SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS COORDENAÇÃO DO CURSO DE MESTRADO EM MODELAGEM MATEMÁTICA E COMPUTACIONAL

Disciplinas-2006/1

Nº	Disciplina	Professor	СН	Créditos	Semestre	Horário
1	Algoritmos e Estruturas de Dados	Flávio Luis Cardeal Pádua	45	03	1/2006-BH	2 ^a Feira – 9h -12h
2	Álgebra Linear	Fausto de Camargo Jr.	45	03	1/2006-BH	4 ^a Feira – 14h –17h
3	Princípios de Modelagem Matemática	Maria Elizabeth de Gouvêa	45	03	1/2006-BH	6 ^a Feira – 14h –17h
4	Processos Estocásticos	Elenice Biazi	60	04	1/2006-BH	3 ^a Feira – 14h –18h
5	Engenharia de Software	Gray Farias Moita	60	04	1/2006-BH	2 ^a Feira – 14h –18h
6	Modelagem de Sistemas Computacionais	Henrique Elias Borges	60	04	1/2006-BH	3ª Feira – 8:40h– 10:20h 5ª Feira – 8:40h–10:20h
7	Métodos Matemáticos Computacionais	João Francisco de Almeida Vítor	60	04	1/2006-BH	3 ^a Feira – 8h -12h
8	Otimização Linear	Sérgio Ricardo de Souza	60	04	1/2006-BH	6 ^a Feira – 8h -12h
9	Tópicos Especiais em Acústica	Ester Naves Machado Borges	30	02	1/2006-BH	2 ^a Feira – 14h –16h
10	Elementos Finitos	Felício Bruzzi Barros	60	04	1/2006-BH	5 ^a Feira – 14h –18h
11	Sistemas Dinâmicos	José Luiz Acebal Fernandes	60	04	1/2006-BH	3ª Feira – 10:35h– 12:15h 5ª Feira – 10:35h–12:15h
12	Inteligência Computacional	Paulo Eduardo Maciel de Almeida	60	04	1/2006-BH	4ª Feira – 8h –12h

OFERTA DE DISCIPLINAS PARA O 1º SEMESTRE DE 2006 - EMENTAS

Nº	NOME	PROFESSOR	TIPO	CH	CR	EMENTA
1.	Algoritmos e Estruturas de Dados	Professor a ser definido	OB	45	03	Algoritmos e problemas algorítmicos. Complexidade e classificação de algoritmos. Técnicas básicas para o desenvolvimento de algoritmos. Tipos abstratos de dados. Estruturas lineares. Estruturas não-lineares. Técnicas de busca em grafos. Técnicas avançadas para o desenvolvimento de algoritmos em grafos. Aplicações práticas dos algoritmos e estruturas de dados.
2.	Álgebra Linear	Fausto de Camargo Jr.	OB	45	03	Conjuntos, Álgebra matricial. Aplicações de matrizes. Espaços vetoriais. Subespaços. Transformações lineares e matrizes. Autovalores e autovetores. Transformações de matrizes, autosistemas e aplicações. Formas bilineares, quadráticas e Hermitianas. Espaços com produto interno. Noções de topologia. Noções de espaços de Hilbert e Banach. Aplicações com softwares matemáticos.
3.	Princípios de Modelagem Matemática	Maria Elizabeth de Gouvêa	OB	45	03	Definições de modelo, modelo matemático, modelagem; utilização dos modelos matemáticos; características desejáveis de um modelo; a modelagem matemática no contexto científico; fases de um trabalho de modelagem; modelagem das variáveis de um fenômeno; tipos de modelos matemáticos; classificação dos modelos matemáticos; exemplos introdutórios de modelagem matemática.
4.	Processos Estocásticos	Elenice Biazzi	OP1	60	04	Conceitos básicos da teoria da probabilidade. Variáveis aleatórias. Variáveis aleatórias múltiplas. Soma de variáveis aleatórias e média de termos longos. Processos aleatórios. Análise e processamento de sinais aleatórios. Cadeia de Markov. Introdução à teoria de fila.
5.	Engenharia de Software	Gray Farias Moita	OP1	60	04	Processos de desenvolvimento de software. O processo unificado. Ciclo de vida do desenvolvimento de um software. Análise de sistemas: preliminar, detalhada, diagramas, especificações. Projeto de sistemas: estágios do projeto, modelos de projeto, diagrama estrutural, estruturação de dados. Implementação e ferramentas automatizadas de desenvolvimento de softwares. Métricas e qualidade de software. Manutenção: aperfeiçoamento, adaptação, correção, prevenção. Testes. Walkthrough. Documentação. Análise e projeto orientado a objeto. Estudo de caso.

Nº	NOME	PROFESSOR	TIPO	CH	CR	EMENTA
6.	Modelagem de Sistemas Computacionais	Henrique Elias Borges	OP1	60	04	Fundamentos da orientação a objetos e UML. Elementos de arquitetura de software. Processo iterativo e incremental para o desenvolvimento de software. Meta-modelo da UML. Diagramas da UML. Ferramentas CASE para a modelagem de sistemas. Modelagem estrutural. Modelagem comportamental. Padrões para atribuição de responsabilidades. Modelagem arquitetural. Técnicas para a reutilização de software: reutilização de código e de interface, padrões de projeto, reutilização de arquiteturas. Tópicos especiais em modelagem de sistemas de software. Aplicações de modelagem de software e estudos de caso.
7.	Métodos Matemáticos Computacionais	João Francisco de Almeida Vitor	OP1	60	04	Aproximação polinomial: Série de Taylor. Interpolação splines. Mínimos quadrados. Aplicação à determinação de raízes. Linearização. Método de Newton. Integração numérica: Fórmulas de Newton-Cotes. Quadratura de Gauss; Resolução de sistemas lineares de equações algébricas: eliminação de Gauss. Decomposição LU. Decomposição de Cholesky. Sistemas triangulares. Sistemas em banda. Sistemas tridiagonais por blocos. Sistemas esparsos; Ortogonalização de sistemas de equações: Métodos de Householder e Gram-Schmidt; Problema de autovalor: Propriedades e decomposição. Algoritmo QR. Algoritmo QZ. Método de Jacobi. Método de Lanczos. Resolução de sistemas de equações algébricas não lineares. Método de Newton-Raphson e variantes.
8.	Otimização Linear	Sérgio Ricardo de Souza	OP1	60	04	O problema da otimização linear. Noções de métodos iterativos e de complexidade analítica Análise convexa e conjuntos poliedrais. Condições de otimalidade. Método simplex. Dualidade, análise de sensibilidade. Princípio da decomposição. Métodos de pontos interiores. Aplicações a problemas lineares.
9.	Tópicos Especiais em Acústica	Ester Naves Machado Borges	OP2	30	02	Elementos de vibrações. A equação de onda bi-dimensional. A Equação Geral da Onda Acústica e sua solução. Velocidade do som em fluidos. Intensidade acústica. Impedância. Nível de pressão sonora. Diretividade da fonte sonora. Fenômenos de transmissão sonora. Absorção e atenuação sonora em fluidos. Radiação e recepção de ondas sonoras. Ruído sonoro.
10.	Elementos Finitos	Felício Bruzzi Barros	OP2	60	04	Métodos de aproximação. Diferenças Finitas. Formulação variacional. Forma fraca da equação diferencial. Método de Ritz. Método de Galerkin. Formulação do Método dos Elementos Finitos. Discretização. Elementos de barra e de viga. Elementos isoparamétricos e integração numérica. Elementos para o estado plano e sólidos axissimétricos. Elementos para análise tridimensional. Elementos de placa e casca. Elementos de campo.

Nº	NOME	PROFESSOR	TIPO	CH	CR	EMENTA
11.	Sistemas Dinâmicos	José Luiz Acebal Fernandes	OP2	60	04	Conceitos básicos: Equações fundamentais da dinâmica. Sistemas autônomos e
						não autônomos. Espaço de fase. Sistemas lineares e não-lineares. Sistemas
						Hamiltonianos. Estabilidade e controle de sistemas dinâmicos. Mapas de
						estabilidade: pontos de reversão, bifurcação e caos. Sistemas diferenciais de
						primeira ordem. Variável de controle. Teoria elementar da catástrofe. Sistemas
						diferenciais de segunda ordem. Sistemas multi-corpos. Sistemas dinâmicos
						acoplados. Sistemas dinâmicos aplicados às ciências exatas e biológicas.
12.	Inteligência Computacional	Paulo Eduardo Maciel de	OP2	60	04	Fundamentos da inteligência artificial; Aprendizado de máquina; Fundamentos
		Almeida				de lógica fuzzy: operações sobre conjuntos fuzzy, modelos de decisão fuzzy.
						Redes neurais artificiais: conceitos, inspiração biológica, arquiteturas.
						Fundamentos de algoritmos genéticos: esquemas de seleção, operadores,
						reprodução. Adaptação. Algoritmos genéticos paralelos. Tratamento de
						restrições. Noções de programação genética. Introdução às estratégias evolutivas.
						Aplicações a processos de tomada de decisão. Reconhecimento de padrões,
						controle inteligente; Aplicações.

OB1: Disciplinas obrigatórias OP1: Disciplinas de Formação Geral OP2: Disciplinas de Formação Específica OB2: Disciplinas de Elaboração de Dissertação