIA results are presented for the MaF11 problem. 50 trials
are executed and the ND set for the median HV run is plotted.
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Figure A.26. CLIA and MuSt-CC results are presented for the MaF11 problem. 50 trials
are executed and the ND set for the median HV run is plotted.

A.3.8 MaF12 Problem

Results on the MaF11 problem are presented in Table A.10 with five base algorithms
and their multi-stage versions: NSGA-III, MOEA/D, C-TAEA, and two versions of
CLIA.

MOEA/D could not produce close to 100 ND solutions; hence its performance is
not compared with its multi-stage version. Performance for the multi-stage version of
each algorithm is statistically better than its original version.

Figures A.27 to A.31 present the ND points for the median HV run for NSGA-III,
MOEA/D, C-TAEA, CLIA and MuSt-CC algorithms and their multi-stage versions,
respectively. For this algorithm, the distributions of original EMaO algorithms are
reasonably good, except a denser set points can be observed for small f2-f3 part of the
efficient set. In all cases, performance of the multi-stage version is superior.
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Table A.10. MaF12 problem set with M = 3. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.6640 2.2017 0.0837 0.0192 0.0272 0.9049 0.2311
MuSt-NSGA-III 100 0.6646 2.2286 0.0858 0.0141 0.0194 0.9951 0.2119

MOEA/D 85 - - - - - - -
MuSt-MOEA/D 100 0.5183 2.2671 0.0627 0.0165 0.0258 0.9785 0.4116

CTAEA 100 0.5171 2.1397 0.0646 0.0286 0.0423 0.7668 0.5209
MuSt-C-TAEA 100 0.5199 2.1451 0.0670 0.0175 0.0267 0.9940 0.4022

CLIA 100 0.7090 2.0211 0.0726 0.0285 0.0419 0.8697 0.5006
MuSt-CLIA 100 0.7114 2.0221 0.0735 0.0180 0.0267 0.9941 0.3794

CLIA 100 0.7265 2.0776 0.0747 0.0254 0.0366 0.9226 0.4737
MuSt-CC 100 0.7278 2.0093 0.0750 0.0184 0.0266 0.9998 0.3846

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data
in italics means that it is not possible to detect differences between algorithm
and MuSt-EMaO . Data in bold indicates the best value.
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Figure A.27. NSGA-III and MuSt-NSGA-III results are presented for the MaF12 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.28. MOEA/D and MuSt-MOEA/D results are presented for the MaF12 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.29. C-TAEA and MuSt-C-TAEA results are presented for the MaF12 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.30. CLIA and MuSt-CLIA results are presented for the MaF12 problem. 50 trials
are executed and the ND set for the median HV run is plotted.
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Figure A.31. CLIA and MuSt-CC results are presented for the MaF12 problem. 50 trials
are executed and the ND set for the median HV run is plotted.

A.3.9 C2-DTLZ2 Problem

Results on the C2-DTLZ2 problem – constrained three-objective problem Jain and Deb
[2014] – are presented in Table A.11 with three original EMaO algorithms and with
their multi-stage versions: C-TAEA, MOEA/D, and NSGA-III.
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Table A.11. C2DTLZ2 problem set with M = 3. The experiment involves 50 trials, and
each algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.7379 0.9331 0.0573 0.0365 0.0540 0.6965 0.4780
MuSt-NSGA-III 100 0.7476 0.9221 0.0710 0.0140 0.0199 1.0000 0.3506

MOEA/D 57 - - - - - - -
MuSt-MOEA/D 100 0.7505 1.0164 0.0570 0.0137 0.0214 0.9922 0.5021

CTAEA 100 0.7610 0.9329 0.0589 0.0323 0.0488 0.7297 0.4544
MuSt-C-TAEA 100 0.7638 0.9088 0.0677 0.0144 0.0211 0.9883 0.3686

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data
in italics means that it is not possible to detect differences between algorithm
and MuSt-EMaO . Data in bold indicates the best value.

MOEA/D could not produce close to 100 ND solutions; hence its performance is
not compared with its multi-stage version. Performance for the multi-stage version of
each algorithm is statistically better than its original version.

Figures A.32 to A.34 present the ND points for the median HV run for NSGA-III,
MOEA/D, and C-TAEA algorithms and their multi-stage versions, respectively. For
each algorithm, the distribution of multi-stage version is more uniform and contains
more ND points than its original version.

f 1

0.2

0.4

0.6

0.8

1.0

f
2

0.2

0.4

0.6

0.8

1.0

f
3

0.2

0.4

0.6

0.8

1.0

NSGA-III

f 1

0.2

0.4

0.6

0.8

1.0

f
2

0.2

0.4

0.6

0.8

1.0

f
3

0.2

0.4

0.6

0.8

1.0

MuSt-NSGA-III

Figure A.32. NSGA-III and MuSt-NSGA-III results are presented for the C2-DTLZ2 prob-
lem. 50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.33. MOEA/D and MuSt-MOEA/D results are presented for the C2-DTLZ2 prob-
lem. 50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.34. CTAEA and MuSt-C-TAEA results are presented for the C2-DTLZ2 problem.
50 trials are executed and the ND set for the median HV run is plotted.

A.3.10 Crashworthiness Problem

Results on the crashworthiness problem – constrained three-objective problem Jain and
Deb [2014] – are presented in Table A.12 with three original EMaO algorithms and
with their multi-stage versions: C-TAEA, MOEA/D, and NSGA-III.
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Table A.12. Crashworthiness problem set. The experiment involves 50 trials, and each
algorithm has set with TS = 20, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.1101 1.4844 0.0195 0.0166 0.0260 0.5440 0.9333
MuSt-NSGA-III 100 0.1139 1.0682 0.0403 0.0112 0.0169 0.7991 0.6205

MOEA/D 95 0.0724 0.6727 0.0085 0.0191 0.0306 0.1597 1.4103
MuSt-MOEA/D 100 0.0729 0.4181 0.0093 0.0065 0.0103 0.3356 0.6550

CTAEA 100 0.0961 1.6186 0.0199 0.0253 0.0390 0.1824 1.5259
MuSt-C-TAEA 100 0.1113 0.5136 0.0357 0.0121 0.0189 0.7440 0.7232

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data
in italics means that it is not possible to detect differences between algorithm
and MuSt-EMaO . Data in bold indicates the best value.

For each algorithm, the performance of the multi-stage version is better than its
original version.
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Figure A.35. NSGA-III and MuSt-NSGA-IIIresults are presented for the crashworthiness
problem. 50 trials are executed and the ND set for the median HV run is plotted.

Figures A.35 to A.37 present the ND points for the median HV run for NSGA-
III, MOEA/D, and C-TAEA algorithms and their multi-stage versions, respectively.
For each algorithm, the multi-stage version improves the performance of the original
version. MOEA/D is not able to find the entire efficient set and its multi-stage version
has also failed to produce the entire efficient set. C-TAEA is also not able to find
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the entire efficient set, but its multi-stage version is able to find more points in the
region discovered by the original version. MuSt-EMaO algorithm uses the original
EMaO algorithm in all three stages. Thus, for a problem if the original EMaO cannot
perform well, the multi-stage procedure may improve its performance by finding a
better distribution in the regions discovered by the original algorithm, but it may not
be able to discover any new efficient region that cannot be discovered by the original
algorithm.
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Figure A.36. MOEA/D and MuSt-MOEA/D results are presented for the crashworthiness
problem. 50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.37. C-TAEA and MuSt-C-TAEA results are presented for the crashworthiness
problem. 50 trials are executed and the ND set for the median HV run is plotted.
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A.3.11 MW14 problem

Results on the MW14 problem are presented in Table A.13 with three original EMaO
algorithms and with their multi-stage versions: C-TAEA, MOEA/D, and NSGA-III.

Table A.13. MW14 with M = 3. The experiment involves 50 trials, and each algorithm has
set with TS = 40, 000. Some quality indicators are presented.

Algorithm N HV ↑ MIP-
DoM ↓

k-neighbors
distance SP ↓ UD ↑ ξ ↓

mean std dev

NSGA-III 100 0.2502 2.1277 0.0302 0.0246 0.0374 0.6327 0.7727
MuSt-NSGA-III 100 0.2388 2.3451 0.0475 0.0120 0.0179 0.9150 0.6329

MOEA/D 76 - - - - - - -
MuSt-MOEA/D 100 0.1259 2.0203 0.0319 0.0142 0.0220 0.6462 0.7934

CTAEA 100 0.2476 2.1812 0.0294 0.0250 0.0376 0.4550 1.0030
MuSt-C-TAEA 100 0.2486 2.5768 0.0472 0.0140 0.0210 0.9268 0.6265

We applied the Wilcoxon signed-rank test with a significance level of 0.05. Data
in italics means that it is not possible to detect differences between algorithm
and MuSt-EMaO . Data in bold indicates the best value.
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Figure A.38. NSGA-III and MuSt-NSGA-IIIresults are presented for the MW14 problem.
50 trials are executed and the ND set for the median HV run is plotted.

Figures A.38 to A.40 present the ND points for the median HV run for NSGA-
III, MOEA/D, and C-TAEA algorithms and their multi-stage versions, respectively.
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For each algorithm, the multi-stage version improves the performance of the original
version.
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Figure A.39. MOEA/D and MuSt-MOEA/D results are presented for the MW14 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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Figure A.40. C-TAEA and MuSt-C-TAEA results are presented for the MW14 problem.
50 trials are executed and the ND set for the median HV run is plotted.
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A.4 Additional Performance Quality Indicators for

the Crashworthiness Problem

Chapter 6 presented the hypervolume (HV) convergence curve on the crashworthiness
problem, depicting the multi-stage HV behavior through different stages of the MuSt-
NSGA-III algorithm. Here, we show similar plots but using other quality indicators.
It is worth noting that the variation of the number of ND solutions is not shown in
these plots, as it is identical to that in the HV plot in the chapter 6.

The k-neighbor distance mean is presented in Figure A.41. It is expected that a
larger value of this metric will occur for fewer ND points, but it may settle down to a
value when the number of ND points stabilizes. At the beginning, more and more ND
points are being found and this metric values reduced with SEs. At the beginning of
Stage 3, Iteration 1, we can see an abrupt decrease in the indicator, as more points are
discovered with an increase in number of RVs. clearly, the end of Iteration 1, almost
100 ND points are already obtained and there is little effect at the second iteration of
Stage 3. At the end, almost N = 100 points are found, and even with this number of
solutions, the k-neighbor distance mean is still higher than that of the base NSGA-III
algorithm, meaning that with MuSt-NSGA-III is able to find a better distribution than
NSGA-III with 100 solutions in each set.
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Figure A.41. K-neighbor Mean for crashworthiness problem. Convergence curve using the
average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.

The k-neighbor distance standard deviation is shown in Figure A.42. A small
standard deviation indicates a more uniform distribution of points. With stages, the
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distribution gets better and the final standard deviation of MuSt-NSGA-III is smaller
(better) than that of NSGA-III.
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Figure A.42. K-neighbor standard deviation for crashworthiness problem. Convergence
curve using the average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.

A small spacing metric value is better. In Figure A.43 we can observe the spacing
indicator which show a similar reducion trend compared to Figure A.42. In fact, we
have observed similarities in these two metric values in other problems as well. These
two quality indicators appears to be correlated. The final spacing value is smaller
(better) than that of NSGA-III solutions.
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Figure A.43. Spacing performance quality indicator for crashworthiness problem. Conver-
gence curve using the average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.
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The variation in the UD indicator is shown in Figure A.44. Higher this metric
value, better is the distribution. An increase in ND points at the beginning of Stage 3
reduces the UD metric value. Importantly, the final value is higher (better) compared
to NSGA-III solution set.
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Figure A.44. UD performance quality indicator for crashworthiness problem. Convergence
curve using the average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.

Evenness is the final quality indicator presented here. Figure A.45 depicts its
behavior. Smaller this metric value, better is the distribution. Having an identical
number of solutions, MuSt-NSGA-III is able to produce an ND set having better even-
ness metric value.
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Figure A.45. Evenness performance quality indicator for crashworthiness problem. Conver-
gence curve using the average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.
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Along with the HV variation, these performance metric plots clearly indicate

that MuSt-NSGA-III is able to find an DN solution set which has a more uniform-like
distribution compared to the set found by NSGA-III. Similar variations in performance
metrics are also obtained for other problems of this study.

A.5 Additional Performance Quality Indicators for

the MaF7 Problem

Additionaly to the crashworthiness problem we present here similar plots for MaF7
Problem set. In plot A.46 we present HV convergence curve with the number of
solutions in three different information: MuSt-NSGA-III Extended NSGA-III, and
final ND NSGA-III.
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Figure A.46. Average hypervolume (solid lines) and the number of active RVs (dotted lines)
obtained using NSGA-III calculated from two sets – closest for each ARV and all ND solutions
– and MuSt-NSGA-III ND set for the MaF7 problem.

In Figure A.47 a view with a different scale is presented, showing the HV con-
vergence information. It is possible to observe some increases in the quality indicator
from Stage 2 to Stage 3 i = 1,and from Stage 3 i = 1 to Stage 3 i = 2.
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Figure A.47. Average hypervolume obtained using NSGA-III and MuSt-NSGA-III ND set
for the MaF7 problem.

The k-neighbor distance mean is presented in Figure A.48. There is a decrease,
considering MuSt-NSGA-IIIand the changes among the Stages. However, it is still
superior when compared with NSGA-III.
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Figure A.48. K-neighbor Mean for MaF7 problem. Convergence curve using the average
from 50 runs, comparing NSGA-III and MuSt-NSGA-III.
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Figure A.49. K-neighbor standard deviation for MaF7 problem. Convergence curve using
the average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.

The k-neighbor distance standard deviation is shown in Figure A.49. In Fig-
ure A.50 the spacing indicator is also depicted. There is a similarity between the two
indicators. The same fact happens to the crashworthiness test case.
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Figure A.50. Spacing performance quality indicator for MaF7 problem. Convergence curve
using the average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.

Finally , the Figures A.51 and A.52 presenting the UD and evenness quality
indicator. In the evenness case, the value stays unchangeable even after the stage
change.
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Figure A.51. UD performance quality indicator for MaF7 problem. Convergence curve
using the average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.
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Figure A.52. Evenness performance quality indicator for MaF7 problem. Convergence curve
using the average from 50 runs, comparing NSGA-III and MuSt-NSGA-III.

A.6 Additional Statistical Results for the

Parametric Study

In chapter 6, we defined three config tests, using TS as total number of evaluations
functions and γ as a parameter, such that, the configuration tests could be defined
related to γ. We used: T1 = T2 = 1−γ

2
T and T3 = γT and varied γ to have 1/3, 1/2,

and 2/3. We collected the results for each config test and quality indicator and created
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some basic statistics using the HV metric that helped us find a suitable value of γ.
Here, we tabulate statistics for other six performance metrics. Tables A.14 to A.18
present the details of the Friedman test results on 11 problems.

Table A.14. Friedman ranks for k-neighbors distance mean for all config sets using γ = 1/3,
1/2, and 2/3.

Problem sets
Config sets using γ

1/3 1/2 2/3
HV Friedman test rank

ZDT3 0.0084 (1) 0.0083 (2) 0.0083 (3)
MaF01 0.0495 (3) 0.0498 (2) 0.0499 (1)
MaF07 0.0435 (3) 0.0439 (2) 0.04438 (1)
MaF10 0.0494 (1) 0.0421 (2) 0.03324 (3)
MaF11 0.0733 (3) 0.0762 (1) 0.07523 (2)
MaF12 0.0842 (3) 0.0855 (2) 0.08570 (1)
Crashworthiness 0.0705 (3) 0.07323 (2) 0.07340 (1)
Carside impac 0.0395 (3) 0.04031 (2) 0.04036 (1)
DAS-CMOP7 0.0794 (1) 0.07935 (2) 0.07853 (3)
DAS-CMOP8 0.0807 (2) 0.08142 (1) 0.07963 (3)
DAS-CMOP9 0.0185 (1) 0.01823 (2) 0.01794 (3)
Overall Ranking 2.18 1.81 2.00

Table A.15. Friedman ranks for k-neighbors distance std dev for all config sets using γ = 1/3,
1/2, and 2/3.

Problem sets
Config sets using γ

1/3 1/2 2/3
HV Friedman test rank

ZDT3 0.0029 (3) 0.0028 (2) 0.0027 (1)
MaF01 0.0133 (2) 0.0134 (3) 0.0126 (1)
MaF07 0.0073 (2) 0.0073 (3) 0.0071 (1)
MaF10 0.0138 (3) 0.0135 (2) 0.0132 (1)
MaF11 0.0141 (3) 0.0133 (1) 0.0138 (2)
MaF12 0.0150 (3) 0.0144 (2) 0.0141 (1)
Crashworthiness 0.0137 (3) 0.0117 (1) 0.0121 (2)
Carside impact 0.0121 (3) 0.0111 (1) 0.0114 (2)
DAS-CMOP7 0.0166 (3) 0.0158 (2) 0.0139 (1)
DAS-CMOP8 0.0170 (2) 0.0160 (1) 0.0187 (3)
DAS-CMOP9 0.0120 (3) 0.0112 (1) 0.0115 (2)
Overall Ranking 2.72 1.72 1.54
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Table A.16. Friedman ranks for spacing indicator, for all config sets using γ = 1/3, 1/2,
and 2/3.

Problem sets
Config sets using γ

1/3 1/2 2/3
HV Friedman test rank

ZDT3 0.0042 (3) 0.0040 (2) 0.0039 (1)
MaF01 0.0192 (3) 0.0191 (2) 0.0183 (1)
MaF07 0.0102 (2) 0.0102 (3) 0.0100 (1)
MaF10 0.0211 (3) 0.0210 (2) 0.0205 (1)
MaF11 0.0205 (3) 0.0192 (1) 0.0195 (2)
MaF12 0.0209(3) 0.0201 (2) 0.0194 (1)
Crashworthiness 0.0195 (3) 0.0163 (1) 0.0166 (2)
Carside impact 0.0181 (3) 0.0169 (1) 0.0171 (2)
DAS-CMOP7 0.0247 (3) 0.0237 (2) 0.0215 (1)
DAS-CMOP8 0.0252 (2) 0.0239 (1) 0.0282 (3)
DAS-CMOP9 0.0179 (3) 0.0173 (1) 0.0173 (2)
Overall Ranking 2.90 1.54 1.54

Table A.17. Friedman ranks for UD indicator, for all config sets using γ = 1/3, 1/2, and
2/3.

Problem sets
Config sets using γ

1/3 1/2 2/3
HV Friedman test rank

ZDT3 0.9769 (1) 0.9634 (2) 0.9591 (3)
MaF01 0.8640 (3) 0.8742 (2) 0.8944 (1)
MaF07 0.9850 (1) 0.9748 (2) 0.9723 (3)
MaF10 0.9351 (1) 0.8605 (2) 0.6717 (3)
MaF11 0.9709 (3) 0.9836 (2) 0.9893 (1)
MaF12 0.9797(3) 0.9868 (2) 0.9951 (1)
Crashworthiness 0.9330 (3) 0.9671 (1) 0.9655 (2)
Carside impact 0.7688 (3) 0.7991 (2) 0.7994 (1)
DAS-CMOP7 0.9975 (3) 1.0000 (2) 1.0000 (1)
DAS-CMOP8 0.9910 (3) 0.9975 (2) 1.0000 (1)
DAS-CMOP9 0.4872 (1) 0.4767 (2) 0.4645 (3)
Overall Ranking 2.27 1.86 1.86
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Table A.18. Friedman ranks for Evenness indicator, for all config sets using γ = 1/3, 1/2,
and 2/3.

Problem sets
Config sets using γ

1/3 1/2 2/3
HV Friedman test rank

ZDT3 1.6232 (1) 1.6304 (2) 1.6392 (3)
MaF01 0.7058 (3) 0.6996 (2) 0.6942 (1)
MaF07 0.2503 (3) 0.2392 (2) 0.2284 (1)
MaF10 0.7278 (1) 0.7847 (3) 0.7440 (2)
MaF11 0.3136 (3) 0.2949 (1) 0.3035 (2)
MaF12 0.2255(3) 0.2099 (1) 0.2117 (2)
Crashworthiness 0.2460 (3) 0.2117 (2) 0.2110 (1)
Carside impact 0.6364 (3) 0.6210 (2) 0.6242 (1)
DAS-CMOP7 0.2896 (3) 0.2881 (1) 0.2938 (2)
DAS-CMOP8 0.3069 (2) 0.2974 (1) 0.3305 (3)
DAS-CMOP9 0.8611 (3) 0.8535 (2) 0.8332 (1)
Overall Ranking 2.45 1.64 1.90

It is clear from the tables that while γ = 2/3 produces the best outcome, on most
cases γ = 1/2 and 2/3 produce better results than γ = 1/3.

A.7 Final comments

Along with the description and results presented in the main document, this supple-
mentary document has provided a number of supporting figures, tables, and text in
support of our proposed multi-stage procedure. The procedure has been well tested
on a number of two to 10-objective problems on a number of EMaO algorithms. It is
now ready to be integrated with other EMO/EMaO algorithms to make the baseline
algorithm more reliable and to be applied to more problems.
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